
Discrete-Time Modeling of NFV Accelerators
that Exploit Batched Processing

Stanislav Lange∗, Leonardo Linguaglossa§, Stefan Geissler∗, Dario Rossi§, Thomas Zinner¶

§University of Würzburg, Institute of Computer Science, Chair of Communication Networks, Würzburg, Germany.
{stefan.geissler, stanislav.lange, zinner}@informatik.uni-wuerzburg.de

∗Telecom ParisTech, Paris, France.
{dario.rossi, linguaglossa}@telecom-paristech.fr

¶TU Berlin, Berlin, Germany.
zinner@inet.tu-berlin.de

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copy righted component of this work in other works.

Abstract—Network Functions Virtualization (NFV) is among
the latest network revolutions, bringing flexibility and avoiding
network ossification. At the same time, all-software NFV im-
plementations on commodity hardware raise performance issues
with respect to ASIC solutions. To address these issues, numerous
software acceleration frameworks for packet processing have
appeared in the last few years. Common among these frameworks
is the use of batching techniques. In this context, packets are
processed in groups as opposed to individually, which is required
at high-speed to minimize the framework overhead, reduce
interrupt pressure, and leverage instruction-level cache hits.

Whereas several system implementations have been proposed
and experimentally benchmarked, the scientific community has
so far only to a limited extent attempted to model the system
dynamics of modern NFV routers exploiting batching accelera-
tion. In this paper, we fill this gap by proposing a simple generic
model for such batching-based mechanisms, which allows a very
detailed prediction of highly relevant performance indicators.
These include the distribution of the processed batch size as well
as queue size, which can be used to identify loss-less operational
regimes or quantify the packet loss probability in high-load
scenarios. We contrast the model prediction with experimental
results gathered in a high-speed testbed including an NFV router,
showing that the model not only correctly captures system
performance under simple conditions, but also in more realistic
scenarios in which traffic is processed by a mixture of functions.

Index Terms—Discrete-Time Model, Queueing Theory, NFV,
DPDK, netmap, FD.io, VPP.

I. INTRODUCTION

All-software processing of network traffic has unleashed
the possibility to rapidly deploy and update new protocols
and features, in both the control and the data plane. Par-
ticularly, ASICs still dominate the network core, where the
network fabric performs simple processing like IP forwarding
or MPLS switching at several Terabits-per-second. In contrast,
all-software stacks are gaining popularity at the network edge,
where software can deliver feature-rich packet processing for
a large variety of protocols at tens to hundreds of Gigabits-
per-second. Software routers have been introduced nearly two
decades ago [1] but their adoption has been slow due to severe

performance bottlenecks, which made the idea appealing but
limited to research prototypes. Yet, the situation changed
drastically in the last decade, with the introduction of the
so-called “kernel-bypass” network stacks [2], [3], that started
offering efficient low-level building blocks for multi-threaded
user-space processing of network traffic at line-rate. As a
result, full-blown software stacks, enabling more complex
use cases in the Software Defined Networks (SDN) and
Network Functions Virtualization (NFV) areas started rising
in the software ecosystem. Open Virtual Switch (OVS) [4]
and Vector Packet Processor (VPP) [5] are two examples.

To achieve high-speed processing, these software frame-
works share commonalities [6] such as the use of lock-free
multi-threading as well as the use of poll-mode batched pro-
cessing. If the use of multi-threading allows horizontal scaling
and makes each thread independent from the others, the use of
batching is a distinctive characteristic of modern high-speed
packet processing frameworks: particularly, batching is used
for both fetching packets from the Network Interface Card
(NIC) by low-level drivers to reduce interrupt pressure [2],
[3], as well as for processing batches of packets in higher-
level applications to amortize framework overhead [5]–[8].

Yet, while a large number of system implementations exist,
and while some work recently started undertaking an experi-
mental comparison of these implementations [6], [9], [10], to
the best of our knowledge a system model that can explain and
accurately predict the measurable system performance of such
batch-based packet processors has yet to appear. Although
a model for VNF processing times is proposed in [11], its
applicability is restricted to systems that process each packet
individually. However, batching departs radically from such
classic models where packets arrive independently and are
independently buffered and treated. Indeed, batching not only
correlates arrival and departure, but can also influence the
average per-packet processing time. While queueing models
that feature batched arrivals at the processing unit are not
entirely new and have been used to better capture phenomena
such as bursty TCP behavior [12]–[15], both the use case and

the particular processing schemes differ significantly.
This paper presents the first simple yet accurate model of

high-speed software routers using batching acceleration. We
present a general model that is able to accurately characterize
the most distinctive parameters of new-generation software
routers, including the packet loss probability and processed
batch size. In particular, the model allows deriving the full dis-
tribution of the batch size and not just the first few moments.
Experiments with a real software router confirm the model
to be very accurate in realistic scenarios where a mixture of
network functions with different levels of complexity is present
and each requires a different number of CPU cycles.

In the remainder of this paper, we first introduce the
architecture of a modern NFV software router in Sec. II. We
develop a discrete-time queuing model in Sec. III, after which
we describe the experimental setup that is used for the model
validation in Sec. IV. Results of the validation are presented
in Sec. V. Finally, we put this work in the context of related
efforts in Sec. VI and summarize our findings in Sec. VII.

II. BATCHED PACKET PROCESSING

We start by presenting background information about the
latest generation of high-speed software packet processors,
that is represented at a high level in Fig. 1. We refer to
the same figure later to detail our experimental testbed in
Sec. IV. The Device Under Test (DUT) consists of a Common
Off-The-Shelf (COTS) server equipped with one or more
Network Interface Cards (NICs). The DUT runs an instance
of a software router that implements a set of Virtual Network
Functions (VNFs): examples of such functions include Eth-
ernet switching, IPv4/IPv6 forwarding, Access Control Lists,
load balancing, proxying, etc. Irrespectively of the specific
functions, the system has a number of low-level architectural
characteristics that we introduce here, and abstract in the next
section, to provide a tractable yet accurate analytical model.

