
Analytical Model for the Energy Efficiency in Low
Power IoT Deployments

Tobias Hoßfeld, Simon Raffeck, Frank Loh, Stefan Geißler
University of Würzburg, Institute of Computer Science, Chair of Communication Networks

Würzburg, Germany
prename.surname@uni-wuerzburg.de

20
22

IE
E

E
.

Pe
rs

on
al

us
e

of
th

is
m

at
er

ia
l

is
pe

rm
itt

ed
.

Pe
rm

is
si

on
fr

om
IE

E
E

m
us

t
be

ob
ta

in
ed

fo
r

al
l

ot
he

r
us

es
,

in
an

y
cu

rr
en

t
or

fu
tu

re
m

ed
ia

,
in

cl
ud

in
g

re
pr

in
tin

g/
re

pu
bl

is
hi

ng
th

is
m

at
er

ia
l

fo
r

ad
ve

rt
is

in
g

or
pr

om
ot

io
na

l
pu

rp
os

es
,

cr
ea

tin
g

ne
w

co
lle

ct
iv

e
w

or
ks

,
fo

r
re

sa
le

or
re

di
st

ri
bu

tio
n

to
se

rv
er

s
or

lis
ts

,
or

re
us

e
of

an
y

co
py

ri
gh

te
d

co
m

po
ne

nt
of

th
is

w
or

k
in

ot
he

r
w

or
ks

.
T

he
de

fin
iti

ve
ve

rs
io

n
of

th
is

pa
pe

r
ha

s
be

en
pu

bl
is

he
d

in
N

et
So

ft
20

22
-2

02
2

IE
E

E

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

N
et

w
or

k
So

ft
w

ar
iz

at
io

n,
Ju

ne
27

,
20

22
–

Ju
ly

1,
20

22
,

D
O

I.]

Abstract—The recent rise of the Internet of Things (IoT) has
given way to numerous challenges and research questions. One
of the most critical issues in the area of low powered devices is
the question of energy efficiency. Here, technologies like LoRa or
Zigbee emerged, promising low power consumption while main-
taining adequate performance. However, even when using these
tailor made technologies, several configuration aspects need to be
taken into account to provide high performance, energy efficient
operation. To this end, we propose a generic model to compute
the energy efficiency of wireless sensors under the assumption of
perfect CSMA/CA channel access. We present numerical results
for a typical LoRa device and highlight extensions towards other
channel access mechanisms. Finally, we apply Kleinrock’s power
metric to obtain ideal system configurations for varying load
parameters.

Index Terms—IoT random access mechanism, energy effi-
ciency, Kleinrock’s power metric, M/D/1-S queueing system

I. INTRODUCTION

The Internet of Things (IoT) is one of the hottest topics in
this decade. Due to increasing data collection, automation, and
communication possibilities that have emerged recently, and
will be fostered in the close future, an excessive number of
new application areas arise. As a result of this massive increase
in visibility and usage, many novel IoT access technologies
have been introduced. Besides classical 4G and upcoming 5G
communication, alternative radio access techniques like Low
Power Wide Area Networks (LPWAN), Bluetooth, or Zigbee
gain traction. Although this diversification of access technolo-
gies provides many benefits like selected usage tailored for
specific use cases, adaptation of transmission rates based on
applications, or more energy efficient communication, many
additional challenges and research questions arise.

Specifically, channel access mechanisms date back to the
last century, starting with different ALOHA based protocols
in the seventies and CSMA in the nineties, the adaptation to
new IoT environments is still ongoing. While classical cellular
networks use CSMA/CA to avoid collisions, the standardized
channel access approach for LoRaWAN, for example, is still
a random access based pure ALOHA. However, the idea of an
improved channel access by alternative access approaches [1]–
[3] or other techniques to increase the successful transmission
rate [4] and optimize energy efficiency is tackled in research.
However, the focus in literature is usually on a single specific
IoT access technology, specific transmission scenarios, or on

simulation or measurement of testbeds. Furthermore, many
works do not take energy consumption into consideration.

For that reason, we present a general model for the trans-
mission of sensor nodes to an IoT gateway. Modeled an
M/D/1-S system where the parameter S quantifies the queue
size and hence the trade-off between success probability for
transmission, response time, and energy consumption.

