
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copy righted component of this

work in other works.

Performance Modeling of Softwarized Network
Functions Using Discrete-Time Analysis

Steffen Gebert, Thomas Zinner, Stanislav Lange, Christian Schwartz, Phuoc Tran-Gia
University of Würzburg, Institute of Computer Science

{steffen.gebert,zinner,stanislav.lange,christian.schwartz,trangia}@informatik.uni-wuerzburg.de

Abstract—The softwarization of networks promises cost sav-
ings and better scalability of network functions by moving func-
tionality from specialized devices into commercial off-the-shelf
hardware. Generalized computing hardware offers many degrees
for adjustment and tuning, which can affect performance and
resource utilization. One of these adjustments are the interrupt
moderation techniques implemented by modern network inter-
face cards and operating systems. Using these, an administrator
can optimize either lower latencies or lower CPU overhead for
processing of network traffic. In this work, an analytical model
that allows computing relevant performance metrics like the
packet processing time and the packet loss for generic virtualized
network functions running on commodity hardware is developed.
The applicability of the model is shown by comparing its outcome
with measurements conducted in a local testbed featuring a VNF
that acts as an LTE Serving Gateway (SGW). Based on this model,
impact factors like the average packet interarrival time, the
interarrival time distribution, and the duration of the interrupt
aggregation interval are studied.

Keywords—Discrete-Time Analysis, Performance Modeling,
NFV, VNF, Queueing Theory.

I. INTRODUCTION

The trend towards softwarization of networks, especially
using Software Defined Networking (SDN) and Network
Functions Virtualization (NFV), promises more flexibility and
innovation for networks. Network functions running on com-
mercial off-the-shelf (COTS) hardware have many appealing
advantages such as easy scale-up or scale-down of computing
resources as well as scale-out or scale-in of virtual machines
among the available physical hardware. Further, faster release
cycles compared to hardware devices are promised.

This high flexibility, however, comes at the expense of
performance [4], [13], i.e., a lower packet throughput and
longer processing delays of softwarized solutions compared
to hardware-based implementations. The usage of particular
network functions, for instance within network function chains,
however, has stringent performance requirements. Firstly,
enough function instances have to be available to handle the
corresponding traffic. Secondly, the overall processing delay of
a network function should be minimized, particularly in case
of large forwarding graphs where such delays sum up.

Forwarding packets from the Network Interface Card (NIC)
via the kernel space to a specific network function requires an
interrupt to inform the Central Processing Unit (CPU) about the
packet arrival. Such an interrupt is costly and prevents normal
CPU execution for a couple of µs. To cope with high packet
rates of today’s links with rates of almost 2 million packets
per second (Gigabit Ethernet) to around 20 million packets per

second (10 GE), optimization techniques are required to prevent
CPU livelocks. Such techniques, e.g., interrupt moderation
or interrupt coalescence, are provided by operating systems
and hardware components, i.e., NICs. In order to tune COTS
hardware for their particular use case, these techniques allow
to adjust the trade-off between the number of interrupts and
therewith the overall throughput rate, and the corresponding
processing delays. For that, incoming packets are aggregated
over a certain time span, resulting in a single transfer of all
accumulated packets in a batch from the NIC to the kernel space
and then to the corresponding network function. This batch-style
packet processing is also used by advanced packet processing
mechanisms. Cisco’s Vector Packet Processing (VPP) [2] uses
Intel DPDK [5] to first apply busy polling of incoming packets
from the NIC. Afterwards, it processes the packet headers
of the aggregated packets as vectors, i.e., it processes equal
headers on a protocol basis (Ethernet, IPv4, IPv6, ARP, etc.) in
parallel rather than processing the complete stack step-by-step
for each packet. To understand the impact of performance-
relevant parameters on these metrics and in order to allow an
adequate dimensioning and a proper performance prediction,
appropriate performance models are required.

The contribution of this paper is a discrete-time model for
Virtualized Network Functions (VNFs) running in software on
commodity hardware. The presented model takes into account
interrupt moderation, a technique used by current operating
systems and server hardware to reduce the overall number of
interrupts. Based on an exemplary network function, a mobile
network Serving Gateway (SGW), we determine an empirical
service time distribution. We illustrate the applicability of the
model by comparing it to measurements for a fixed aggregation
interval and varying interarrival times. After that, the impact
of different interarrival times, interarrival distributions, and
aggregation interval durations on the processing times and the
packet loss are presented. The proposed model also allows
computing distributions, i.e., mean values, standard deviations,
as well as quantiles of the delay distributions.

The remainder of this work is structured as follows:
Background information as well as related work is introduced
in Section II. The steps involved in processing packets in a
x86 system are described in Section III, before an abstract
model is introduced in Section IV. After its applicability
based on measurements is shown in Section V, exemplary
evaluations of the packet processing time and packet loss
behavior under different settings are presented in Section VI.
Finally, Section VII draws conclusions and outlines future
work.

II. BACKGROUND & RELATED WORK

This section discusses related work with respect to the
performance of softwarized network functions and correspond-
ing optimization mechanisms. Afterward, interrupt moderation
techniques are discussed.

A. Performance of Packet Processing in Software

Applications processing network traffic send and receive
data packets through functions provided by the operating
system kernel. Accordingly, packets traverse a complex chain of
forwarding steps between the NIC, the kernel, and the software
application resulting in a specific delay overhead.