A. Packet Ring and RSS

When packets are received at the NIC, they are written
to a buffer, called packet ring, that is also accessed by the
software to retrieve the incoming packets. Writing happens
without involving the CPU, using the Direct Memory Ac-
cess (DMA) technique, and does not involve costly memory
copy operations. This memory area acts as a circular queue:
when the input rate is higher than the processing rate, the
oldest packets might be overwritten by the newcomers. Hence,
unlike in classic FIFO queues, older packets are dropped when
the buffer is full.

Modern NICs expose multiple RX/TX hardware queues for
the same link. Software frameworks can leverage the Receive
Side Scaling (RSS) technique [16] to bind different CPUs to
different of these RSS hardware queues. Thereby, incoming
traffic is balanced across different RSS queues based on a
hashing function, which allows parallelizing packet processing
with the number of available CPU cores. Therefore, each CPU
is assigned with a separate instance of the software router,
managing its own specific RSS queue with its own packet ring.

Input rate

Fwd rate

VNF
- eth
- IPv4
- IPv6

DUT

Drop

RSS

...

CPU ...

packet rings

batch

batch processing

NICs

SW Router

Fig. 1: Synopsis of the device under test considered in this
manuscript.

Since RSS makes each thread independent, it is sufficient to
analyze the performance of a single RSS queue as handled
by a single core: indeed, due to the lack of synchronization
and locking issues, the aggregated system performance scales
linearly in the number of cores. Hence, for modeling purposes,
it is sufficient to focus on a single RSS queue.

B. Polling and I/O Batching

Traditionally, the networking stack generated an interrupt
every time a new packet was received by the NIC, signaling
the CPU that all processing should stop in order to deal
with packet I/O. Under heavy load, this mechanism has been
proven to be very inefficient and to overload the CPU, for
which different interrupt mitigation mechanisms have been
introduced. One such mechanism is polling [17]: at very high
traffic rates, the CPU continuously checks for packets stored
in the packet ring without raising any interrupt.

Polling mechanisms are typically coupled with batching:
when the CPU polls a device, it gathers a group of contiguous
packets in the ring and the whole batch is passed to the
processing application. A similar procedure is executed during
packet transmission, when packets scheduled to be transmitted
are forwarded in batches. Batching is a powerful mechanism
that speeds-up the overall processing, as it amortizes the fixed
costs of the I/O over multiple packets [7], [18] and is as such
supported by all modern networking stacks [2], [3].

A maximum batch size β is usually defined to fix a limit on
the number of packets to be taken by an atomic poll operation,
so that the size of the polled batch can take any value in
[0, β]. Thus, defining a simple model capable of faithfully
representing batched operations is a relevant goal.

C. Compute Batching

The use of batching is not limited to packet I/O. Indeed, net-
work function computation can similarly benefit from grouped
processing, which is known as compute batching.

Shortly, when a VNF is executed over a batch, this allows
sharing the overhead of the packet processing frameworks on
multiple packets, e.g., all processing instructions are initialized
once per batch rather than once every packet. Additionally, it
increases the efficiency of the underlying CPU pipelines since
the VNF code raises a single miss for the first packet in the

batch, but is then subsequently cached in the L1 instruction
cache for the remainder of the batch.

Whereas the actual implementation of compute batching
differs among frameworks (e.g., the compute batching im-
plementations of G-opt [8], DoubleClick [7], FastClick [6]
and VPP [5]), compute batching is another popular technique
in modern high-speed packet processing frameworks. Hence,
defining a general model that can be applied to different
frameworks with heterogeneous implementations of compute
batching techniques is another relevant goal.

III. SYSTEM MODEL

In this section, we describe the queueing model that is
used to evaluate the performance of batching-based packet
processors. Fig. 2 illustrates its main components, namely an
arrival process with arbitrarily distributed packet interarrival
times, a limited-capacity FIFO queue as well as a processing
unit that regularly polls the queue, picks up limited-sized
batches, and processes them with service times that depend
on the batch size. We deliberately abstract the circular packet
ring with a FIFO queue for the sake of tractability. Intuitively,
this does not alter the system performance w.r.t. the amount of
lost packets, only which packets are lost changes. Furthermore,
experiments show that the model achieves a high level of
accuracy even despite this simplification (Sec. V). In this
section, after a brief overview of the system states that are
captured by the model, we outline how to extract the key
performance indicators from the system steady state.

A. Discrete-Time Model

For the sake of readability, we provide an overview of
the notation used in this manuscript in Tab. I. The top half
contains constants and random variables that constitute the
model input, whereas outputs are listed in the bottom half. To
disambiguate between random variables (RVs), distributions,
and distribution functions, we use the following convention:
uppercase letters such as A denote RVs, their distribution is
represented by

a(k) =def P(A = k), k ∈ [0,∞) ,

and the corresponding distribution function is defined as

A(k) =def P(A ≤ i) =
k∑

i=−∞
a(k), k ∈ [0,∞) .

In the proposed model, the system state at a given time is
represented by the corresponding queue size Qn at the time the
n-th batch is polled from the NIC. As highlighted in Fig. 3,
all system events such as packet arrivals as well as polling
and batch processing have a direct impact on the queue size.
While each packet arrival leads to an increment of the queue
size by one, polling by the processing unit decrements it by
the number of packets that are picked up. The latter is limited
by the maximum batch size which is denoted as β and the
number of packets that reside in the queue at the time of the
polling event. Finally, if an arriving packet finds the queue at
its maximum capacity L, the packet is dropped. Hence, the

Queue

Capacity 𝑳

𝑨

Packet

Loss

Batch

Processing

Busy

Polling

Batch

Pickup

𝑩𝟎…𝜷

Fig. 2: Model overview.