As a baseline in this work we assume a perfect CSMA/CA
system where sensors only start a transmission if the channel
is not occupied. Here, sensors can either directly start a
transmission or need to wait for the channel to be free.
As sensors have to wait their energy consumption increases,
leading to less efficient transmissions. Therefore, we assume
an interaction between IoT gateway and IoT nodes to indicate
the current load at the air interface (i.e. the number of packets
to be transmitted over the air interface). This allows devices
to either wait or abort the transmission attempt due to long
waiting times in order to conserve energy. Such a mechanism
can feasibly be assumed to exist in, e.g., modern networks and
can be realized through software components co-located with
the gateway.

Our goal is not to model a specific access schemes in detail,
but to highlight the different measures regarding performance
(throughput, success probability, response time) as well as en-
ergy consumption and efficiency. Furthermore, we show how
Kleinrock’s power metric can be utilized to define operational
points for the parameter S. The results obtained in this paper
can be easily transferred to specific, commonly used channel
access mechanisms (e.g. random access, listen-before-talk).

The contribution of this paper is a generic model for perfect
CSMA/CA with restricted accessibility (M/D/1-S) as well as
unrestricted access (M/D/1-∞). We introduce a general so-
lution and highlight extensions towards more general M/GI/1
models. Finally, we apply Kleinrock’s power metric to identify
optimal operational points with respect to the energy efficiency
and success probability for the transmission of messages in IoT
wireless networks.

The remainder of this paper is structured as follows. Sec-
tion II provides related work. Section III introduces our IoT
system model and key performance and energy measures. Sec-
tion IV provides numerical results and quantifies the trade-off
between performance and energy efficiency. Finally, Section V
concludes this work with a brief discussion on remaining
issues and future topics.



II. BACKGROUND AND RELATED WORK

Enhancing the performance and energy efficiency of IoT
devices has long been subject of research. Here, we touch on
both the technical background in the context of IoT and the
general modeling of energy efficiency in wireless networks.

A. IoT Network Technology

IoT networks can generally be seen as a conglomerate
of heterogeneous communication protocols. One of the most
prominently used protocols at the time of writing is the
LoRa based LoRaWAN protocol that uses pure ALOHA
as a channel access method. This in turn means that a
large part of the traffic within real world IoT networks is
comprised of random access traffic prone to high collision
rates. With energy efficiency of sensor networks in mind, this
approach proves highly inefficient once deployments reach a
certain size. Every lost transmission that has to be repeated
will increase the overall energy usage of the network while
simultaneously reducing the quality of service. Hence, the
research community has put forward various approaches to
enhance LoRaWANs performance in regard to collision rates
and energy performance, ranging from Slotted ALOHA [3],
listen-before-talk [2] over Scheduled MAC [1] to different
CSMA/CA adaptations [5]–[7].

B. Energy Performance and Traffic Modeling

The energy efficiency of different communication protocols
has been investigated in various previous works. For Lo-
RaWAN a detailed model of the energy performance and con-
sumption per byte is presented in [8]. Bluetooth Low Energy
(BLE), the energy efficient Bluetooth adaptation that is used
predominantly in smart-homes and industry is further studied
in [9]. Narrow-Band IoTs (NB-IoT) energy consumption is
looked into in detail in [10]. The energy performance of IoT
devices and protocols has been studied using empirical real-
life test-beds in [11]. The focus of these approaches however,
rest on one communication protocol at a time, neglecting the
heterogeneous nature of IoT networks. It can not be stressed
enough however, that LoRaWAN, NB-IoT and BLE are by far
not the only IoT protocols used in these environments and an
overarching approach to evaluate and enhance the performance
and energy efficiency of the network as a whole is paramount.

The modeling and investigation of IoT networks and traffic
is subject to various recent studies. General approaches to
network models and queuing theory are presented in [12]–[14].
However, while the modeling approaches of these studies do
focus on networks characteristics, energy efficiency is not
investigated in these works.

III. MODEL DESCRIPTION

The IoT nodes are independently sending messages over
the air interface. The aggregated arrival process is modeled
as a Poisson process with rate λ, which is a realistic assump-
tion [15]. The messages are assumed to have constant size
which requires time b on the air interface (time on air, ToA)
for the transmission from the IoT node to the IoT gateway.

Note that the time on air depends on the configuration of the
channel, e.g. the used modulation scheme, spreading factor,
the payload of the message, the preamble length of messages,
cyclic redundancy checks for error detection, etc. The time
on air b subsumes the effects in this model. We assume
here a maximum packet size for each packet as a worst-case
assumption. The model can be easily extended to generally
distributed packet sizes corresponding to variable times on air.
Then, instead of M/D/1 we have an M/GI/1 system, for which
closed formulas can be derived accordingly.