One major contributor to these delays are copy operations
between the memory of the kernel space and the user space. To
reduce this overhead, multiple techniques and frameworks that
enable a faster processing of packets in software have been
introduced. These approaches, e.g., Netmap [12], ClickOS [10],
Intel DPDK [5], or VPP [2] bypass the kernel completely during
packet reception, use shared memory buffers to avoid additional
copy operations, process packets in batches, or replace the entire
network stack. Accordingly, these mechanisms usually speed up
specific parts of the stack. An extensive measurement study on
the performance of several of the aforementioned mechanisms
in case of packet forwarding is conducted in [1].

However, the abovementioned studies have several draw-
backs. First, the focus on simple network functions like pure
packet forwarding obscures the influence of the processing
time spent in the user space on the total processing time. This
component, however, might account for the majority of the total
processing time. Second, measurements are conducted for very
specific use cases and cannot be generalized in order to obtain
a holistic evaluation of the proposed mechanisms. Finally, it is
impossible to determine the feasibility of an approach without
identifying its key performance indicators. Therefore, a model
for analyzing the packet processing performance on COTS
hardware is required. In addition to providing the capability
to derive key performance indicators, model parameters can
be tuned in order to represent different acceleration techniques
and quantify their effects in the context of different use cases.

Based on such evaluations, it could be decided, which
technique offers a good trade-off between complexity of
implementation and speedup for a specific network function.
As seen in [6], operating modes of network functions exist,
in which the overhead of packet handling, and therefore the
speedup gained by techniques like DPDK, is negligible.

The model developed in this work is a first step towards a
model of packet processing in commodity hardware running a
general purpose operating system.

B. Interrupt Moderation

In particular, the previously listed frameworks also help to
avoid livelocks [8] that result from the CPU being effectively
busy with interrupt handling instead of executing the program
that processes incoming data. In order to avoid such livelocks
and to reduce the overhead of packet processing in a server,
several approaches that apply interrupt moderation have been
introduced on operating system side as well as in networking
hardware.

The networking stack (New API, short NAPI [8]) in the
Linux kernel disables interrupt handling for interrupts related
to receiving packets, once the first packet is processed. Followed
by that, the NIC queue is polled in assumption that multiple
packets arrived in a burst. After a certain number of packets
have been processed, or a timeout occurs, interrupts are re-
enabled and the process restarts once the next packet arrives.

Hardware-based implementations are offered in many server
network adapters. The actual feature set varies between different
chipsets. For receive as well as transmit directions, the NIC can
hold back interrupts until either a pre-configured number of
packets is received or sent, or until a pre-configured time since
the first packet starting the batch passed by. Further options
allow to define a threshold to differentiate between a low and
a high traffic load and to specify options for both of these
conditions. Finally, some NICs offer adaptive modes, in which
they change their behavior based on the current receive rate.

The effects of interrupt moderation and the reduction of
end-to-end delay has been subject of several studies already.
The influence on passive and active network measurements is
investigated in [11]. By identifying packet bursts, effects of
interrupt moderation can be considered when running capacity
and delay measurements using commodity NICs. A similar
methodology is applied in our work in order to estimate the
processing time within the application.

By increasing the interrupt rate, more context switches
occur in the CPU, when switching between interrupt handling
and data processing. Every context switch comes at a certain
cost, especially when code and data are evicted from the CPU
caches. [14] estimates a time of 3-4.5 µs for a pure context
switch without any computation on a multi-core system and
1.3-1.9 µs when the processes are pinned to one CPU core.
When the CPU’s cache lines are not filled, experimental results
show context switch delays of 2.2-2.9 µs, when the process
is pinned to a specific core and a simple program that writes
memory pages is used. With virtualization, the time for context
switches is reported to be increased 2.5-3-fold. As a rule of
thumb, the author estimates 30 µs for a context switch in real-
world scenarios. In contrast, the delays seen in the following are
mostly based on one single program being executed, resulting
in much lower overhead, as the contents of CPU caches are
usually not evicted by code or data of other applications.

Latencies of network communication between two servers
are studied in detail in [7]. The authors investigate the
contributing factors to latencies in Ethernet-based TCP/IP
connections and try to achieve a minimal end-to-end latency.
Using a modified Linux kernel, the authors make use of
nanosecond-precision timers offered by CPUs to break down the
packet transmit and receive latencies for a 1 Gbps and a 10 Gbps
Ethernet NIC. Based on measurements and estimations, this
study indicates a total receive latency of 7.747 µs for a 1 Gbps
card. The main contributors (more than 1 µs) are Interrupt
cause register read requirement, SoftIRQ, Wakeup application
to process socket information, as well as the example application
identifying and acknowledging the received data (ACK the pong
received by the remote sender).

NIC
Hardware

Kernel

Application

NIC

RAM
Kernel

User

CPU

RAM
Kernel

User
CPU

CPU

Incoming Packet Outgoing Packet

Interrupt Interrupt
CPU

Fig. 1. Packet processing in a server.

III. SYSTEM DESCRIPTION

In order to understand the process of packet processing
within a Linux x86 system, an abstracted description is provided
in the following. This process, which starts with receiving a
packet on the wire and ends with the processed packet being
sent over the wire, is also depicted in Figure 1.