Arrivals

Polling & Processing

Queue Size

𝒕

𝒕

𝒕

𝑸(𝒕)

𝑨

𝑳

𝒋 = 𝒊 + 𝟏 − 𝜷

𝑩𝜷

𝒊

𝜷

𝑩𝒋

𝟎

Packet

Loss

Embedding Times

Fig. 3: Exemplary state development of the model.

queue size distribution Q(k) can be used to derive all relevant
performance indicators for the modeled system, e.g., the batch
size distribution as well as the packet loss probability.

In order to derive the distribution of the queue size, we
consider an embedded Markov chain whose embedding times
are defined to be immediately before the busy polling events
of the processing unit. Based on the queue size Q at these
embedding times, we can derive the state probability distribu-
tion at consecutive embedding times by taking into account
the current batch size and the number of arrival events during
the corresponding service time. Finally, we use a fixed-point
iteration in order to determine the queue size distribution
q(k). To this end, we leverage the recursive relationship in
(1) to compute the queue size distribution immediately before
the (n + 1)-st batch is picked up, based on the queue size
distribution immediately before the n-th batch is picked up.

qn+1(k) =



L∑
i=0

qn(i)xbmin(i,β),a(k − (i−min(i, β)))

for k < L,
L∑
i=0

qn(i)

∞∑
j=0

xbmin(i,β),a(L+ j − (i−min(i, β)))

for k = L,

0 otherwise.
(1)

The first case covers the probability to reach a state with a
queue size that is below its capacity L. In order to calculate
this probability, every possible previous value for the queue
size i at the previous time of embedding is considered.

TABLE I: Notation.

Variable Description

L Queue capacity, equals 4096 if not stated otherwise.
β Maximum batch size, equals 256 if not stated otherwise.

A, a(k) Packet interarrival time.
Bi, bi(k) Service time of size i batches.
xτ,a(k) Number of arrivals whose interarrival time is distributed

according to a during an interval whose length is dis-
tributed according to τ .

Qn, qn(k) Queue size immediately before the n-th batch pick up.
Q, q(k) Queue size at embedding times.
Vn, vn(k) Batch size immediately before the n-th batch pick up.
V , v(k) Batch size at embedding times.
ploss Packet loss probability.

Given i, the size of the batch that is processed between
embeddings equals min(i, β) since the processing unit can
pick up at most β packets. From this, we can derive the
number of arrivals during the corresponding service time -
which is distributed according to bmin(i,β) - by means of
xbmin(i,β),a. Since embeddings are placed immediately before
polling events, a queue size of k is reached when the number
of arrivals during the service time is equal to the difference
between k and i−min(i, β), the size of the queue immediately
after the batch is picked up.

The special case of k = L is calculated in an analogous
fashion but it is necessary to take into account packet loss,
i.e., the arrival of packets beyond the queue capacity which
also results in a queue size of L.

Finally, we remark that under stationary conditions, the
indexes n and (n+ 1) in (1) can be suppressed, i.e.,

q(k) = lim
n→∞

qn(k).

B. Key Performance Indicators

Given the queue size distribution, the batch size distribution
and packet loss probability can be derived according to (2)
and (3), respectively. While the former is representative of the
system’s efficiency, i.e., larger batches correspond to lower
per-packet processing times, a non-zero value of the latter is
indicative of an under-dimensioned system.

1) Batch Size Distribution: If the queue size is lower than
the maximum batch size β, the two are identical, i.e., the entire
queue is emptied upon batch pickup, which is covered in the
first case of (2). Queue sizes larger than β result in batch sizes
of exactly β and are instead covered by the second case.

v(k) =


q(k) k < β,
∞∑
i=β

q(i) k = β,

0 otherwise.

(2)

2) Packet Loss Probability: As noted in the description of
(1), packet loss occurs when the number of arrivals during a
service interval would lead to a queue size that exceeds the

capacity L. Hence, we can describe the packet loss probability
as the ratio of the expected number of arrivals beyond this
threshold NLost and the expected total number of arrivals
NArrivals:

ploss =
E [NLost]

E [NArrivals]

=

∑L
i=0 q(i)

∑∞
j=0 j xbmin(i,β),a(L+min(i, β)− i+ j)∑L
i=0 q(i)

∑∞
j=0(j xbmin(i,β),a(j))

(3)

Similarly to (1), we consider all possible queue sizes i and
use the corresponding probability q(i) as a weighting factor.
For each number of lost packets j, we calculate the probability
for the arrival of (L + min(i, β) − i + j) packets that are
required for filling and exceeding the queue. For the expected
total number of arrivals, we proceed in an analogous fashion
but do not have to shift the distribution of the number of
arrivals.

IV. EXPERIMENTAL SETUP

To validate our model, we instrument a testbed operating a
real NFV software router following the IETF benchmarking
guidelines [19]. This section describes our hardware and
software setups as well as the scenarios we use to assess the
accuracy of our model.

A. Hardware Setup

We reproduce the experimental setup that is illustrated
early in Fig. 1. Our hardware consists of two COTS servers,
equipped with two Intel X520 dual port NICs operating at
10 Gbps. Each server has 2 Intel Xeon E52690 processors,
with 12 physical cores per processor, running at 2.60 GHz.
Each processor has 3 levels of cache hierarchy, ranging from
576 KB for the L1 to 30 MB for the L3. The RAM consists of
two Non-uniform Memory Access (NUMA) nodes for a total
size of 128 GB.