Note that the model for different random access channels
is explicitly derived in our open access textbook [16]. In this
paper, we recapitulate the performance and energy measures
as well as the models for perfect CSMA/CA without and with
restricted accessibility. These two mechanisms can be modeled
as M/D/1-∞ and M/D/1-S delay systems, respectively. Due
to space constraints we omit the detailed derivation of the
formulas and only present the resulting model in this paper.
The complete derivations of the formulas can be found in [16].

TABLE I
NOTATION OF VARIABLES.

var. explanation [unit]

System parameters
λ message or packet arrival rate [s−1]
b time on air for single packet [s]
S system parameter for restricted accessibility corresponding to

maximum queue size of the M/D/1-S queue [1]
γb power consumption for sending a single packet [W]
γw power consumption of a device in idle mode [W]

Performance measures
ψ success probability for sending a message [1]
pB blocking probability, ψ = 1− pB [1]
Θ throughput over the air interface [s−1]
W waiting time of messages (random variable) [s]
T transmission time or system response time (random variable) [s]
E[T ] Mean response time [s]

Energy measures
Ω mean energy consumption for single sent message [J]
ω mean energy consumption per received message [J]
η energy efficiency with 0 ≤ η ≤ 1 [1]

A. Performance Measures

Depending on the transmission scheme, messages may get
lost or have to wait until they are delivered.

• Success probability ψ: probability that an arbitrary mes-
sage is successfully transmitted to the IoT gateway.

• Throughput Θ: mean number of successful transmissions
per time; it is Θ = ψλ.

• Mean response time E[T ]: sum of the mean waiting time
E[W ] and the processing time b, i.e., E[T ] = E[W ]+b.

B. Energy Model and Energy Efficiency

The energy consumption E depends on the response time T
for sending a message. To be more precise, the energy
consumption is the integral of the power consumption over
the time needed to send the message. We may differentiate
between the power consumption (1) for sending the message



(γb) which takes time b and (2) for waiting before sending (γw)
which takes time W . Different values γb and γw for the power
use (in Watt) are used. The energy consumption (in Joule =
Watt · second) for a single message is then γbb+γwW , which
is a linear function f of the random variable W . Therefore,

Mean energy consumption : E[ E ] = Ω =

E[ f(W ) ] = f(E[W ]) = γbb+ γwE[W ]
(1)

However, packets may not be successfully delivered. There-
fore, the mean consumed energy per successfully received
message is relevant, which is denoted by ω. There are m
messages sent in total, from which ψ ·m messages are suc-
cessfully received. The energy consumption for m messages
is m ·Ω on average. Then ω is the mean energy consumption
per successfully received message, i.e., ω = Ω

ψ .
Energy efficiency can be described as the ratio between the

total number of packets received at the destination node (i.e.
the IoT gateway) and the total energy consumption spent by
the network to deliver these packets (i.e. the sensor nodes), see
[17]. In that sense, energy efficiency is equal to how many
messages are carried per joule. In this work, we normalize
the amount of consumed energy by the energy consumption
of a single message. Energy efficiency is then the ratio
between ‘How many messages are received?’ and ‘How many
messages could have been received regarding the total energy
consumption?’. The energy efficiency η takes values in the
interval [0; 1]. Maximum energy efficiency is reached (η = 1),
if all messages are received and require the minimum amount
of energy γbb. A value η = 1/2 may be interpreted in two
ways: (a) 50% of the messages are received, but all messages
require the minimum energy consumption or (b) all messages
are received, but additional energy consumption is required for
the successful delivery, e.g. due to waiting times.

Energy efficiency : η =
ψ

Ω/(γbb)
=
γbb

ω
(2)

In the following, we model perfect CSMA/CA with and
without restricted accessibility and apply the performance and
energy measures from above. Therefore, we first introduce
the energy model used in the analysis. Note, however, that
these measures can also be applied to other channel access
technologies, e.g. random access in LoRa.

C. Perfect CSMA/CA: M/D/1-∞
We assume perfect carrier-sense multiple access with col-

lision avoidance. The IoT nodes sense the communication
channel and are only sending if the channel is free, i.e.,
the server is idle. When the channel is occupied by another
message transmission, the IoT nodes have to wait until the
channel is free again. The nodes are served in a FIFO way,
i.e., messages are sent in order over the air interface. There is
a single server (the air interface). The customers in the system
(the messages from the IoT nodes to the IoT gateways) arrive
according to a Poisson process with rate λ. The processing
time is the time on air b. The nodes are waiting until they

are able to transmit which means an unlimited waiting room.
Hence, the system is an M/D/1-∞ delay system.