Read from media: The network interface card reads data
from the transmission media by interpreting electrical
or optical signals within the MAC layer and transforms it
into packets.

Store in receive queue: These packets are saved into a re-
ceive queue implemented in hardware inside the NIC.
Multiple such queues can exist and, based on hashing,
packets can be distributed among these queues.

Trigger interrupt: In the most simple case, the NIC triggers
an interrupt signal to notify the CPU about the arrival after
every received packet. Interrupt moderation techniques,
which are under study in this work, aim at reducing the
number of interrupts by processing multiple packets at
once. Depending on the capabilities and configuration of
the network card, this batch processing mechanism can be
triggered by a timeout, by accumulating a specified amount
of received packets, or a combination of both. Some NICs
also offer adaptive modes, which adjust timers and batch
sizes according to the current packet rate.

Read packet from NIC: As soon as the interrupt is sent, the
CPU stops other work in order to load and execute the
interrupt service routine of the NIC driver. This code then
fetches the batch of packets from the network card. This
process, which results in a context switch of the CPU, is
rather costly as CPU registers first need to load new code
and data. Additionally, this also purges other applications’
code/data and thus introduces overhead. This overhead
caused by an interrupt can also lead to livelocks, if all CPU
time is spent with interrupt handling. It can be reduced
by avoiding interrupts for every single packet at the cost
of additional delay.

Store packet in buffer: The packet data is stored in a buffer
in RAM, until an application requests them for processing.
The size of this buffer is limited to a fixed number of

Peripheral
queue

A
GI

Central
queue

GI, B

T0

Fig. 2. Queueing Model.

bytes1. If the application cannot catch up with reading
packets, the kernel drops packets. The process of copying
packet data from kernel space to user space takes additional
time per packet.

Process packet in application: While the application pro-
cesses the packet, it blocks the CPU.

Send packet: After processing, the packet traverses the same
way backwards, until it is finally sent to media. The NIC
informs the operating system about this by means of
another interrupt.

IV. MODEL

A. Abstract Server Model and Performance Metrics

The queuing model used for the performance analysis of
the system outlined in Section III is depicted in Figure 2.
It is a generalization of the clocked approach introduced by
Manfield et al. [9]. The generation of packets follows an
arbitrary distribution A. The packets are stored in a peripheral
queue which is assumed to have infinite size. Incoming packets
are transferred in a batch to the central queue after a time
interval τ initiated by the first packet after a batch transfer. The
inner queue is then modeled as a GI [X]/GI/1−L system and
evaluated by means of discrete-time analysis. Distributions of
the batch sizes and burst interarrival times are derived in the
next subsection.

B. Model of the Peripheral Queue (NIC)

In the peripheral queue, which represents the network
interface card, packets are aggregated. The resulting batch
is then forwarded to the central queue, which represents the
CPU/software.

For the remainder of this work, we use the following
notation to distinguish between random variables (RVs), their
distributions, and their distribution functions. A random variable
is represented by an uppercase letter, e.g., X . The distribution
of X is denoted by x(k) and is defined as

x(k) = P (X = k), −∞ < k <∞.
Furthermore, the distribution function of X is written as X(k)
and is defined as

X(k) =

k∑
i=0

x(i), −∞ < k <∞.

Finally, E [X] denotes the mean of X and ∗ refers to the
discrete convolution operation, i.e.,

a3(k) = a1(k) ∗ a2(k) =
∞∑

j=−∞
a1(k − j) · a2(j).

1in Linux, net.core.rmem_max = 131071bytes

The following distributions are used for modeling the
peripheral queue:

• a(k): distribution of the packet interarrival time.
• ra(k): distribution of the packet recurrence time.
• τ(k): distribution of the duration of the aggregation

interval.
• un(k): distribution of unfinished work in the system before

the arrival of the n-th batch.
• o(k): distribution of the interrupt processing delay.
• s(k): distribution of the interarrival time between batches.
• x(k): distribution of the batch size.
• f (j)(k): distribution of the time between the start of an

aggregation interval and the arrival of the j-th packet.
Since the aggregation interval starts with the arrival of a
packet, this time equals the sum of j interarrival times.
The corresponding random variable is referred to as F (j).
• wi(k): distribution of the waiting time of the i-th packet

in the peripheral queue.

The first packet arriving after a burst transferal initiates a
new aggregation interval. All packets arriving in this time frame
are transferred to the inner queue at the end of this interval.
Based on the work in [15] and [3], the batch size distribution
x(k) can be computed as follows.

x(k) = τ(0)δ(k)

+

∞∑
m=1

τ(m)

m−1∑
i=0

(
f (k)(i)− f (k+1)(i)

)
, k = 0, 1,

(1)

The equation allows calculating the number of arrival events
in an arbitrarily distributed time interval. The special case, in
which no arrivals are observed in an interval of length 0, is
covered by the first term. The function δ is defined in Equation 2.
For the remaining interval lengths, the law of total probability
is used in the second term in order to calculate the conditional
probability x(k|m). It can be derived from the relationship
shown in Equation 3.