We use one server as Device Under Test (DUT) and another
server for traffic generation (TX) and reception (RX). The
DUT receives traffic from one input line-card, performs the
packet processing, and then proceeds with the forwarding to
the designated output port. We conduct our measurements at
the TX and RX side in order to assess the packet ingress and
egress rate as well as packet loss. Additionally, we measure
directly within the DUT in order to obtain batch sizes, packet
loss at the NIC, and packet loss at the DUT.

Given that traffic comes from a single 10 Gbps line-card, the
hardware setup would be vastly over-provisioned w.r.t. CPU
and memory in case all cores would be used. Therefore, we
run the DUT on a single CPU core attached to a single RSS
queue, as typically done in stress-test conditions.

B. Software Setup

1) DUT: To validate the model, we select a state-of-the-
art NFV software stack that employs batched processing. In
particular, we conduct experiments with the Vector Packet

TABLE II: Experimental configuration parameters.

Parameter Value

H
W

NIC Intel X520 dual-port 10 Gbps
CPU 2× Intel Xeon E52690 @ 2.6 GHz
Caches L1/L2/L3 32 KB/256 KB/30 MB

D
U

T

Software router VPP 17.04
Number of CPU cores 1
Number of RSS queues 1
Memory allocated 4 GB
Size of input queue (pkts) L = 4096

Max DPDK batch size (pkts) 32
Max VPP batch size (pkts) β = 256

T
X

/R
X

Traffic Generator MoonGen
Rate span [min..inc..max] [0.5..0.5..10]Gbps
Hi/Lo rates 10 Gbps / 2.5 Gbps
Arrival rate process Constant bit-rate (CBR)
Data points per rate (pkts) 138k
Functions { XC, Eth, IPv4, IPv6 }
Scenarios Homogeneous vs Heterogeneous

Processor (VPP) [5]. In a nutshell, VPP implements VNFs as
software components (aka nodes) that can be linked together
in a specific configuration (aka forwarding graph). A specific
input node (aka dpdk-input) polls the line-card for new pack-
ets, grabbing a batch (aka vector) from the ring for processing.
Notice from Tab. II that VPP compute-batches may aggregate
several DPDK I/O-batches, as the maximum VPP batch size
is larger than DPDK’s. VPP then processes all packets in the
vector node-by-node instead of traversing the graph packet-by-
packet: in addition to sharing the framework overhead over the
batch, only the first packet triggers fetching of processing code
in the L1-instruction cache of the CPU, whereas processing
of subsequent packets benefits from L1-instruction cache hits.

Also notice that this process naturally introduces branches,
as packets may trigger different functions implemented in
different nodes of the forwarding graph. This requires splitting
the original heterogeneous batch into smaller homogeneous
batches for the subsequent nodes. This is expected to change
the operational point of the NFV router, as not only the split-
ting process incurs an additional overhead, but also since the
framework overhead is now shared over a smaller batch, and
the code heterogeneity increases the L1-instruction cache miss
rate. It is thus important to assess experimental performance
under realistic scenarios involving multiple functions.

2) TX/RX: For traffic generation and reception, we use
MoonGen [20], a state-of-the-art scriptable tool capable of
sustaining 10 Gbps line-rate. MoonGen also provides APIs
to perform basic measurements from the TX/RX side. For
example, it is possible to access the NIC’s hardware counters
to precisely measure the number of packets transmitted and
received, which allows to derive the experimental forwarding
and loss rates for comparison with the model.

Typically, a single DUT thread on a single RSS queue under
commonly considered NFV workloads is able to sustain a rate
of 12–14 Mpps [3], [6]. As such, when sending 10 Gbps worth
of traffic at minimum-sized 64 Bytes packets on a wire, corre-

sponding to a rate of 14.88 Mpps, we expect the system to be
in a lossy regime. As such, we assess the system performance
for different rates, ranging from 0.5 Gbps to 10 Gbps with a
step increment of 0.5 Gbps. For the sake of illustration, we
also consider two exemplary operational points, representing
a high-load (10 Gbps) and a low-rate (2.5 Gbps) regimes.

C. Scenarios

We consider two VNF cases, where the router is stressed
with either homogeneous traffic that triggers the same function
or heterogeneous traffic that activates a mixture of functions.
We select popular functions in the NFV ecosystem that allow
us to focus on different components of the framework. We use
the simplest function to investigate I/O batching, and introduc-
ing different types of lookup and data structures to provide
instances of compute-batching with different complexity.

1) Homogeneous Cross-Connect Function: In this sce-
nario a single simple VNF, usually referred to as cross-
connection (XC), is applied to all packets before the imme-
diate forwarding, representing the baseline of homogeneous
functions in an NFV router. In this case, the VPP DUT is
configured to take all the packets from one input interface and
immediately forward them to a fixed output interface. Notice
that for the XC VNF, no computation is needed on the headers
of the transferred packets since the DUT simply moves batches
from the input to the output NIC. Therefore, this scenario helps
assessing whether the model faithfully reproduces the impact
of I/O-batching.

We generate our workload using a MoonGen script that
sends a stream of packets at a fixed rate, namely copies of
a templated UDP traffic. Notice that for such a simple VNF,
the type of traffic does not affect the processing time. Since
neither processing nor branching happens, XC performance
represents an upper bound for the performance of the NFV
router.