The waiting time distribution and the mean waiting time
E[W ] for M/D/1 are explicitly derived in [16]. The stability
condition must be fulfilled, i.e. ρ = λb < 1.

E[W ] =
ρb

2(1− ρ)
(3)

There are no blocked customers. Hence, all messages are
eventually transmitted over the air interface and the success
probability is ψ = 1. The throughput is Θ = λ.

The mean energy consumption of a message directly follows
from the mean waiting time. Since all messages are delivered,
the mean energy consumption Ω per sent message is identical
to the energy consumption ω per received message. Energy
efficiency follows directly.

Ω = γbb+ γwE[W ] = γbb+ γw
ρb

2(1− ρ)
(4)

η =
γbb

Ω
=

γb
γb + γw

ρ
2(1−ρ)

(5)

Thus, perfect CSMA/CA is modeled as M/D/1-∞ with the
performance measures summarized in Table II.

D. Perfect CSMA/CA with Restricted Accessibility: M/D/1-S

In high load situations, perfect CSMA/CA suffers from
large waiting times and thus high energy consumption. To
this end, restricted accessibility is introduced which provides
a control possibility between blocked messages and energy
efficiency. Again, we are investigating a perfect mechanism
without modeling the impact of signaling. In practice, the
IoT nodes may employ an RTS/CTS (ready to send/clear to
send, e.g. wifi) mechanism to inform the gateway about their
transmission requests. If there are already S messages waiting,
the IoT gateway rejects the requests and informs the IoT
nodes that their request is blocked. If there are less than S
transmission requests waiting at the server, the IoT gateway
accepts the request. The requests are served in order. The IoT
nodes with accepted requests are waiting until the IoT gateway
informs them. Then, the message will be sent over the air
interface. There are no message collisions, but messages may
be blocked which differs from the previous system. The system
can be modeled as a finite capacity queue and is denoted as
M/D/1-S in Kendall’s notation.

The random variable X is the total number of requests in
the system, i.e. in the waiting room and currently served. The
embedded Markov chain approach is used to derive the steady
state probabilities x(i) for i = 0, . . . , S + 1. The embedding
time is immediately after a service ends. The state probabilities
at embedding times are obtained as Eigenvector of XP = X
or by means of the power method, i.e., iterating Xn = Xn−1P
over the n-th embedding point until X converges.

The state transition matrix is P = {pij}. The number Γ of
arrivals during one service time follows a Poisson distribution
with parameter λb = ρ for M/D/1. Note that for M/GI/1, only



Γ is changed and can be derived accordingly as the number of
arrivals during a (random) service time with γ(i) = P (Γ = i).

P=



γ(0) γ(1) γ(2) · · · γ(S − 1) 1−
∑S−1
i=0 γ(i)

γ(0) γ(1) γ(2) · · · γ(S − 1) 1−
∑S−1
i=0 γ(i)

0 γ(0) γ(1) · · · γ(S − 2) 1−
∑S−2
i=0 γ(i)

0 0 γ(0) · · · γ(S − 3) 1−
∑S−3
i=0 γ(i)

...
...

...
. . .

...
...

0 0 0 · · · γ(0) 1− γ(0)


(6)

The blocking probability pB depends on the load ρ = λb
and the probability of an empty system at embedding time:
P (X = 0) = x(0). It is

pB =
ρ− 1 + x(0)

ρ+ x(0)
. (7)

For k = 0, . . . , S, the steady state probabilities of the queue
size X∗ at a random point in time are as follows.

x∗(k) =
x(k)

ρ+ x(0)
x∗(S + 1) = pB (8)

For more details on the analytical solution of finite capacity
M/D/1 queues, see [16].

The success probability is ψ = 1− pB . The throughput of
the system is Θ = (1−pB)λ. The mean sojourn time E[T ] in
the system follows from Little’s theorem. The mean number
of customers E[X∗ ] is derived numerically.

E[X∗ ] =

S+1∑
i=0

x∗(i) = (1− pB)λE[T ] (9)

The mean waiting time E[W ] = E[T ]−b is used to quantify
the mean energy consumption Ω = γbb + γwE[W ] for sent
messages. Finally, the energy consumption per received mes-
sage ω = Ω/ψ and energy efficiency follow. A summary of
the performance and energy measures is provided in Table II.