δ(k) =

{
1 k = 0

0 otherwise
(2)

x(k|m) = P
(
F (k) < m ≤ F (k+1)

)
= P

(
F (k) < m

)
− P

(
F (k+1) < m

)
=

m−1∑
i=0

(
f (k)(i)− f (k+1)(i)

)
,m > 0

(3)

Since the first packet after a transfer initiates the next
aggregation interval, the batch interarrival time s can be
calculated as the sum of the recurrence time of one packet, i.e.,
ra, and the duration of the aggregation interval τ :

s(k) = ra(k) ∗ τ(k) (4)

Since the first packet in a batch triggers the timeout, the
waiting time of consecutive packets is reduced. In particular,
the waiting time of the i-th packet in the peripheral depends on
the arrivals of the i−1 packets before it. Hence, the distribution
of its waiting time can be computed as follows:

wi(k) = π0

τ(k) ∗ a(−k) ∗ · · · ∗ a(−k)︸ ︷︷ ︸
(i− 1) times

 (5)

C. Model of the Central Queue (CPU/software)

We model the inner queue as a GI [X]/GI/1−L queue, i.e.,
a system with batch arrivals and bounded delay. The waiting
time of packets is limited to a maximum value of L, i.e.,
customers who arrive and would have to wait longer than L−1
are rejected. Our analysis extends the work presented in [16]
by introducing batch arrivals. A similar notation, as presented
in the following, is used:

• un,bi(k): distribution of unfinished work in the system
before the arrival of the i-th packet of the n-th batch.

• Bn,i: RV for the service time of the i-th packet of the
n-th batch.

• pb: average blocking probability per packet.
• π0(·): sweep operator which sums the probability mass

of negative unfinished work in the system and appends it
to the state for an empty system.

π0(x(k)) =


x(k) k > 0

0∑
i=−∞

x(i) k = 0

0 k < 0

• σm(·): operator which truncates the upper part of a
probability distribution function.

σm(x(k)) =

{
x(k) k ≤ m
0 k > m

• σm(·): operator which truncates the lower part of a
probability distribution function.

σm(x(k)) =

{
0 k < m

x(k) k ≥ m

The development of the batch arrival process is illustrated
in Figure 3. Observing the packets of the n-th batch arrival,
the i-th packet of the burst is accepted if the current unfinished
work in the system is less than L − 1. In case the packet is
accepted, the unfinished work is increased by the amount of
work Bn,i that is required to process the packet. Otherwise, the
packet as well as the remaining packets of the current batch
are rejected.

The following recursive relationship can be used in order
to compute the amount of unfinished work in the system:

un,b1(k) = un(k) (6)
un,bi+1

(k) = σL−1 [un,bi(k)] ∗ bn,i(k) + σL [un,bi(k)] (7)

Un+1

blocking of
2nd packet

U(t)

L
B

S

t
Un

n-1 n n+1

n

n,3

batch arrivals

X = 2n-1
X = 3n

X = 1n+1

Bn,1

Bn,2

X = 2n+3

Bi,1

X = 3

n+2 n+3

n+2

Fig. 3. Exemplary system development for GI[X]/GI/1−L with bounded
delay.

Hence, the remaining unfinished work in the system at the
arrival of the next batch can be computed as:

un+1(k) = π0

[(∞∑
i=1

x(i) · un,bi(k)

)
∗ sn(−k)

]
(8)

Using these equations, an algorithm for calculating the
workload prior to the i-th arrival can be derived. The algorithm
can be used for both stationary and non-stationary traffic condi-
tions. Under stationary conditions, the index n and (n+ 1) in
these equations can be suppressed, cf. Equation 9. Furthermore,
we assume that the packet service time is independent of a
packet’s position within the batch. Hence, the RV Bn refers
to the service time for packets in the n-th batch. Similarly to
Equation 9, the index n can also be suppressed under stationary
conditions, resulting in RV B.

u(k) = lim
n→∞

un(k)

ubi(k) = lim
n→∞

un,bi(k)
(9)

The computational diagram of the system is depicted in
Figure 4. Depending on the batch size X , the unfinished
work after a batch arrival can be determined by following the
corresponding path through the diagram. Each of the X phases
in such a path represents the relationship from Equation 7.
Finally, the batch interarrival time sn is taken into account and
the π0 sweep operator is used in order to ensure that a proper
probability distribution is returned.

It is also possible to quantify the load ρ of the central queue.
This is achieved by calculating the ratio between the amount of
work that arrives within a given time interval and the amount of
work that is processed in this interval. In particular, we observe
that the amount of work that arrives within a batch interarrival
time depends on the batch size and the packet service time (cf.
Equation 10). Note that both the batch size and the batch
interarrival time are affected by the packet interarrival time (cf.
Equations 1 and 4).

ρ =
E [X] E [B]

E [S]
(10)

s (-k)n

u (k)

n+1

n

u (k)

* 0

i

P(X=2)

P(X=1)

…

…
…

b (k)n

L-1

L

* +

U

U U

U UU
P(X=i)

+

Fig. 4. Computational diagram for GI[X]/GI/1− L with bounded delay.

Finally, the packet loss probability in statistical equilibrium
can be computed as follows:

pb =
∞∑
i=1

1

i
x(i) ·

∞∑
j=L

ubi(j)

 (11)

Depending on the batch size and the amount of unfinished
work added by each packet within the batch, the blocking
probability for the latter packets within the batch increases.

