®2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

in other works. The definitive version of this paper has been published in ICCE 2016 28.7.2016

Performance Evaluation Mechanisms for FlowMod
Message Processing in OpenFlow Switches

Anh Nguyen-Ngoc*, Stanislav Lange*, Steffen Gebert*, Thomas Zinner*, Phuoc Tran-Gia*, Michael Jarschel®
*Institute of Computer Science, University of Wiirzburg, Germany.
Email: |{anh.nguyen,stanislav.lange, steffen.gebert,zinner, trangia } @informatik.uni- wuerzburg.de
§ Nokia Bell Labs, Munich, Germany.
Email: michael.jarschel@nokia.com

Abstract—Network operators can benefit in terms of flexibility,
cost, and vendor-independence when adopting the Software
Defined Networking (SDN) paradigm. In many scenarios, the
SDN controller orders the installation of new flow table entries
in the switches it manages. Since such operations are handled
in the slow path of the switches, the corresponding processing
times constitute an important performance indicator for switches.
This work focuses on a comparison of two mechanisms for
evaluating the performance of OpenFlow switches with respect to
the processing time of FlowMod messages. These mechanisms are
characterized by different degrees of accuracy, cost, complexity,
and the capability of performing measurements at run time.

The first mechanism is based on the Spirent C1 dedicated
testing platform, while the other uses a software module for
the OpenDaylight controller. We assess their capabilities with
respect to the abovementioned characteristics and quantify their
accuracy by means of wiretaps that provide a ground truth
regarding the measured processing times. By using three different
switches in the experiments, it is possible to distinguish between
hardware specific side-effects and general phenomena.

I. INTRODUCTION

The Software Defined Networking (SDN) paradigm changes
several aspects regarding the operation and structure of today’s
networks. The key characteristics of the resulting architecture
include the separation of control and data plane as well as
a logically centralized control plane. This is achieved by
moving control plane functions from the network devices
to a dedicated controller software running on commercial
off-the-shelf (COTS) hardware. Communication between this
centralized control plane and the data plane takes place via the
southbound API [1f], an open interface which is implemented
by protocols like OpenFlow [2].

Before moving to an SDN-based network deployment, op-
erators need to make sure that the resulting network meets
their particular requirements with respect to performance. This
includes the data plane, i.e., packet forwarding, as well as
the control plane. As a key performance indicator in the
control plane, our work focuses on the processing times
of FlowMod messages in an OpenFlow switch. Different
mechanisms that can be used in the context of evaluating the
FlowMod processing performance of switches are presented
and compared with each other. Such mechanisms range from
purely software-based approaches to sophisticated solutions
which utilize hardware-based traffic generators and capture
devices. Thus, they represent trade-offs in terms of cost, ease

of use, and accuracy. In this context, the results obtained by
means of wiretaps and dedicated capture devices are used
as ground truth for accuracy assessment. The mechanisms
analyzed in this work include a software-based approach
module for the OpenDaylight controller as well as an approach
based on the Spirent C1 testing platform.

In order to identify common phenomena as well as vendor-
specific aberrations regarding switch behavior and perfor-
mance, three different switch models from three different
vendors are used as devices under test (DuT).

This work is structured as follows. An overview of related
work is provided in Section [[I] Section [[II] covers different
types of FlowMod-related communication schemes defined
in the OpenFlow specification as well as the testbed setup
and the different approaches for evaluating OpenFlow switch
performance used in this work. After discussing the results
of the measurements in Section Section [V| concludes the

paper.
II. RELATED WORK

This section provides an overview of related work regarding
approaches for evaluating the performance of different aspects
and components of an SDN architecture.

Possibilities for testing the network as a whole in the context
of SDN are discussed in [3]]. While integrated tests are a long
term goal, it is necessary to understand the behavior of the
individual network elements, i.e., controllers and switches in
case of SDN. In an effort to provide means to test switch be-
havior with respect to compliance with the OpenFlow protocol
specification, the authors of [4] present the OFTest suite. In
contrast to this work, they focus on function tests rather than
performance tests.

