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Abstract—Crowdsourced measurements solve the problem of
being able to assess the performance of a communication network
from an end-user perspective, but the new characteristics of
the data pose new challenges for QoE modeling. In contrast
to existing laboratory or network measurements, this type of
measurement at the end user device primarily involves taking a
large number of short sample measurements, which, however, are
rich in measured parameters, including many user-, application-,
and device-related parameters. To test the applicability and to
facilitate the integration of such data, we applied four QoE
models from the literature to 290k worldwide video streaming
measurements from a commercial data set from August to
October 2020. In this work, we will therefore first describe the
crowdsourcing video streaming data set to provide insights into
the properties of video streaming KPIs in the real world. Second,
we run four popular QoE models using this data set, compare the
resulting QoE scores, and derive the impact of individual KPIs
for each model. We show that the models assess the QoE at least
differently, but sometimes with contradicting statements. Reading
this paper, it becomes evident that more work and subjective
studies, based on real-world data like the one we have shown,
are needed to extend the current QoE models.

Index Terms—Video Streaming, QoE, QoE Models, Crowd-
sourced Measurements, DASH
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I. INTRODUCTION

Crowdsourced measurements are the new trend when it
comes to measuring user satisfaction on a large-scale [1,2]. In
contrast to classical testing, here, the end users’ devices are uti-
lized to perform crowdsourced video streaming measurements
(CVSMs) without the need of a subjective rating of the user.
This measurement technique enables the collection of large
amounts of data and allows network and service providers to
estimate the current user experience. This is done by collecting
key performance indicators (KPIs) during the playback of the
video, which can later be converted to QoE scores using QoE
models. Examples of CVSM providers include, for example,
Tutela Technologies Ltd., who periodically conducts measure-
ments in the background of several popular applications at over
300 million smartphones, or 5GMARK, which uses active tests
on their own application for Android and iOS, which has been
downloaded more than 1M times from Google Play Store.

When calculating QoE scores, it is important to use stan-
dardized QoE models to obtain meaningful and comparable
results. The model P.1203 [3], which has been standardized
by the ITU-T, would be suitable here, but it is restricted in its
application. For example, it is only designed for videos having
a duration between 1min and 5min with an initial delay of
up to 10 s. As crowdsourced measurements are run at the end
user’s device in the cellular network, it is important to keep the
energy consumption as well as the data usage as low as pos-
sible. Thus, crowdsourced measurement providers use shorter
videos of about 30 s in their measurements. Furthermore, due
to the fact that crowdsourced measurements are conducted in
the wild, a wide range of KPI characteristics can occur, e.g.,
initial delays of more than 10 s. Hence, it is not clear if P.1203
is suitable for this kind of data and there is no model specially
customized for the ever-increasing crowdsourced measurement
market. In order to check if nevertheless verified statements
about the QoE of end users can be made, we examine if they
agree on the calculated QoE, i.e., if and which differences they
show, using a large crowdsourced data set.
The contribution of this work is twofold. First, we give

unprecedented insights into a large CVSM data set with more
than 290k mobile crowdsourced measurements from around
the world. Second, to check the applicability of existing QoE
models, we compare four well-known QoE models with each
other and then investigate the influence of the interaction
of different KPIs on the individual models. We show that
the models differ greatly, both in their distributions and in
terms of individual scores and consideration of KPIs, so that
no conclusion can be drawn about end-user satisfaction. We
recommend extending existing models and conducting further
subjective studies using the described KPI characteristics.
The remainder of this work is structured as follows. Sec-

tion II provides background information and related works on
crowdsourced measurements and QoE models by describing
four popular QoE models from literature. In Section III, a
CVSM data set is presented. Next, in Section IV, the models
are compared based on their calculated scores of the presented
crowdsourced data set. First, the scores per QoE model are
directly compared and afterwards, the influence of specific
video KPIs on the models is discussed. Finally, Section V
concludes this work.978-1-6654-3589-5/21/$31.00 ©2021 IEEE
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II. BACKGROUND AND RELATED WORK