D. Combined Model

Using the two models described in Section IV-B and
Section IV-C, it is possible to determine the distribution of the
total processing time. It is comprised of the waiting time in the
peripheral queue, the waiting time in the central queue, and the
service time in the latter. The waiting time in the central queue
can be calculated from the unfinished work in the system and
a packet’s position in its batch. Hence, the following equation
can be used to calculate the distribution of the total processing
time of the i-th packet in a batch, di:

di(k) = wi(k) ∗ u(k) ∗ b(k) ∗ · · · ∗ b(k)︸ ︷︷ ︸
i times

(12)

Consequently, the distribution of the total processing time
for all packets can be determined via conditional probabilities:

d(k) =

∞∑
i=1

P(X = i) · di(k) =
∞∑
i=1

x(i) · di(k) (13)

V. APPLICABILITY OF THE PROPOSED MODEL

In order to assess the goodness of fit of the introduced
model, measurements are conducted in a test bed and compared
with the model’s predictions. In the following, the components
of this test bed are described alongside the methodology for
accurately measuring the CPU processing times as well as the
results of the comparison.

A. Testbed Setup

The testbed setup is depicted in Figure 5. The SGW [6]
application runs on the Device Under Test (DUT), a server2

running a recent Linux version3 equipped with a four-port
NIC. Similar to [6], GPRS Tunneling Protocol (GTP) traffic
is generated using a hardware traffic generator4. In order to
evaluate per-packet processing times, wiretaps that duplicate all
traffic are placed between the traffic generator and the receiving
NIC of the DUT, as well as between the emitting NIC of the
server and the traffic sink, which is again the traffic generator.
The wiretaps are connected to a hardware capture card5, which
provides nanosecond precision timestamping of received traffic.

The processing time of the server is measured by calculating
the time between a packet’s arrival at the first wiretap and its
arrival at the second wiretap. The packets at the two wiretaps
are matched based on a unique 40 byte signature that the traffic
generator adds to every packet. In order to verify that the traffic
generator emits packets at equidistant times and at the correct
rate, the interarrival times seen at the first capture card are
inspected.

Server (DUT)

Traffic Generator
Application

Server (DAG)

NIC 2NIC 1

SinkNIC 2NIC 1NIC Wiretap 1 Wiretap 2

Fig. 5. Testbed setup consisting of the DUT running the SGW application, a
traffic generator, and a server with a DAG capture card.

The delay, how long the NIC buffers incoming packets, is
adjusted using the ethtool command. In this context, <N>
represents the number of the NIC and <T> reflects τ , i.e., the
number of microseconds to wait after the first incoming packet:

ethtool -C eth<N> rx-usecs <T>

B. Estimating CPU Processing Time

In order to determine the processing time of the application
code at a per-packet granularity, measurements using tcpdump
are conducted. The time, when tcpdump captures a packet
is on the kernel level, right after the interrupt is handled in
incoming direction (from NIC 1), i.e., before the packet is
copied by the kernel driver code to NIC 2 (cf. Figure 1).

One such exemplary measurement displaying the time
between a packet’s arrival at the receiving and the sending side
is shown in Figure 6(a). The two batches of packets each show
an increasing processing time, as the first packet is processed
first by the CPU and the last (10th) packet is processed after all
others in this batch. Therefore, the difference in the processing

2Intel Xeon E5-2620 v2 CPU at 2.10 GHz, Intel I350 NICs, 32 GB of RAM
364 bit version of Debian 7.7 (wheezy, kernel version 3.2.0-4-amd64)
4Spirent TestCenter C1
5Endace DAG 7.5G2 Gig Ethernet

packet
0 10 20

pr
oc

es
si

ng
 ti

m
e

[7
s]

120

130

140

150

160

170

180

190

200

210

Bn,4

n,1B

(a) Function service time of the
CPU for packets captured at kernel
level.

B [7s]
0 10 20

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

ns

(b) Distributions of measured func-
tion service times and mean values
for different runs.

Fig. 6. Differences in processing times of single packets seen in the networking
stack (kernel level) allow deriving the CPU service time per packet.

delay between consecutive packets equals Bn,i, the waiting
and processing time in the application.

Given the application used in our experiments, a prototypical
VNF implementation of a mobile network Service Gateway,
the measurements result in a distribution of processing times
with a mean of 8.336 µs. This empirical distribution is used in
the following after capping it at the 90% quantile (16 µs) to
remove outliers, resulting in a mean of 7.25 µs. This distribution
is shown as the red curve in Figure 6(b) and was picked as a
representative from multiple measurements. The gray CDFs,
as well as the corresponding means (dashed lines) show the
CPU processing times of other measurements and highlight the
variations between the different runs.

C. Comparison of Model Predictions and Measurements

In order to demonstrate the applicability of the proposed
model, we compare its results with measurements. For that,
we conduct five independent measurement runs for constant
interarrival times between 5 and 12 µs. Each measurement
run lasts one minute, and the aggregation interval is set to
τ = 200µs.