TABLE II
PERFORMANCE COMPARISON OF MAC PROTOCOLS FOR IOT NODES.

Performance Perfect Restricted
Measure CSMA/CA Accessibility

Success probability ψ 1 1− pB

Throughput Θ λ (1− pB)λ

Response time E[T ]
b(2−ρ)
2(1−ρ)

E[X∗ ]
(1−pB)λ

Energy consumption Ω γbb+ γw
ρb

2(1−ρ)
γbb+ γwE[W ]

Consump. rcvd msg. ω γbb+ γw
ρb

2(1−ρ)
Ω

1−pB

Energy efficiency η γb
γb+γw

ρ
2(1−ρ)

γb(1−pB)
γb+γw(E[T ]/b−1)

IV. NUMERICAL RESULTS

A. Definition of Scenario and Parameters

In the numerical results, we focus on a LoRaWAN setting
and related parameters. The packet transmission time b, also
known as Time On Air (ToA), is at most 3.2 s assuming
maximum allowed payload and spreading factor (SF) 12. For

TABLE III
DEFINITION OF PARAMETERS FOR NUMERICAL RESULTS

par. value explanation

b 1 s time for sending a single message
γb 0.092W energy required for sending a single message
γW 4.95 µW energy in idle mode, i.e. waiting to send
γ0 0.036W energy for sensing the channel if it is free
α 10% ratio of sending time for sensing the channel, i.e.

α · b = 100ms
ts 100ms sensing interval
ϕ 0.2 s−1 sensing frequency, i.e. once per 5 s

γ′b 0.0956W adjusted parameter for opt. A (single sensing)
γ′W 0.724 95mW adjusted parameter for opt. B (periodic sensing)

SF11 and a payload size of 40B, the packet transmission time
is b = 1 s, see [18], which we use in our results. The power
required for transmitting a single message with ToA b is γb.
For a typical LoRa transeiver like the Semtech SX 1272/73
and a transmission power of 13 dBm, it is γb = 0.092W.1

For the implementation of our perfect CSMA/CA approach,
we consider two different options.

1) Option A: Single Sensing: The sensor device listens once
if the channel is free. Assuming perfect CSMA/CA, the sensor
is informed by the gateway when to send, i.e., how long the
sensor has to wait before sending. Then, the device transmits
the message. The power required for sensing the channel is
γ0. The sensing time is assumed to be α · b. In the idle mode,
i.e. when the sensor is waiting, the power is γW .

Then, the energy E to transmit one message with a single
listen-before-talk and a waiting time W in idle mode is:

E = γbb+ γWW + γ0αb = γ′b · b+ γW ·W (10)

2) Option B: Periodic Sensing: The sensor device listens
periodically if the channel is free. Thus, during the waiting
time W , the devices goes into the listen-before-talk mode with
frequency ϕ and the sensing interval is ts.

Then, the energy E to transmit a single message with
periodic listen-before-talk is:

E = γbb+ γWW + γ0(Wϕ)ts = γb · b+ γ′W ·W (11)

Hence, the results for the M/D/1-S queue reflect both op-
tions of how CSMA/CA is implemented. Only the coefficients
γb, γW of the energy model need to be adapted. Table III
summarizes the parameters of our model. In the following,
we provide numerical results for option B (periodic sensing),
if not mentioned otherwise.

B. Success Probability

The success probability ψ of perfect CSMA/CA with peri-
odic sensing is plotted in Figure 1. The offered load a = λb
is given on the x-axis which ranges from low load scenarios
(a close to zero) to high load scenarios (a > 1). Note that
for S = 0, messages are blocked if the channel is not free.
This is not the same as ALOHA, which would not necessarily

1Data sheet: www.semtech.com/products/wireless-rf/lora-core/sx1272

www.semtech.com/products/wireless-rf/lora-core/sx1272


implement listen-before-talk. For M/D/1-0, the Erlang-B for-
mula can be used to derive the blocking probability pB and the
success probability ψ = 1−pB , see [16]. Although increasing
the number S of waiting places leads to an increased success
probability ψ, the gain gets smaller and smaller. Therefore, the
impact of S on the energy efficiency may be used to derive
practical guidelines for S.
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Fig. 1. Success probability ψ of IoT messages using option B (periodic
sensing) for different values of S of the M/D/1-S queue. Note that the curves
for S = 50 and S = 100 are overlapping.