For service and network providers, the QoE of their end
users is the key factor for success. To avoid expensive subjec-
tive studies and to be able to collect real QoE values on a large
scale, they increasingly use crowdsourced video streaming
measurements (CVSM). The term crowdsourcing includes the
participation of volunteers in an outsourced campaign. In the
context of video measurements, they are defined as the mea-
surement of video related key performance indicators (KPIs)
by the crowd of mobile subscribers. There are different ways
how to conduct crowdsourced video measurements. In [4,5],
for example, CVSMs are conducted to collect crowd data on
the smartphone of end users. Other commercial data providers
publish crowdsourced video data performance statistics, for
example Tutela, Ookla, or 5GMARK, where smartphones of
end users are used as measurement device.
In order to draw conclusions from the collected KPIs to the

QoE of end users, QoE models are used. In literature, various
QoE models are proposed, which are summarized, e.g, in [6,7].
For a CVSM data set, only parametric models are suitable
that operate on transport or application-layer parameters of the
video streaming. However, most of the models were developed
using only relatively small, limited data sets and have not
been tested for their applicability to different large-scale use
cases in mobile networks. The standardized P.1203 model, for
example, is defined for videos between 1min and 5min, and
therefore is not directly applicable for CVSM data with its
typically short video sample measurements and wide range
of KPI characteristics. For our further evaluation, we picked
four models based on their applicability and popularity, as
can be seen in Table I. The three of the most common
models found in literature are the standardized P.1203 [3], the
Petrangeli [8], and the MPC Model [9]. In contrast to that, a
simple model with low implementation complexity, which is
nevertheless often used, is the FTW Model [10,11]. All four
models comprise modules for short-term quality estimation for
video streaming and predict a QoE score of an average user
on a 5-point absolute category rating (ACR) scale.

FTW Model:Works like [12] state that the main influencing
factors for their own subjective data set are mainly a combina-
tion of stalling and bitrate (correlation of 0.7264). The model
of Hoßfeld et al. [10,11] focuses on stalling in the first hand
and is only defined for non-adaptive streaming. Nevertheless, it
is not complex, reflects the influence of one of the main influ-
ence factors for adaptive streaming, and can be easily applied
to our large data set. It is used for illustration purposes here. It
considers the length and any number of stalling events and is
calculated as follows: QoEFTW = 3.5e−(0.15ψ+0.19)∗φ+1.50
with φ is the number of occurred stalling events and ψ the
average stalling event duration in seconds.

ITU P.1203 Model: The P.1203 model [3], which was stan-
dardized by ITU-T in 2017, is an adaptive streaming model,
which takes not only stalling events into account, but also the
audiovisual quality, e.g., bitrate and resolution. For this model,
we used the implementation from [16]. Mode 0 was used, as

TABLE I: Characteristics of the selected QoE models

Model # Citations

Stallin
g

Adaptation

Initia
l Delay

Picture Quality

Memory Effects

Complexity

FTW [10,11], 2013/20, 174 � 0
ITU-T P.1203 [3], 2017/20 � � � � � +++
MPC [9,13], 2015 1114 � � � +
Petrangeli [8,14,15], 2015 292 � � � +

we only have access to the video’s codec, target bitrate, coding
and display resolution, frame rate, and segment duration.
Furthermore, as our data set does not provide information
about the audio quality, we set the audio quality module
to the highest value as also recommended in the standard.
To the best of our knowledge, only this model explicitly
allows the estimation of QoE considering the particularities
of mobile devices. Furthermore, P.1203 has been extensively
validated with subjective studies. Since this model is the only
standardized model, it is the only model for which the scope
of application is clearly defined. However, these definitions
indicate that it is not suitable for a CVSM data set, see, e.g.,
video duration of 1-5min. Also the KPI characteristics are
restricted. For example, only for initial delays up to 10 s, a
maximum of 5 stalling events with a maximum event length of
15s, and a minimum video resolution of 240p. In the following,
this model will be called QoEP.1203 model.