2) Heterogeneous Eth/IPv4/IPv6 Functions: As pointed out
in [10], as network traffic is heterogeneous, NFV routers
need to handle a mixture of different functions. We therefore
consider the case of three different functions that operate on
the same traffic batch. Specifically, we consider three functions
with different sizes of inputs (48, 32, and 128 bits), lookup
types (exact vs longest-prefix match), and data structures (hash
tables vs tries). In particular, we consider traffic that triggers
the following operations, in increasing order of complexity: (i)
a 48 bit exact-match Ethernet lookup, (ii) a 32 bit IPv4 longest-
prefix match lookup using a trie structure, and (iii) a 128 bit
IPv6 longest-prefix match lookup that performs a lookup over
multiple hash tables, for different netmask lengths.

For the sake of simplicity, our experiments are performed
with an even split of the functions, i.e., each of the above
traffic types have 1

3 of the bandwidth, so that each function
activates with probability 1

3 , resulting in different function
breakdowns across batches. We leave the investigation of even
more complex scenarios, e.g., featuring an uneven split, a
larger set of functions, or longer chains of functions for future
work. In this scenario, both the function and the vector split

Per−Rate Fitting Global Fitting

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
0

5

10

15

20

25

Batch Size

M
ea

n
S

er
vi

ce
 T

im
e

[µ
s]

Rate [Mbps] 2500 5000 7500 10000 All

Fig. 4: Size-dependent batch service times. Points indicate
mean values from measurements, lines denote linear fits.

are heterogeneous, which already makes it a quite challenging
use case for our model.

V. MODELING VS EXPERIMENTAL RESULTS

Before we validate our model via experimental results from
the homogeneous and the heterogeneous traffic scenarios,
we discuss several options that are available for tuning the
model inputs. These options represent different trade-offs in
terms of the resulting prediction accuracy, the model’s general
applicability, as well as the amount of measurements that are
required prior to its application.

A. Model Tuning Options

As detailed in Sec. III, the model input consists of the queue
capacity L, the maximum batch size β, the distribution of
packet interarrival times a(k), and the size-dependent distri-
butions of batch processing times bi(k). Due to our choice of
hardware and software components, the values for L and β
are fixed at 4096 and 256, respectively.

While the mean packet interarrival time E [A] can be
determined from the applied rate, our model provides a degree
of freedom by allowing to set an arbitrary distribution to
reflect aspects like the traffic’s burstiness: to this end, we
consider a total of four distributions that have varying degrees
of variation. In particular, these include (i) the Poisson dis-
tribution whose coefficient of variation equals 1/

√
E [A], (ii)

the geometric distribution with a coefficient of variation that
equals 1, and (iii)-(iv) negative binomial distributions whose
parameters are set to achieve coefficients of variation equal to
0.5 and 2, respectively.

Furthermore, we use our measurements to obtain E [Bi],
the mean size-dependent batch service times. Similarly to the
packet interarrival time, we can use different distributions to
model the behavior of the processor. However, all conducted
measurements yielded a very low degree of variation when
considering a particular combination of applied rate and the
corresponding per-size batch service time. Hence, we use
Poisson distributions for the service time.

Additionally, the model might require service time distribu-
tions for batch sizes that did not occur in the measurements.
In order to provide suitable distributions for these batch sizes,

Poisson Negative Binomial 0.5

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

10
00

0

0

64

128

192

256

Rate [Mbps]

M
ea

n
B

at
ch

 S
iz

e

Model, global fit Measurements Model, per−rate fit

Fig. 5: Mean batch sizes for different rates, arrival processes,
and fitting strategies.

linear fitting of the mean per-batch service times is performed.
The Poisson distributions for the service time are then gen-
erated with measurement-based means where available and
with fitted means otherwise. Finally, the mean batch service
time E [Bi] can depend on the applied rate due to internal
specifics of the packet processing framework. Hence, the
aforementioned fitting can be done either globally or on a
per-rate basis. These choices represent trade-offs between the
overhead for per-rate measurements of the service time, risking
overfitting the model to a particular scenario, and a possible
improvement w.r.t. the resulting accuracy.

B. Homogeneous Scenario

1) Per-rate vs Global Fit: We illustrate the immediate
effects of the chosen fitting strategy in Fig. 4. While the x-axes
denote the batch size, the y-axes represent the mean service
time in microseconds, and different colors represent different
packet arrival rates. Each dot represents a mean service time
that is obtained from measurements and lines correspond to
linear fits. In particular, we observe that the slope of the linear
fit can significantly change depending on the considered arrival
rate and therefore might lead to a larger error when the model
has to take into account batch sizes that did not appear in a
measurement run. At a low rate of 2.5 Gbps, the size of the
processed batch is small, which is not as efficient to process as
a larger batch, resulting in longer mean service times. Starting
at 7.5 Gbps, it can be seen that batch size spans a much
larger range, whereas for 10 Gbps the batch size is consistently
maximal and the system likely operates in a lossy regime.

In order to evaluate the impact of the fitting strategy as well
as the distribution of the packet interarrival time, we apply our
model to the XC scenario and compare the resulting mean
batch size with our measurements. For different rates on the
x-axes, the graphs in Fig. 5 display the mean batch size on
their y-axes. The two subplots correspond to evaluations that
use Poisson (left) and negative binomial distributions (right)
and bars of different colors represent the measurement data
(middle, blue) surrounded by results from the model with the
two fitting strategies: the global fit (red bars to the left of
measurement data) vs per-rate fit (green bars to the right).

As evidenced by the similar development of the mean batch
size and the correct identification of the saturation for rates
greater than 7 Gbps, all four considered model variants lead to
a high degree of agreement with the measurements. However,
the models using the global fitting strategy consistently out-
perform those that rely on per-rate fitting of the service time.
In the former case mean values differ by only up to 1 packet,
whereas differences of up to 8 packets are observed for the
latter. This effect can be explained by the fact that the per-rate
fitting strategy can suffer from performance issues when the
model requires service time information for batches that have
not been observed in the corresponding measurements. Hence,
there is a trade-off between the amount of measurements
that are used for fitting and the resulting accuracy. For the
remainder of our evaluation, we show results that are obtained
with the global fitting strategy.