C. Energy Efficiency

Figure 2 compares the energy efficiency η for varying S
depending on the offered load a. If the offered load approaches
a = 1, the waiting times are dominating the energy consump-
tion if S is large. Therefore, we observe a strong decay, e.g.
for S = 100. Hence, there is a trade-off between the success
probability and the energy efficiency for M/D/1-S.
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Fig. 2. Energy efficiency for periodic sensing (option B), depending on the
system parameter S and the offered load.

Figure 3 visualizes this trade-off for various loads. Each dot
in the figure corresponds to one particular choice of S. The
size of the marker corresponds to the value of S. The larger S
is the higher the success probability ψ is. The figure indicates
that for low loads (a < 0.5), the parameter S has no significant
impact on energy efficiency. However, for a = 0.5, larger
values of S yield higher success probabilities. For high load
situations, e.g. a = 2.0, an increase in S results into a strong

decrease of the energy efficiency η. This is due to the fact
that the success probability cannot be increased significantly
anymore, once a certain threshold of S is reached. But further
increasing of S negatively affects the energy efficiency due to
waiting times. The question is what is a good trade-off value
of S, which we will determine with Kleinrock’s power metric
in the following.
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Fig. 3. Trade-off between success probability ψ and energy efficiency η for
perfect CSMA/CA with periodic sensing (option B). The size of the markers
indicates the parameter S.

D. Kleinrock’s Approach for Deriving the Operational Point

For the identification of the operational point, which is
the number of waiting places S for the M/D/1-S queueing
system, we follow an approach by Kleinrock [19]. He sug-
gests the Power metric in queueing systems as optimization
metric to identify the knee of the curve. The power metric
is the ratio of ‘goodness’ divided by ‘badness’. Then, the
optimization of power leads to a trade-off between maximizing
‘goodness’ while minimizing ‘badness’. For the IoT system
and CSMA/CA with restricted accessibility, consider the ratio
between energy efficiency η and the counter success proba-
bility (1− ψ). The maximum of the ratio G/B = η/(1− ψ)
corresponds to the operational point S∗. Hence,

S∗ = argmax
S

G/B = argmax
S

η

1− ψ
(12)

Figure 4 indicates the optimal parameter S∗ depending on
the actual load in the network. Thereby, we compare both
options for listen-before-talk (A: single sensing, B: periodic
sensing). In practice, we may additionally limit the parameter
S, e.g. due to guarantee a maximum response time, i.e.
maximum time for waiting and sending a single message. In
the results in Figure 4, we limit S to 25. The plot nicely
demonstrates that the optimal number S∗ strongly depends on
the offered load in the system. The listen-before-talk options
A and B are identical up to an offered load of a = 1. After
that point, periodic sensing suffers more from large values of
S and the required energy consumption. Hence, smaller values
of S∗ are obtained for option B. Nevertheless, the shape of
the curves are similar.

In practice, adaptive mechanisms are recommended. De-
pending on the load, the parameter S in the system may
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Fig. 4. Trade-off between success probability ψ and energy efficiency η for
perfect CSMA/CA with restricted accessibility (M/D/1-S). Maximum S = 25.

be adapted. This could be reached via load measurement or
estimated at the gateway with simple prediction models, which
remains for future work.

V. CONCLUSIONS AND DISCUSSIONS

The steep growth of use cases in the area of IoT over the
last years has simultaneously led to developments of novel
technologies to satisfy the need of these many, heterogeneous
verticals. Specifically, a range of wireless technologies with
the goal of conserving energy have emerged. However, even
these specifically developed radio technologies, like LoRa or
Zigbee, are supported by legacy approaches to provide e.g.
channel access mechanisms. In this paper, we have presented
a generic model that describes the energy efficiency of an IoT
deployment under perfect CSMA/CA channel access. We have
highlighted the calculation rules of the model and provided
numerical results for a well-known LoRa device. In our
numerical analysis we compare different system configurations
against each other and outline the impact of the size of a
transmission backlog in CSMA/CA environments. The results
show that large backlogs increase energy efficiency for low
system loads, but lead to excessive waiting times and hence
additional energy consumption under high load scenarios. We
finally apply Kleinrock’s power metric to identify optimal
system configurations for different load levels. The results
show that small backlogs are optimal for extremely low as
well as extremely high system load, while larger queues are
beneficial in medium load scenarios.

The generic model proposed in this work can easily be
adapted to more complex or other channel access mechanisms.
This as well as an integration into adaptive mechanisms to
dynamically reconfigure the system at runtime remains for
future work.
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