Petrangeli Model: In the model of Petrangeli
et al. [8,14,15], the QoE calculation consists of a video
quality module and a buffering module. Here, the average
used quality level q and its standard deviation q̂ is used,
normalized with respect to the highest available quality level
qmax = 6. The buffering module F is calculated as follows:
F = 7

8max(
ln(φ)

6 + 1, 0) + 1
8

(
min(ψ,15)

15

)
, where φ is

the number of occurred stalling events and ψ the average
stalling event duration in seconds. Using both, the quality
and the buffering module, the video QoE is thus calculated
as QoEPm = max

(
5.67q
qmax

− 6.72q̂
qmax

+ 0.17− 4.95F, 0
)
.

MPC Model: The last of the used models is a Model
Predictive Control (MPC) model presented bei Yin et al. [9],
which was further used by Mao et al. [13]. This model
considers the used bitrate, number of bitrate changes, and
stalling events and is defined as follows:
QoEMPC =

∑N
n=1Rn − μ

∑N
n=1 Tn −∑N

n=1 |Rn+1 −Rn|
with N = video length in seconds, Rn = bitrate per second,
μ = 4.3, and Tn = stalling time per second.

In [17], the authors conducted a parameter study to inves-
tigate the influence of well-known DASH KPIs on P.1203.
However, as they did a parameter study, they did not analyze
the combined effects of the QoE factors on the model, but
considered single factors separately with synthetic input data.
Furthermore, the compatibility of QoE models was investi-
gated in [18]. Here, by comparing the calculated QoE scores
of a popular web QoE model with the video streaming QoE
calculated according to P.1203, the authors showed that even
under the same network conditions, the models calculate

2



TABLE II: Overview of data set KPIs

Mean Std Min 25% 50% 75% Max

Initial delay [s] 2.31 4.69 0.05 0.94 1.29 1.93 116.52
# Stalling 0.15 0.47 0 0 0 0 6
Tot. stall. duration [s] 1.34 6.78 0.00 0.00 0.00 0.00 114.70
Most used bitr. [Mbps] 2.08 2.12 0.06 0.62 1.26 2.31 6.44
Mean bitr.[Mbps] 1.73 1.43 0.06 0.90 1.22 1.81 6.44
Most used res. [p] 861.49 290.05 144 720 1080 1080 1080
# Quality changes 0.96 0.89 0 0 1 1 25
# Quality degradations 0.23 0.54 0 0 0 0 13

Fig. 1: Correlation of individual KPIs

different scores. Therefore, the question arises whether similar
things can be seen when comparing different video streaming
models with each other.

III. CROWDSOURCED DATA SET

For our work, a commercial, large-scale data set from the
independent crowdsourcing data company Tutela Technologies
Ltd. is used. Tutela conducts DASH video tests all over the
world to measure the video quality at end user devices.
The tests run in the background of mobile apps. To reduce

the impact of the video test on a user’s device or data usage,
video tests are restricted to one per device per month and the
video duration is set to 30 s. The tests are performed as fol-
lows: After randomly selecting the video platform (YouTube
or Facebook), the video test is initiated at the end user’s
smartphone in the background of a mobile application. For
this, the native video player in the Android or iOS operating
systems is utilized, for Android devices Google’s ExoPlayer,
for iOS AvPlayer. Afterwards, the selected video is streamed
using adaptive bitrate streaming. During the video playback,
several application layer video streaming KPIs are monitored.
In addition to device and network information in anonymous
form, this includes the duration of the initial delay, the number
of stalling events and its total duration, mean and most used
bitrate, most used resolution as well as the number of quality
changes and quality degradation numbers.
The underlying data set consists of 884,436 measurements

for streaming video on cellular networks around the world.
The data set was collected during three months from August
to October 2020 from 205 different countries. Most mea-
surements were conducted in the United States (14.23%),
followed by the France (7.38%) and India (6.50%). After
filtering out all incomplete measurements, e.g. measurement
with interruptions due to handovers from the mobile network