The study conducted in [5]] features a dedicated hardware
traffic generator in order to test the data plane performance
of Linux-based OpenFlow switching. In a similar setup, the
authors of [[6] investigate the characteristics of virtual switches
and underlying virtualization techniques. In both works, the
main interest lies in the data plane performance of the different
switch implementations. This work, on the other hand, investi-
gates different measurement mechanisms for the control plane
performance of OpenFlow-enabled switches and provides a
first step towards classifying these mechanisms according to
criteria like accuracy and complexity.

{anh.nguyen,stanislav.lange,steffen.gebert,zinner,trangia}@informatik.uni-wuerzburg.de
michael.jarschel@nokia.com

OFLOPS [7] is a software framework for testing OpenFlow
switch performance in the data plane as well as in the control
plane. Its extension, OFLOPS-Turbo [{8] is capable of 10 GbE
traffic generation and utilizes the open-source NetFPGA-based
OSNT [9] traffic generator and capture system. Focusing
on the processing of FlowMod messages, our work aims
at comparing different mechanisms for switch performance
evaluation and identifying trade-offs between them.

Furthermore, analytical approaches like [10] and [11] in-
vestigate the influence of various network parameters on
the performance of an OpenFlow architecture. Since such
models are often based on measurements, the accuracy of
these measurements also positively affects the quality of the
resulting models. Therefore, one key aspect of our analyses
is the accuracy of the available measurement mechanisms. A
methodology for assessing the accuracy of measurements in
the SDN context is presented in [12]. In addition to mea-
surements performed by an SDN controller module, wiretaps
installed at both ends of a communication channel serve as a
means of providing the ground truth. This technique is also
applied in our experiments.

III. METHODOLOGY

In this section, two communication schemes for exchanging
FlowMod and Barrier messages between the controller and the
switch are described. Additionally, configuration and specifica-
tion details of the measurement tools and OpenFlow switches
used in this work are presented. Finally, the experimental setup
is introduced alongside the measured parameters.

A. Methods of Sending FlowMod Messages

Information exchange between systems can be performed
by means of one of two paradigms: synchronous and asyn-
chronous messaging. Generally, asynchronous messages are
passed between two entities: the sender emits multiple mes-
sages and does not wait for a response to continue sending
the next messages. It contrasts with synchronous messaging,
where the sender does not send a new message until it receives
the response to the previous one. In the scenario of sending
FlowMod messages, the OpenFlow specification [[13] defines
the optional Barrier messages which can be used in order to
perform both kinds of messaging. The desired behavior can be
achieved by using Barrier messages either after each FlowMod
message or after multiple FlowMod messages. When installing
rules on an OpenFlow switch, the OpenDaylight controlleﬂ
offers implementations for those methods as described in detail
in Fig. [1]

The time sequence diagram when applying the synchronous
method to send FlowMod messages is presented on the right
hand side of Fig. [l The controller always sends messages
in a sequence where a FlowMod message is followed by a
Barrier Request message and waits for a Barrier Reply, before
dispatching the next FlowMod. By doing this, the controller

Uhttp://www.opendaylight.org/

Switch Controller Switch

o FIoWMod 7

garier RepY 1

Controller

‘u.??frj?fRequsSt tep | ts %‘
JERREREN "‘s*a—"fe’Request

ty >

_J 1st packet
matches
Flow n

1st packet
matches
Flow n
——

Fig. 1: Asynchronous and synchronous methods for adding
flows to an OpenFlow switch.

ensures that each requested rule is actually installed in the
table of the switch. In this work, that method is referred
to as addFlow and is distinguished from addFlowAsync -
where the controller sets the rules by sending a batch of
FlowMods and terminates the process with a Barrier Request.
Whenever the switch finishes installing all the rules, it informs
the controller by means of a Barrier Reply. Note, however,
that using Barrier messages is not mandatory according to the
OpenFlow protocol.

Furthermore, Figure [I] illustrates the different components
of the FlowMod processing time that are investigated in this
paper:

« Time until the first packet ¢ s p - the time between the first
FlowMod which is sent from the controller and the first
data plane packet which matches the switch rule installed
by the last FlowMod message.

o Setup time ts - the latency between the first FlowMod
and the last Barrier Reply.