The size of the central queue, denoted by L, corresponds
to 5,200 µs of unfinished work. Based on the measured mean
service time at the CPU E[B] = 8.336µs, the inner queue size
of Lbyte = 131, 071 byte as defined by the operating system,
and the packet payload of 210 byte, L computes as follows:

L = E[B] · Lbyte
210

= 5200µs

Based on the measurements, we compute the mean pro-
cessing times and the corresponding confidence intervals on
a 95% confidence level, as well as the packet loss probability.
Additionally, we compute the mean processing times and the
packet loss probability using the analytical model. As service
time distribution, we take the empirically measured service

6 8 10 12
0

1000

2000

3000

4000

5000

6000

7000

E[A] [µs]

E
[D

] [
µs

]

analytical model
measurements

(a) Average processing times.

6 8 10 12
0

0.1

0.2

0.3

0.4

E[A] [µs]

p b

analytical model
measurements

(b) Packet loss.

Fig. 7. Comparison of analytical model and measurements for τ = 200µs.

time from Figure 6. As interrupt overhead, we use o = 4µs,
which is based on the values reported in [7].

Figure 7(a) shows a comparison of the measurements and
values obtained from the analytical model. Error bars denote
the 95% confidence intervals from five measurement runs. The
bars indicate the mean processing time per packet according
to the model.

For packet interarrival times below 8 µs, the error bars
overlap with the mean values from the model, indicating the
applicability of the model. For larger interarrival times, only a
slight difference is observed between the model’s prediction and
the measurements. A possible explanation for this phenomenon
is the high degree of variance regarding the empirical function
service times shown in Figure 6(b).

In an analogous fashion, Figure 7(b) shows the applicability
of the model w.r.t. to the packet loss rate. Except in the case of
E[A] = 7µs, the error bars overlap with the values from the
model. Based on the huge error bar seen in the previous figure,
this interarrival time roughly corresponds to the maximum rate
that the server can handle and the first occurrence of packet
loss can be observed. For larger interarrival times, the model
and measurements both indicate zero packet loss.

The occurrence of packet loss for an average interarrival
time below 8 µs is consistent with the definition of the system
load ρ in Equation 10 and the mean service time at the CPU
of 7.25 µs that is obtained after removing outliers. Since the
average batch size E[X] can be determined by means of τ
and E[A], and the recurrence time in the context of very
low interarrival times is negligible, the system load can be
approximated as follows:

ρ =
E [X] · 7.25

E [S]
=

τ · 7.25
E[A](E[Ra] + τ)

E[Ra]�τ≈ 7.25

E[A]
(14)

Hence, in the context of mean interarrival times below
7.25 µs, the system load is larger than 1, and packet loss occurs.
Furthermore, the actual load is slightly higher due to the fact
that the same CPU core also handles the interrupts that are
caused by outgoing packets. These amount to roughly 20,000
IRQs per second in our scenarios.

VI. EVALUATION

In this section, we investigate the behavior of the packet
processing server based on the introduced model. In this context,
we focus on the total processing time D and the packet loss

probability pb. The influence of the mean packet interarrival
time E[A] and the length of the aggregation interval τ are
studied. At first, coarse-grained analyses of the resulting mean
processing times and packet loss ratios for different interarrival
time distributions and aggregation interval lengths are presented.
Afterwards, we investigate the impact of these two influence
factors for a particular packet interarrival time distribution on
the distribution of processing times.

A. Impact of the Arrival Process

The sensitivity of the modeled system to different distri-
butions of the packet interarrival time A is studied based
on four different distributions, namely deterministic (det),
Poisson (pois), geometric (geo), and negative binomial (nbin).
While for det, pois, and geo, the distributions are characterized
solely by E[A], the parameters p and r of nbin are adjusted so
that σ = µ holds true. This ensures a constant coefficient of
variation equal to 1.

1) Impact on Mean Processing Times: Figure 8 presents
the mean packet processing time D that results from different
combinations of the distribution of packet interarrival time and
its mean. While the x-axis displays the mean packet interarrival
time, the y-axis indicates the average packet processing time.
Additionally, line colors represent different values of the
aggregation interval length τ and line styles correspond to
the four distribution types.

100 200 300 400 500
0

100

200

300

400

500

600

700

800

E[A] [µs]

E
[D

] [
µs

]

det
poi
geo
nbin

τ = 500

τ = 200

τ =100

Fig. 8. Effects of different values of E[A] and different aggregation intervals
τ on the mean processing time E[D].

In most cases, the curve shape is composed of three phases.
First, small packet interarrival times result in high processing
times that stem from long waiting times in the central queue.
As soon as the average interarrival time exceeds τ , in most
cases, each batch is comprised of only one packet. As this
packet initiated a new aggregation interval, it has to wait until
the timer ends after τ . Because of the low rate, the unfinished
work at the central queue (the CPU) is low or oftentimes zero,
resulting in immediate processing of the packet. Since in this
case the processing time in the central queue is relatively low
compared to the waiting time in the peripheral queue, the total
processing time is mostly influenced by τ . For interarrival
times that follow a deterministic or a Poisson distribution, most
aggregation intervals contain exactly one packet, resulting in
processing times that are slightly higher than τ . In contrast, the
negative binomial and geometric distributions lead to bursts

4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

E[A] [µs]

p b

det
pois
geo
nbin

(a) τ = 200µs.

4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

E[A] [µs]

p b

det
pois
geo
nbin

(b) τ = 500µs.