Fig. 2: Distribution of calculated QoE scores per model

to WiFi or hardware issues during rendering of the video,
292.306 measurement remain.
The main performance parameters measured in the data set

and their properties are listed in the Table II. Since the video
measurements were performed under real world conditions
on the end user’s smartphone via the cellular network in an
uncontrolled setting, all KPIs are included in the measurement
data to varying degrees. For example, the data set includes
measurements with zero as well as with up to six stalling
events with a total length of up to 114.7 s. Nevertheless, no
stalling occurred in most of the measurements. The used video
quality ranged between 144p with 55 kbps up to 1080p with
6438 kbps and switched up to 25 times. Thus, it becomes clear
that the classical KPI limits, such as those defined for P.1203,
are not sufficient here, even though the videos are only half
as long as the videos for which the model is defined.
While subjective QoE studies often focus only on one

single performance indicator, in the wild, the interaction of
the various KPIs with each other is of particular importance.
Thus, Figure 1 show the coefficient of correlation of the most
important KPIs. Here, higher negative correlations are depicted
by darker green shading up to higher positive correlations are
depicted by darker brown shading. Obvious strong correlations
can be found between the number and total length of stalling
events, between most used, average bitrate and most used
resolution, as well as the number of quality changes and
quality degradations. However, moderate correlations between
other performance indicators can also be seen. For example,
most used bitrate, mean bitrate, and most used resolution are
negatively correlated to the number of stalling events as well
as the total stalling event duration.

IV. COMPARISON OF QOE MODELS

In order to draw conclusions about the QoE of the user
based on this CVSM data set, models are required that
calculate the QoE of an average user from the given KPIs.
As explained above, however, there is yet no suitable model
that formally corresponds to all the circumstances of such a
data set. Therefore, we will use our crowdsourcing data set
in the following to compare the resulting QoE scores of four
models and to consider the influence and correlations of the
KPIs measured worldwide on these models.

A. QoE Score Distributions per Model

To determine whether the QoE models are in consensus in
terms of calculated QoE, the data set was used to calculate
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Fig. 3: Spearman rank-order correlations (SRCC) between
QoE models

the QoE scores of each video using the four models. Figure 2
shows the distribution of the calculated QoE scores per model.
The calculated QoE score is displayed on the x-axis, while
the cumulative distribution function (CDF) is shown on the
y-axis. As can be seen at first glance, the distributions of the
models are different. The visible steps in the curves result
from common combinations of the measured values contained
in the data set, which are evaluated for different models
to QoE clusters with the same value. While, for example,
using QoEFTW 88.49% of the measurements result in the
top score of 5.00, for all other models the percentages are
significantly lower, namely 20.00% for QoEPm and 22.91%
for QoEMPC . Note that the FTW model is not defined
for adaptive streaming, but focuses solely on stalling length
and number. It is reasonable cited and was included in the
evaluation on the basis of the results of [12], which states
that stalling is one of the most important influencing factors
for QoE. Stalling percentage together with bitrate provides
a Spearman’s rank-order correlation coefficient (SRCC) of
0.7264 for the subjective SQoE-III database with simple linear
regression. Using QoEP.1203, not a single top score of 5.00
was calculated. The models also differ in their distribution
of QoE scores. For example, QoEPm is the only model in
which more than 10% of scores are bad (1.00). Only when
considering the mean value per model, the values are relatively
equal. Here, except for QoEFTW having a mean of 4.75, the
QoE score range between 4.23 and 4.29.
When looking at the absolute distance between the QoE

scores for the individual videos, we can see differences.
On average, the difference between the models is between
0.51 and 0.91. In addition, there are also videos where the
calculated QoE score differs for all videos by 3.48 to 4.0. This
means, that some KPI combinations result in a bad score of
1.00 for one model, but an excellent score of 5.00 for another.
This disagreement between the models does not allow us to
make any statements about the actual QoE of the end user,
as all models claim to be validated in some way, but justifies
further investigations.
The question arises whether the models, show broadly the

same tendencies. For this reason, we evaluated the SRCC
between the models in Figure 3. Relatively strong correlations
can be seen for QoEP.1203 and QoEPm (0.77) as well as
QoEFTW and QoEPm (0.55). In contrast to that, a very low
correlation is calculated for QoEMPC and QoEP.1203 as well
as QoEMPC and QoEPm (0.20 and 0.24, respectively).
To analyze the relationship between the models in more