« Generation time ¢, - the time for generating n FlowMod
messages (in case of addFlowAsync).

o Barrier time ¢, - the delay between Barrier Request and
Barrier Reply.

B. Measurement Tools and Devices Under Test

There are several options for assessing the FlowMod perfor-
mance of an OpenFlow switch in terms of the aforementioned
components of the processing time. Three such approaches are
discussed in this work.

First, a purely software-based solution using the OpenDay-
light controller is analyzed. In this context, the Hydrogen
releaseE] of the OpenDaylight controller is installed on a P(f]
which uses the Ubuntu 12.04 operating system. While the
controller is attached to the OpenFlow switch under test and
generates control plane traffic, i.e., FlowMod and Barrier
messages, the Iperlﬁ] software running on an additional server
is used to send UDP traffic to the switch’s data plane. Finally,
the traffic sink waits for the arrival of matched packets. In

Zhttps://www.opendaylight.org/software/downloads/hydrogen-base- 10
3Intel(R) Core(TM)2 Duo CPU E8500/4G RAM
4https://iperf.ft/

http://www.opendaylight.org/
https://www.opendaylight.org/software/downloads/hydrogen-base-10
https://iperf.fr/

the context of the OpenDaylight controller, there are two
options for obtaining the desired components of the FlowMod
processing time. On the one hand, traffic captures recorded
by the tcpdump tool running on the machine that hosts the
controller can be used to calculate t,4, 7, and ¢,. On the
other hand, it is possible to implement a Java module for
the controller which intercepts the timestamps of events like
sending FlowMods or receiving Barrier messages in order to
derive the aforementioned times. Due to the use of concur-
rency within the implementation of these methods, however,
not all timestamp-based measurements are as accurate as the
ones obtained via tcpdump.

The second approach utilizes a Spirent Clﬂ an Ethernet
testing platform which allows generating traffic according to
different protocols including OpenFlow. This device has four
1GDbE interfaces, three of which emulate the controller, traffic
source, and traffic sink, respectively. FlowMod messages are
sent to the management port of the switch. Simultaneously,
the traffic source keeps sending traffic to the traffic sink.
The Spirent Test Center software (STC) provides means to
measure traffic characteristics like packet delay, including
values corresponding to g4, ?3, ts, and typ. In addition to
the result database generated by the STC, the Spirent Cl
also allows directly recording packet traces at each individual
port. Using these captures, it is possible to determine the
components of the FlowMod processing time as well.

Furthermore, the OFLOPS framework introduced in Sec-
tion [II] provides means for measuring FlowMod processing
times as well. However, at the time of writing, there is
no publicly available version of OFLOPS which implements
these measurement features. Therefore, we only assess the
capabilities of the framework in terms of measuring FlowMod
processing time components according to [7].

Table [T shows the capabilities of the three tools in terms of
measuring the different types of processing times that are dis-
cussed in this work. The tools include the Spirent Test Center
software, an OpenDaylight controller module (ODLM), and
the OFLOPS framework. Additionally, two wiretap devices
are used to accurately capture the processing times which are
used as ground truth.

TABLE I: Comparison of measurement mechanisms.

Time addFlowAsync addFlow

STC | ODLM | OFLOPS STC [ODLM [OFLOPS
ty v v v
™ 7 7 7 N.A.
ts v v v v v v
trp v X v v X v

C. Measurement Setup
In order to evaluate the performance of an OpenFlow switch
with respect to the processing time of FlowMod messages, the

Shttp://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/
Spirent_TestCenter/STC_C1- Appliance_Datasheet

following scenario is implemented in a testbed. The testbed is
set up according to recommendations for testing OpenFlow
performance published by Spirenlﬂ and is shown in Fig.

Monitor
Server

OpenFlow
Switch

NS
A
&

|
O

|
O

=

Controller Wiretap 1 Wiretap 2 Traffic Sink

— FlowMod Messages (OF 1.0)

Traffic Source

Data Plane Traffic

— Captured Packets

Fig. 2: Logical testbed setup.