2) Arrival Process Distribution: In contrast to the fitting
strategy, the chosen distribution of the arrival process does not
have a significant impact on the mean batch size returned by
the model, which we can capture with the relative error (RE)
of the normalized difference of means and is defined as

|E [P]− E [Q]|
E [P]

.

Therefore, we extend our evaluation and compare the batch
size distributions that are returned for different arrival pro-
cesses. We quantify the difference between the distribution that
is returned by the measurements, p(k), and the model, q(k),
by means of the Jensen-Shannon divergence (JSD) which is
symmetric and bounded, allows to equally weight differences
among p(k) and q(k) over their full support, and is defined as
∞∑
k=0

(
1

2
p(k) ln

p(k)
1
2p(k) +

1
2q(k)

+
1

2
q(k) ln

q(k)
1
2q(k) +

1
2p(k)

)
.

For three exemplary rates that represent a low, a medium,
and a high load as well as our four arrival distributions in
increasing order of coefficient of variation, Fig. 6 displays the
batch size distribution obtained by means of measurements
and our model. Given the batch size on the x-axis, the y-
axis represents the corresponding probability and annotations
provide the JSD and RE values. When inspecting the distri-
butions obtained by the measurements, we can observe that
there is usually one peak around which the main portion of
the probability mass is centered. This can be explained by the
fact that there is an equilibrium between the per-packet service
time that is achieved in the context of a particular batch size
and the mean packet interarrival time. Hence, the number of
arrivals during the service time of a batch is nearly constant. In
the case of higher rates, shorter interarrival times lead to larger
mean batch sizes which, in turn, allow for larger fluctuations
in terms of the number of arrivals during the corresponding
service time.

When comparing the subfigures column-wise, we observe
that while these peaks are also reconstructed by all model
variants, their dispersion increases significantly with the coef-
ficient of variation of the chosen arrival distribution. Similarly

JSD: 0.008

RE: 0.013

JSD: 0.055

RE: 0.018

JSD: 0.187

RE: 0.039

JSD: 0.368

RE: 0.222

JSD: 0.039

RE: 0.006

JSD: 0.065

RE: 0.001

JSD: 0.178

RE: 0.018

JSD: 0.311

RE: 0.053

JSD: 0.120

RE: 0.043

JSD: 0.128

RE: 0.031

JSD: 0.228

RE: 0.022

JSD: 0.340

RE: 0.076

2500 Mbps 5000 Mbps 7500 Mbps
P

oiss.
N

B
 0.5

G
eo.

N
B

 2

0 32 64 96 128 0 32 64 96 128 0 32 64 96 128

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

Batch Size

P
ro

ba
bi

lit
y

Measurements Model

Fig. 6: Batch size distributions for different rates and arrival
processes.

to the previous argument, the higher variance of packet interar-
rivals leads to a wider range in terms of the number of arrivals
during a service period. Finally, the best match regarding both
the shape of the resulting distributions as well as the achieved
JSD measure is achieved when using arrivals that follow a
Poisson distribution. This is also in line with the settings of
the MoonGen traffic generator that is set to send packets at
a constant rate. Since it is a software-based generator, minor
fluctuations of the corresponding sub-microsecond interarrival
times are to be expected. Therefore, we use interarrival times
that follow a Poisson distribution for the remainder of this
work.

As already noted, the mean batch size takes on a constant
value of 256 for rates of 8 Gbps and above. In these high-
load regimes, packet loss begins to occur since the number
of arrivals during the batch service time exceeds 256 and the
queue fills up steadily. In Tab. III, the actual packet loss that
is reported in the measurements is compared to the model’s
predictions. Rates below 8 Gbps are omitted since they are
equal to 0 in both cases. For the remaining rates, the model
accurately predicts the occurrence and quantity of packet loss
which increases linearly with the applied load.

TABLE III: Packet loss probability for different rates.

Rate [Mbps] 8000 8500 9000 9500 10000
Measurements 0.97% 6.69% 11.58% 16.44% 20.17%

Model 1.09% 6.78% 11.56% 16.30% 20.13%

In summary, our model achieves a very high accuracy for
both key performance indicators in the cross-connect scenario,
faithfully modeling I/O batching over a wide range of arrival
rates, including overload scenarios that result in packet loss.

0.0

0.2

0.4

0.6

0.8

1.0

0 32 64 96 128
Batch Size

C
D

F

Measurements Model

0
16
32
48
64
80

200 210 220 230 240 250
Batch Number

B
at

ch
 S

iz
e

0

10

20

30

40

0 32 64 96 128 160 192 224 256
Batch Size

M
ea

n
S

er
vi

ce
T

im
e

[µ
s]

Rate [Mbps] 2500 10000

(a) Batch size distribution at 2500 Mbps.

0.0

0.2

0.4

0.6

0.8

1.0

0 32 64 96 128
Batch Size

C
D

F

Measurements Model

0
16
32
48
64
80

200 210 220 230 240 250
Batch Number

B
at

ch
 S

iz
e

0

10

20

30

40

0 32 64 96 128 160 192 224 256
Batch Size

M
ea

n
S

er
vi

ce
T

im
e

[µ
s]

Rate [Mbps] 2500 10000

(b) Batch size development at 2500 Mbps.

0.0

0.2

0.4

0.6

0.8

1.0

0 32 64 96 128
Batch Size

C
D

F

Measurements Model

0
16
32
48
64
80

200 210 220 230 240 250
Batch Number

B
at

ch
 S

iz
e

0

10

20

30

40

0 32 64 96 128 160 192 224 256
Batch Size

M
ea

n
S

er
vi

ce
T

im
e

[µ
s]

Rate [Mbps] 2500 10000

(c) Size-dependent batch service times; the grey
line represents a linear fit for all rates.