Fig. 9. Packet loss depending on E[A] for different τ .

of packet arrivals that result in lower mean processing times.
After the first packet of a batch starts the aggregation interval,
consecutive packets still arrive within the interval and thus,
have a lower waiting time in the peripheral queue.

For interarrival times that are lower than τ , but do not lead
to queuing at the central queue, expected batch sizes for all
distributions are larger than one. Therefore, the mean waiting
time in the peripheral queue decreases and thus, the mean
overall processing time E[D] also decreases.

Although the figure might suggest that decreasing τ , i.e.,
reducing the interrupt moderation, leads to lower processing
times, this is only true until reaching a break-even point. Then,
the overhead per packet caused by interrupt handling and
context switches accounts for the majority of CPU time.

2) Impact on Packet Loss: As described previously, the
processing time increases with the number of packets per
second, because packets experience a waiting time at the central
queue. As this queue is limited by L (cf. Section III), packet loss
occurs once this limit is exceeded as described in Equation 11.
In the following, the impact of the mean and distribution of
interarrival times on the packet loss probability is evaluated.

Figure 9 depicts the packet loss probability for the four
different distributions depending on different mean processing
times and lengths of the aggregation interval. It can be observed
that the Poisson distributed interarrival times result in the
highest packet loss ratio when the system operates at a high
load. The assumption behind applying interrupt moderation
techniques is a certain burstiness of traffic. Hence, the packet
loss ratio is up to 8% lower for nbin than for geometrically
distributed arrivals in the case of τ = 200µs depicted in
Figure 9(a). Due to the higher degree of burstiness of the
former, longer idle times after τ finished occur and thus fewer
interrupts are triggered.

As described in Section V, the CPU load exceeds 1 when
E[A] falls below 7.25 µs (cf. Equation 14). This fits with the
observed packet loss at E[A] ≤ 7µs for all distributions. In
case of nbin, packet loss occurs even at E[A] = 8µs due to
the higher burstiness of the traffic.

However, it is questionable whether this system can be
operated in overload conditions with a packet loss ratio of
more than 5 %, which occurs for interarrival times of 7 µs and
less, corresponding to more than 142,857 packets per second.
Thus, the lower rate with E[A] = 8µs, when no packet loss
occurs for all distributions except nbin, is more interesting.
The reason for this behavior is, again, its burstiness and higher
variation, resulting in short overload situations that lead to

packet loss. In contrast, the other distributions result in more
equally spaced arrivals.

For the largest aggregation interval of 500 µs, this effect is
visible even for higher values of E[A]. Caused by the higher
expected number of packets per batch (τ/E[A]), the probability
that packets are dropped in the central queue is increased,
resulting in a higher packet loss ratio.

B. Processing Time Distributions for Varying Interarrival Times

In addition to studying the influence of the arrival process
on the mean processing time, we also investigate its effect on
the distribution of the processing time. Figure 10 shows the
CDFs of the processing time D given an aggregation interval
of τ = 100µs combined with different arrival processes and
values for the mean interarrival time E[A].

For the lowest mean interarrival time of 4µs shown in
Figure 10(a), i.e., the scenario with the highest system load,
the highest processing times are observed. Furthermore, the
distribution of processing times in this scenario has a low
variance and similar values independent of the arrival process.
This can be explained by the combination of the very high
load and the fact that the system drops packets that encounter
a full queue. In contrast, the distribution of the processing
time in the context of E[A] = 8µs differs significantly across
different distributions of the interarrival time. On the one hand,
the relatively stable det and pois distributions result in a narrow
range of processing times which is significantly lower than for
E[A] = 4µs. On the other hand, the higher degree of variation
of the geo and nbin distributions result in a larger variety of
batch sizes which, in turn, yield wide intervals of different
processing times.

A further decrease of the processing times is observed for
the medium interarrival times seen in Figure 10(b). In these
scenarios, the distributions resulting from the nbin and geo
distributions are closer to each other and begin to converge.
This phenomenon can be explained by the evolution of the two
arrival processes. For higher values of E[A], the coefficient of
variation of geo approaches 1, i.e., that of the nbin distribution
used in this work. Simultaneously, the r parameter of the nbin
distribution approaches 1. Since the geometric distribution is a
special case of the negative binomial distribution with r = 1,
the aforementioned convergence can be explained.

Finally, Figure 10(c) displays the processing time distribu-
tions in case of E[A] = 30µs and E[A] = 100µs, respectively.
When the mean interarrival time equals the aggregation interval
τ , only size 1 batches are processed in case of a deterministic
arrival process. In combination with the fact that arrivals initiate
the aggregation intervals, the processing time is dominated by
the waiting time in the peripheral queue. For E[A] = 30µs,
batches consist of four packets, hence the distribution consists
of four segments with similar shapes corresponding to a packet’s
position within a batch. The processing time distributions that
result from a geometric and a negative binomial distribution
converge further when E[A] is increased and overlap in case
of E[A] = 100µs. Processing times resulting from interarrival
times that follow a Poisson distribution are lower and closer to
those of det rather than geo and nbin which have a significantly
higher degree of variation.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Processing times D [µs]

P
(D

≤d
)

det
pois
geo
nbin

E[A] = 4 µs
E[A] = 8 µs

(a) Low interarrival times.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Processing times D [µs]

P
(D

≤d
)

det
pois
geo
nbin

E[A] = 10 µs

E[A] = 20 µs

(b) Medium interarrival times.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Processing times D [µs]

P
(D

≤d
)

det
pois
geo
nbin

geo/nbin

E[A] = 30 µs

E[A] = 100 µs

(c) High interarrival times.