Each experiment starts with an empty OpenFlow table in
the switch. Then, the controller sends a FlodMod message that
installs a rule with the lowest priority to drop all packets in
order to avoid forwarding unmatched packets to the controller.
Afterwards, the controller starts sending a number FlowMods
to install these rules according to one of the two methods
that were presented in Section Simultaneously, the
traffic source generates data plane traffic that matches the
last rule. Finally, the results of the experiment are extracted
from the reports that are generated by the OpenDaylight
controller or Spirent Test Center, allowing to evaluate how
fast an OpenFlow switch processes FlowMod messages. The
results are validated by using tap devices to capture transmitted
packets and accurately calculate the latency between the first
FlowMod and the arrival of the first packet which matched the
last rule.

Two Net Optics tap device{] are installed before and after
the OpenFlow switch in order to mirror both control plane
traffic to and from the switch as well as data plane traffic to
the traffic sink. The monitor server HP Proliant DL32 uses two
Endace DAG 7.5G2 capture cards to capture every incoming
packet. Based on their time stamps, it is possible to calculate
all components of the FlowMod processing time as well as ¢ ¢p
for validating the installation of OpenFlow rules. On the data
plane, the traffic source sends UDP traffic with its IP as source
IP address and the destination IP address corresponding to the
traffic sink. This traffic can not reach the traffic sink until the
last FlowMod, which has the matching fields regarding source
and destination IP addresses, is installed.

In order to avoid possibly misleading results, the experi-
ments are implemented using three OpenFlow switches from
different vendors, focusing on an evaluation of the installation

Shttp://www.spirent.com/~/media/White%20Papers/Broadband/PAB/
OpenFlow_Performance_Testing_WhitePaper.pdf
/http://www.ixiacom.com/products/ixia- gig-zero-delay-tap/

http://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/Spirent_TestCenter/STC_C1-Appliance_Datasheet
http://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/Spirent_TestCenter/STC_C1-Appliance_Datasheet
http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/OpenFlow_Performance_Testing_WhitePaper.pdf
http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/OpenFlow_Performance_Testing_WhitePaper.pdf
http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/

speed of OpenFlow rules. The specifications of the switches
under test are summarized in Table [[I}

TABLE II: Switches used in this work.

Switch CPU Memory Software
Pronto 3290 ls\;/lzlgcf/lséi 512MB (OpenPistOVSitif'i?.m.O)
Quanta T1048 lz\;dzlgcfasézl 1024MB | open l?ziscgftczﬁévzs.m
NEC PF5240 | tonoi'™ | 1024 MB oo

The flow table of the NEC PF5240 has a limit of 2816
entries and the Quanta switch often exhibits unexpected be-
havior in the context of generating more than 2000 flow table
entries. Hence, the number of FlowMod messages used in the
experiments ranges from 2 to 1800 messages. Each run is
repeated 10 times in order to obtain 90% confidence intervals.

IV. RESULTS

This section provides the results of the experiments that
were described in Section First, a comparison of the behav-
ior of the different switches is presented by analyzing various
components of the FlowMod processing time that are recorded
at the wiretaps. Second, an in-depth evaluation of the accuracy
levels achieved by the different measurement methodologies
demonstrates their feasibility in the tested scenarios. Finally,
recommendations regarding the choice of methodology are
derived from aggregated measurement results.

A. Comparison of Switch Behavior

Figure 3] shows different components of the FlowMod
processing time based on measurements performed at the
wiretaps while using different numbers of FlowMod messages
and different switches. In particular, the time between the
first FlowMod and the last Barrier Reply, ¢, and the time
until receiving the first packet on the data plane, typ, are
presented. On the x-axis, the number of flows is displayed.
According to the limitations of the different switches under
test, this number is varied between 10 and 1800. Differently
colored and shaped curves denote different switch models
and time components, respectively. The y-axis represents the
mean processing time that results from the corresponding
parameter combination. Additionally, error bars provide 90 %
confidence intervals obtained by repeating each experiment 10
times. For the presented measurements, FlowMod messages
were generated with the OpenDaylight controller using the
addFlowAsync method.