Fig. 7: Results for the heterogeneous mixed traffic scenario.

C. Heterogeneous Scenario

We continue our validation with the heterogeneous scenario
which features three types of packets that receive different
treatment by the network function. Based on the insights from
the cross-connect case, we use packet interarrival times that
follow a Poisson distribution and employ Poisson distributions
for the batch service time. The means of the latter are based on
the means obtained in our measurements for observed batch
sizes, or on a global linear fit otherwise.

For the high load scenario of 10 Gbps, the model accurately
predicts a batch size distribution that has 100 % of its probabil-
ity at the maximum value of 256. Furthermore, it also reports a
packet loss probability of 56.61 % which very closely matches
the 56.65 % that are obtained via testbed measurements.

For the low load scenario of 2.5 Gbps, Fig. 7a shows
the cumulative distribution function (CDF) of the batch size
obtained by means of measurements and the model. Despite
applying the unmodified generic model to a significantly more
complex scenario, the model achieves a very high accuracy
regarding the batch size distribution. However, a small shift
near the batch size of 75 indicates a systematic mismatch.
Hence, we perform an in-depth analysis of the measurements
in order to further investigate the cause of this behavior.

To this end, Fig. 7b portrays a time series view of consec-
utive batch sizes during an experimental run, reporting just
50 batches for the sake of illustration. A repeating pattern
of batch sizes can be observed: the pattern begins with a
batch of around 80 packets, that is followed by batches whose
size steadily declines until it falls below 32, after which the
pattern starts again. The monotonous decrease of batch sizes
can be explained by the more efficient processing of large
batches, during which fewer packets arrive than are processed.
In contrast, during the service time of batches whose size is
below 32, the overhead of the framework can be amortized
over fewer packets, causing the system to enter a less efficient
regime during which significantly more packets arrive.

This alternating behavior suggests the presence of (at least
two) different processing regimes. We further analyze this
phenomenon by checking the mean service time for different
batch sizes in the mixed traffic case. In particular, for different
batch sizes on the x-axis, Fig. 7c displays the mean service

time on the y-axis. Differently colored dots correspond to
values obtained in the low and high load context while the
grey line corresponds to the global linear fit. As suggested
by the previously observed traffic pattern, a significant change
in terms of the mean batch service time occurs for batches
having size 32. Incidentally, notice that this drop is related to
DPDK’s internal batch size of 32 (cf. Tab. II), which causes
a drastic change of slope for the linear fit (service time drops
by a factor of 2 around that DPDK batch value) which is the
likely cause of the observed mismatch.

In summary, even when not taking into account these
highly implementation-specific details and autocorrelations,
our model generalizes very well and provides accurate pre-
dictions for both performance indicators, i.e., the batch size
distribution and the packet loss probability.

VI. RELATED WORK

Related to our work is either experimental work [2]–[10]
of NFV systems or modeling work [11]–[15], [21]–[26] that
either shares a similar technique or NFV focus.

1) Experimental Viewpoint: As introduced earlier, the
ecosystem of high-speed all-software packet processing has
flourished in the last decade with both low-level building-
blocks that use I/O batching (e.g., netmap [3] and DPDK [2]),
as well as high-level full-blown stacks that apply NFV func-
tions with a compute batching paradigm [5]–[8]. Whereas
such frameworks offer a similar set of features, comparison
is difficult so that most related work relies on extensive
evaluation campaigns of a single tool – as we do in this work
using VPP over DPDK.

More recently, work started to appear that extends the
comparison to a limited subset of the aforementioned tools [6],
[9], [10]. For example, [9] focuses on accelerated low-level
frameworks, namely netmap, DPDK, and PF_RING. The
authors perform an experimental campaign assessing not only
throughput, measured in Mpps, but also consider the impact of
factors such as batch size or misses in CPU caches. Similarly,
FastClick performance is evaluated over both DPDK and
netmap in [6]. Finally, [10] experimentally compares NFV
throughput with chains of heterogeneous functions using OVS-
DPDK, SR-IOV, and FD.io VPP. Given findings in [6], [9],
[10], it is reasonable to assume that the model presented in

this paper should also be fit to express the performance of
other frameworks, which we aim at tackling as future work.

2) Modeling Viewpoint: The theory of bulk queueing sys-
tems has long been studied [21]. For Markovian bulk input
M [X]/M/1 and service M/M [X]/1 systems, [22] provides
closed form solutions under Poisson arrivals and exponentially
distributed service times. Particularly, bulk-input Batch Marko-
vian Arrival Processes (BMAP) have been well studied [12],
[13], and applied to study long lived TCP connections [14],
[23] or to model aggregated IP traffic [15]. Similar studies for
bulk-service systems, which would be more relevant w.r.t. our
batch-processing perspective, are missing to date.

Models of Network Functions Virtualization (NFV) have
also recently appeared [11], [24]–[26]. In particular, queueing
models are used in [24] and [25] to describe software-based
networks. Both these models adopt a global network view and
strongly abstract the mechanisms of specific network elements,
as opposed to this work. Under this perspective, studies closer
to ours are [11], [26], which both aim at predicting virtual
function performance on multi-core systems. Yet, [26] does
not take into account mechanisms like batch arrival or batch
processing of packets, which both are crucial characteristics
of nowadays NFV routers. In contrast, the authors of [11]
assume fixed processing times, which we show not to hold
true in practice, and omit a proper experimental validation.