detail, a direct comparison of the distributions of the calculated
QoE scores per model are shown in Figure 4. The intensity

of the color indicates where clusters occur, i.e., the darker
the points, the more frequently they occur. In the optimal
case, a linear relationship would result. No clear partial
tendencies are visible, except for some weak correlations as
in the combination of QoEFTW and QoEMPC , which is
blurred by other values outside the diagonal, so that the SPCC
results in 0.49. However, there is a strong accumulation for
QoEFTW = 5, whereas for QoEMPC the corresponding
scores scatter strongly. That is why the coefficient of corre-
lation of these models is only moderate. Another example is
the relationship between QoEFTW and QoEPm. Here, the
correlation matrix (Figure 3) showed a strong correlation of
0.55, but the correlation is only due to the high percentage of
scores of 5.00.
To sum up, the premise here was: No model is more correct

than the other if and only if the model has been subjectively
validated in a statistically reliable manner. Nevertheless, we
see differences due to the different nature of the models. No
model can be rated better or worse, since we have no insight
into the subjective QoE, which is typical for CVSMs. Insights
can only give subjective studies as, for example, used in [3]
or [12]. The fact of the different results, however, raises the
question of the area of application of each of the models.
We deduce from this the need for further subjective studies
to focus the models themselves more closely and precisely
with regard to their validated area of application. Furthermore,
CVSMs in particular offer a wide range of application-related
and device-related KPIs, which raises the question of whether
other parameters would be helpful for the estimation.

B. Influence of KPIs on QoE Models

To provide an objective quantification of the differences
of the models, we analyze the influence of the given crowd-
sourced video KPIs on the calculated scores. Figure 5 shows
radar charts for displaying multivariate data, having one axis
for each KPI showing the absolute correlation coefficient from
0 to 1 for each model. The higher the correlation coefficient is,
the stronger the influence of this KPI on the respective model.
A literature study led us to the KPIs shown on the axes, as
these represent the commonly used input KPIs for the models
in general.
Strong correlations can be seen between QoEFTW and the

number as well as the total length of stalling events, as they
have an absolute correlation of 1.00. This is given directly by
the definition of the model. All other KPIs for this model show
weak correlation (correlation coefficient ≤ 0.5). The reason for
this here is due to the fact that the individual KPIs correlate
with each other, see Fig. 1.
Looking at QoEP.1203, the most important KPIs cannot be

identified as clearly as in the previous model. An absolute
correlation of 0.63 to the number of quality changes is visible,
which is in-line with with the results of [17]. Other KPIs,
which show a moderate absolute correlation, are the number
and total length of stalling events (0.47 and 0.48, respectively)
as well as the most used resolution (0.48) and the number of
quality changes (0.49). Although the bitrate is also included
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Fig. 4: Comparison of distribution of calculated QoE scores.

(a) QoEFTW (b) QoEP.1203

(c) QoEMPC (d) QoEPm

Fig. 5: Influence of given video KPIs on model results by
absolute correlation coefficients

in the calculation, it does not play a strong role in the model.
Furthermore, the observation from [12] can also be applied
here, where single KPIs only show moderate correlations to the
subjective QoE, but combinations of parameters correlate with
the QoE (regression model [12] with a combination of stalling
percentage, bitrate, average bitrate switch magnitude shows
SRCC of 0.7743 to subjective data). For further evaluations
of the influence of KPIs in P.1203, we refer to [17].
With QoEMPC , the mean and the most used bitrate play

a key role in the calculation of the QoE score, showing an
absolute SRCC of 0.83 (mean) and 0.93 (most used). For
QoEPm, the model is not focused on one or two specific
KPIs that thus show a very strong correlation, but on multiple
KPIs showing strong to moderate correlations.
In Figure 6, the x-axes show the different KPIs while the

y-axes show the four QoE models. Again, the intensity of the
color indicates where clusters occur, i.e., the darker the points
are the more frequently they occur.
Considering the total stalling time (third column), different

results come up among the models. Here, QoEFTW show
a weak negative exponential and QoEMPC a weak negative
linear relationship, which results in a bad QoE to a different
degree the longer the total stalling duration is measured. In
comparison to that, for QoEP.1203 and QoEPm the relation-
ship is not clear. For QoEP.1203, it is also possible that a