While the NEC switch exhibits the longest processing times
of up to almost 5seconds in case of installing 1800 flows,
it is the only device for which the relationship ¢, > t;p
holds throughout all experiments. Thus, when the controller
receives the Barrier Reply message, the switch’s flow table
update is already finished, resulting in a consistent state
between switch and controller. For the Pronto and Quanta

6 T

—, - NeC
5| —t, - PRONTO |
t, - QUANTA
4,—--1"3— NEC 4
Z ---'['P - PRONTO
e3 t,, — QUANTA]
=
2, o
1, o
el

O L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
Number of Flows

Fig. 3: Different switch behavior measured at the wiretaps.

switches, on the other hand, this relationship is reversed: after
receiving the Barrier Reply message, the controller expects
the flow installation to be completed, although it is still taking
place in the switches. Such an inconsistency could potentially
cause unexpected behavior, e.g., when the controller uses its
northbound API to communicate the seemingly finished update
to an application that starts its transmission immediately.
While the extent of this deviation is in the order of magnitude
of 50 ms in case of Pronto, it equals roughly 400 ms in case
of Quanta. On the other hand, the Quanta switch consistently
outperforms the other two models in terms of ¢, and typ by a
significant margin as soon as more than 600 flows are installed.

These results demonstrate that each switch model might
have its own characteristic behavior. Hence, network operators
need to evaluate the performance of hardware devices before
deploying them in the network in order to ensure a reliable
network behavior. In the following sections, the accuracy of
different approaches for measuring switch characteristics is
evaluated.

B. Accuracy Assessment of Measurement Mechanisms

The setup time ¢, is an important performance indicator for
OpenFlow switches since it usually constitutes the majority
of the FlowMod processing time. Additionally, in case of
the OpenDaylight Java module, it is possible to measure
the value of this parameter during runtime and integrate
it into the controller’s feedback loop. Therefore, Figure 4]
displays cumulative distributions of the accuracy of the
measurements for the two measurement tools OpenDaylight
and Spirent CI. In this context, the accuracy refers to the
difference between the value recorded by the measurement
tool and the corresponding wiretap which is considered to be
the ground truth. There is also a distinction between results
from different measurement probes, i.e., Java and tcpdump in
case of OpenDaylight and Spirent Test Center and port-based
captures in case of the Spirent Cl1.

Figure [a] shows the accuracy of the measurement probes
available for the OpenDaylight controller. While the accuracy
in microseconds is displayed on the x-axis, the y-axis denotes
the fraction of measurements that are below a particular

' /_/'_"'r ‘ L f
0.8F a A 1
¢ e
. =l
0.61 s i
T
& K
0.4r .' ," ——tcpdump - NEC
g -=--Java - NEC
N ——tcpdump - PRONTO
0.2r A - --Java - PRONTO
i tcpdump — QUANTA
ol ‘ ,J"- Java - QUANTA
0 200 400 600 800 1000
t - Deviation from Tap [usec]
(a) OpenDaylight module.
1
0.8} s S e PRI
"l ,'- ——-capture - NEC
0.6f v --=-STC - NEC
LDL : ‘ ——capture - PRONTO
I3 [- - -STC - PRONTO
0.4+ : 2 capture — QUANTAH
[STC - QUANTA
)
0.2H : ‘I' 4
OJ --=! i-’ i i i i
0 200 400 600 800 1000

t - Deviation from Tap [usec]
(b) Spirent CI.

Fig. 4: Distribution of the accuracy of the {; measurement
when using different measurement tools and probes.

accuracy threshold. Different line colors represent different
switches and line shapes correspond to measurement probes.
In case of OpenDaylight, curves corresponding to different
probes form two groups whose values differ only marginally
from switch to switch. The first group represents the tcpdump
measurements and features values that are mainly in the range
between 100 and 300 psec. The values reported by the Java
module inside the controller are higher, with values ranging
from 400 psec to 1 ms. This behavior is consistent with the
measurement setup: since the Barrier Reply message from the
switch first passes the controller’s network interface before
arriving in the user space Java application, the time measured
by the latter is higher than in case of tcpdump.

Like the previous figure, the curves in Fig. b form groups
according to the measurement probe. While the port-based
capture provides measurements that are accurate up to an order
of magnitude of roughly 30 usec most of the time, the reports
generated via the Spirent Test Center show a difference of
around 200 psec as well as significantly more outliers in terms
of accuracy. When using the Spirent C1 in conjunction with
the Quanta switch, irregular behavior is observed regardless
of the number of installed flows. Since the Spirent C1 is a
proprietary closed-source system, this phenomenon can not
be investigated in detail.