VII. CONCLUSION

This paper presents the first discrete-time NFV model that
takes into account the most recent and relevant aspects of
modern NFV routers. These include the use of batching for
both low-level I/O data transfer as well as for high-level data
transformation and computation. We validate the model with
experimental results that are gathered in a testbed with state-
of-the art NFV routers. The experimental scenarios include
a simple cross-connect case as well as a realistic setting in
which traffic triggers heterogeneous functions with different
processing complexity.

While our proposed model is simple and general, as it only
needs few aggregated measurements from a real NFV router,
it is very accurate in reporting detailed performance indicators
even in complex scenarios with multiple functions. The perfor-
mance indicators include not only the packet loss probability
and mean batch size, but also the distribution of the batch
size. On the one hand, this allows to precisely characterize the
router’s performance, e.g., in terms of batching delay. On the
other hand, it can be used as an operational tool to dimension
the router hardware, e.g., the number of CPU cores required
to sustain mixed traffic with a classic 5-nines reliability.

As part of our future work, we plan to validate the generality
of the model beyond the experimental results gathered in this
paper by considering a larger set of NFV routers such as
FastClick and G-opt as well as more realistic traffic patterns,
e.g., with chains of functions of different lengths.

ACKNOWLEDGMENTS

This work has been performed in the framework of the CELTIC

EUREKA project SENDATE-PLANETS (Project ID C2015/3-1), and
it is partly funded by the German BMBF (Project ID 16KIS0474).
This work benefited from support of NewNet@Paris, Cisco’s Chair
“NETWORKS FOR THE FUTURE” at Telecom ParisTech (http://
newnet.telecom-paristech.fr). The authors alone are responsible for
the content of the paper.

REFERENCES

[1] E. Kohler, R. Morris, B. Chen et al., “The Click Modular Router,”
Operating Systems Review, 1999.

[2] Intel, “Data Plane Development Kit,” http://dpdk.org.
[3] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in USENIX

ATC, 2012.
[4] B. Pfaff, J. Pettit, T. Koponen et al., “The Design and Implementation

of Open vSwitch,” in USENIX NSDI, 2015.
[5] FD.io. (2016) VPP whitepaper. https://fd.io/wp-content/uploads/sites/34/

2017/07/FDioVPPwhitepaperJuly2017.pdf.
[6] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-

ing,” in ANCS, 2015.
[7] J. Kim, S. Huh, K. Jang et al., “The power of batching in the click

modular router,” in Asia-Pacific Workshop on Systems, 2012.
[8] A. Kalia, D. Zhou, M. Kaminsky et al., “Raising the bar for using gpus

in software packet processing.” in NSDI, 2015.
[9] S. Gallenmüller, P. Emmerich, F. Wohlfart et al., “Comparison of

frameworks for high-performance packet io,” in ANCS, 2015.
[10] N. Pitaev, M. Falkner, A. Leivadeas et al., “Characterizing the perfor-

mance of concurrent virtualized network functions with OVS-DPDK,
FD.IO VPP and SR-IOV,” in ACM/SPEC International Conference on
Performance Engineering, 2018.

[11] S. Gebert, T. Zinner, S. Lange et al., “Performance modeling of soft-
warized network functions using discrete-time analysis,” in International
Teletraffic Congress (ITC), 2016.

[12] D. Manfield and P. Tran-Gia, “Analysis of a finite storage system with
batch input arising out of message packetization,” IEEE Transactions
on Communications, 1982.

[13] D. M. Lucantoni, “New results on the single server queue with a batch
Markovian arrival process,” Communications in Statistics. Stochastic
Models, 1991.

[14] E. Altman, K. Avrachenkov, and C. Barakat, “A stochastic model of
TCP/IP with stationary random losses,” ACM SIGCOMM Computer
Communication Review, 2000.

[15] A. Klemm, C. Lindemann, and M. Lohmann, “Modeling IP traffic using
the batch Markovian arrival process,” Performance Evaluation, 2003.

[16] T. Herbert and W. de Bruijn, “Scaling in the linux networking
stack,” https://www.kernel.org/doc/Documentation/networking/scaling.
txt, 2011.

[17] L. Rizzo, “Device polling support for freebsd,” in BSDConEurope
Conference, 2001.

[18] S. Han, K. Jang, K. Park et al., “PacketShader: a GPU-accelerated
software router,” in SIGCOMM, 2010.

[19] S. Bradner and J. McQuaid, “RFC2544 Benchmarking Methodology
for Network Interconnect Devices,” https://www.ietf.org/rfc/rfc2544.txt,
1999.

[20] P. Emmerich, S. Gallenmüller, D. Raumer et al., “Moongen: A scriptable
high-speed packet generator,” in IMC, 2015.

[21] I. W. Kabak, “Blocking and delays in m (x)/m/c bulk arrival queueing
systems,” Management Science, 1970.

[22] J. F. Shortle, J. M. Thompson, D. Gross et al., Fundamentals of queueing
theory. John Wiley & Sons, 2018.

[23] J. Padhye, V. Firoiu, D. Towsley et al., “Modeling TCP throughput: A
simple model and its empirical validation,” ACM SIGCOMM Computer
Communication Review, 1998.

[24] G. Faraci, A. Lombardo, and G. Schembra, “A building block to
model an SDN/NFV network,” in IEEE International Conference on
Communications (ICC), 2017.

[25] A. Lombardo, A. Manzalini, V. Riccobene et al., “An analytical tool
for performance evaluation of software defined networking services,” in
IEEE Network Operations and Management Symposium (NOMS), 2014.

[26] K. Suksomboon, M. Fukushima, S. Okamoto et al., “A dilated-
CPU-consumption-based performance prediction for multi-core software
routers,” in IEEE NetSoft Conference and Workshops (NetSoft), 2016.