TABLE III: Summary of the differences by comparing to the
standardized P.1203 model

Median Key KPI SRCC MAPE KS

QoEP.1203 4.68 Adaptation - - -

QOEFTW 5.00 Stalling 0.48 0.15 0.88
QoEMPC 4.78 Bitrate 0.20 0.15 0.31
QoEPm 4.89 Resolution/Adaptation 0.77 0.14 0.48

relatively large stalling event duration leads to a fair QoE
score. Looking at QoEPm, which showed a high correlation
to the total stalling event length, a very drastic relationship
is visible. Here, as long as the stalling event length is 0 s all
QoE scores are possible, but as soon as stalling occur the
probability of a bad score is very high.
Another example where significant differences are visible is

the mean bitrate (fifth column). QoEFTW shows its inherent
definition considering no other parameters than stalling length
and number. A score of 5 is calculated regardless of the
average bit rate. It is also noticeable that for a smaller mean
bitrate, the scores vary greatly between bad and good scores.
Some similar tendencies are visible for QoEP.1203. In some
cases, a bad mean bitrate leads to a good QoE score, whereas
here a high mean bitrate does not necessarily lead to a very
good QoE score, but fluctuates in the range from 3.5 to 5,
which shows that other factors also have an influence. Using
the QoEMPC model, which previously showed a very high
correlation to the mean bitrate, a more clear relationship can
be seen. For QoEPm, on the other hand, the values are much
more dispersed. Even for a high mean bitrate, QoE scores of
1 are calculated.
It was shown that the calculated QoE scores of the selected

QoE models differ in their distribution as well as in the impact
of each KPI on them. Table III summarizes our findings by
first, listing the mean QoE scores per model as well as the KPI
with the most influence on the model. Second, the differences
between the models, using the example of the difference to the
standardized P.1203, are highlighted. Here, SRCC, the Mean
Absolute Percentage Error (MAPE), and the Kolmogorov
Smirnov (with p < 0.001) values are shown. As all values
indicate great differences of the models, no clear statement
can be made about the subjective perceived user experience.
For this reason, we recommend that network and service
providers do not simply use any QoE model to calculate
the QoE of CVSM data but continue to rely on standardized
models. However, these standardized models, such as P.1203,
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Fig. 6: Influence of different KPIs on QoE models

need to be extended to cover the use case of crowdsourced
measurements with, for example, shorter video durations and
a wider range of KPI characteristics. The previous described
data set is ideal for this purpose, as it provides an overview
of the real-world contexts and distributions of video streaming
KPIs that can be used for subjective studies.

V. CONCLUSION

For video streaming service providers, the QoE of their
end users is the key factor for success. Crowdsourced video
streaming measurements lead to a new kind of data related
to KPIs and volumes with certain characteristics like short
video duration measured in uncontrolled environments. In
literature, numerous models, especially also the standardized
P1203 model, are presented which are based on different
features, but, unfortunately, no QoE model exists which is
formally defined for the area of CVSMs. Since CVSMs
typically do not have any subjective ratings, i.e., no ground
truth to compare, we compared the resulting QoE scores of
four well-cited video streaming QoE models based on a large-
scale crowdsourced data set and evaluated their influencing
factors. Our results show that the calculated scores per model
have significant differences, which are based on the different
weighting of the KPIs. Since we cannot say anything about the
validity of an single model due to the absence of subjective
ratings, no definitive statement or recommendation can be
made. However, the evaluations show that models used in the
literature do show different results, which raises the need for
new research on the applicability of QoE models. Therefore,
caution is advised when comparing QoE values that are not
known how they were calculated or that were obviously
calculated using different models. In addition, we have shown
how new crowdsourcing-based data sets look like and provide
what characteristics they exhibit. This can be used to design
QoE models for these particular measurement type of CVSMs.
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