Fig. 10. Processing time distributions for varying packet interarrival times and different interarrival distributions in case of τ = 100µs.

VII. CONCLUSION

NFV has many appealing advantages such as easy scale-up
or scale-down of computing resources as well as scale-out
or scale-in of virtual machines among the available physical
hardware. This high flexibility, however, comes at the expense
of performance, i.e., a lower packet throughput and longer
processing delays. To understand the impact of performance-
relevant parameters on these metrics, and in order to allow an
adequate dimensioning and a proper performance prediction,
appropriate performance models are required.

The contribution of this paper is an analytical model for
virtualized network functions running in software on commodity
hardware. The model takes into account interrupt moderation,
a technique used by current operating systems and server
hardware to reduce the overall number of interrupts. Based
on an exemplary network function, a mobile network serving
gateway, we determine an empirical service time distribution.
We illustrate the applicability of the model by comparing it
to measurements obtained from a testbed deployment of a
VNF for a fixed aggregation interval and varying interarrival
times. After that, the impact of different interarrival times,
interarrival distributions, and aggregation interval durations on
the processing times and the packet loss is presented. The
proposed model also allows the computation of distributions,
i.e., mean values, standard deviations, and also quantiles of the
delay distributions can be computed. Therefore, the presented
method can be used by administrators to ensure an appropriate
operation of network functions based on their needs.

The model itself may be generalized to take into account
acceleration techniques like Intel’s DPDK or Cisco’s VPP. This
allows comparing heterogeneous network function implementa-
tions and selecting the appropriate technique for a specific use
case. Furthermore, economic trade-offs between operational
metrics and corresponding costs can be investigated.

ACKNOWLEDGMENT

This work has been performed in the framework of the
CELTIC EUREKA project SENDATE-PLANETS (Project
ID C2015/3-1), and it is partly funded by the German
BMBF (Project ID 16KIS0474). The authors alone are re-
sponsible for the content of the paper.

REFERENCES

[1] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace
packet processing. In 11th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS ’15, pages 5–16,
Washington, DC, USA, 2015. IEEE Computer Society.

[2] Cisco Systems and Intel Corporation. NFV Partnership. Joint Whitepaper,
http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/cisco-nfv-partnership-paper.pdf, 2015.

[3] Steffen Gebert, Thomas Zinner, Stanislav Lange, Christian Schwartz, and
Phuoc Tran-Gia. Discrete-Time Analysis: Deriving the Distribution of
the Number of Events in an Arbitrarily Distributed Interval. Technical
Report 498, June 2016. Available online: https://www3.informatik.
uni-wuerzburg.de/TR/tr498.pdf.

[4] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network
function virtualization: Challenges and opportunities for innovations.
IEEE Communications Magazine, 53(2):90–97, Feb 2015.

[5] Intel. Intel Data Plane Development Kit (DPDK). http://dpdk.org.
[6] Stanislav Lange, Anh Nguyen-Ngoc, Steffen Gebert, et al. Performance

benchmarking of a software-based LTE SGW. In 2nd International
Workshop on Management of SDN and NFV Systems, Barcelona, Spain,
November 2015.

[7] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Siddharth
Kulkarni. Architectural breakdown of end-to-end latency in a TCP/IP
network. International Journal of Parallel Programming, 37(6), 2009.

[8] Robert Love. Linux Kernel Development. Addison-Wesley Professional,
3rd edition, 2010.

[9] David Manfield, Phuoc Tran-Gia, and Herbert Jans. Modelling and
performance of inter-processor messaging in distributed systems. Perform.
Eval., 7, 1987.

[10] Joao Martins, Mohamed Ahmed, Costin Raiciu, et al. ClickOS and
the art of network function virtualization. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages
459–473, Seattle, WA, April 2014. USENIX Association.

[11] Ravi Prasad, Manish Jain, and Constantinos Dovrolis. Passive and Active
Network Measurement: 5th International Workshop, PAM 2004, Antibes
Juan-les-Pins, France, April 19-20, 2004. Proceedings, chapter Effects
of Interrupt Coalescence on Network Measurements, pages 247–256.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[12] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In 21st
USENIX Security Symposium (USENIX Security 12), pages 101–112,
Bellevue, WA, August 2012. USENIX Association.

[13] Sakir Sezer, Sandra Scott-Hayward, and Pushbinder Chouhan et al.
Are we ready for sdn? implementation challenges for software-defined
networks. IEEE Communications Magazine, 51(7):36–43, July 2013.

[14] Benoit Sigoure. How long does it take to make a context
switch? http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-
context.html, November 2014.

[15] Phuoc Tran-Gia. Zeitdiskrete Analyse verkehrstheoretischer Modelle in
Rechner- und Kommunikationssystemen - 46. Bericht über verkehrsthe-
oretische Arbeiten, 1988.

[16] Phuoc Tran-Gia. Discrete-time analysis technique and application to
usage parameter control modelling in ATM systems. In 8th Australian
Teletraffic Research Seminar, Melbourne, Australia, December 1993.