While Figure E] shows that ¢, and t;p are almost iden-
tical for the majority of switch models, Figure [5 presents

a quantitative view on the observed deviation between tool-
based measurements of the setup time #*°°! and the time until
the first packet t;“}f as reported by the wiretap. Values on
the x-axis represent the difference § = ¢!l — t?llf and the
y-axis indicates the fraction of measured values below each
threshold. Due to the irregularities discussed in the previous
paragraphs, measurements regarding the Quanta switch are
omitted for the sake of readability. As reported before, the
tcpdump and Java probes provide very similar data, with
tcpdump being slightly more accurate. Additionally, the figure
allows deriving guidelines for determining the time until a
set of FlowMod messages are actually processed in the data
plane of a particular switch model. For example, 6 > 0 in
case of the NEC switch implies that the Barrier Reply is
always sent after the rule is installed in the switch. Hence, the
controller receives information that corresponds to the switch’s
data plane. In contrast, the minimum value of § = —170ms
in case of the Pronto switch means that up to 170ms may
pass before the controller and switch are in a synchronized
state. Information regarding these delays can be obtained by
performing such measurements before actually deploying the
switches in a network. Hence, operators can incorporate this
information into the northbound and southbound APIs of the
SDN controller and increase the reliability of the information
exchange in the network.

1 T
——tcpdump - NEC
-=-=Java - NEC
0.8 —tcpdump - PRONTO 4
- --Java - PRONTO
0.6 1
('8
[a)
O
0.4r 1
0.2r 1

-150 -100 -50 0 50
Deviation between t from Tool and t from Tap [ms]

—900

Fig. 5: Distribution of § = t°! — ttfa}g

C. Correlation Analysis of Measurement Mechanisms

In order to provide an aggregated overview of the re-
sults, Table [lII| shows the correlations between the tool-based
measurements and the ground truth according to the wiretap
devices. Previous results indicate that in case of the Spirent C1,
the port-based captures provide a higher level of accuracy. In
the context of the OpenDaylight controller, the Java module
is more relevant in a practical context due to its capability
to perform measurements during runtime. Hence, only these
probes are included in the table. The correlation is determined
according to Spearman’s rank correlation coefficient.

In addition to the correlation between measurements of
the same component of the FlowMod processing time, the

TABLE III: Correlations between measurements from different tools and the

wiretap-based ground truth.

Mode addFlowAsync addFlow
Tool ODL/Java Spirent/capture ODL/Java Spirent/capture
Switeh Pair (tiap’ ténol) (tjtalzl:’ tgool) (tzap’ tEOOl) (tgllp’ t;ool) (tiaT—’, tgool) (t;alzlz’ tgool) (ttfi}’?’ tZOOl)
NEC 1.0000 0.9999 0.9983 0.9999 1.0000 0.9999 0.9988
Pronto 0.9999 0.9980 0.9958 1.0000 0.9992 0.9994 0.9989
Quanta 0.9999 0.8146 0.8790 0.9997 0.9984 0.9396 0.3727

table also provides information on the relationship between
ts measured via the tools and ¢yp measured via the wiretap.
A high degree of correlation in this context implies that it
is possible to reliably predict the time until the requested
FlowMod messages are installed in the switch’s data plane
when the t; measurements are given.

For the NEC and Pronto switches, all correlations are above
99 %. This behavior is in line with previous observations which
show deviations in the order of magnitude of less than 1 ms
for values that are as high as multiple seconds. In case of
the Quanta switch, however, there is no significant correlation
between t; and typ. As observed in Fig. [’3’], the time until
the first data plane packet is matched in the switch is nearly
constant while the setup time increases when the number of
installed flows is increased.

V. CONCLUSION

This work presents and compares two mechanisms for
evaluating the performance of OpenFlow switches in terms
of processing FlowMod messages. On the one hand, we
use a software-based approach featuring a module for the
OpenDaylight controller implemented in Java. On the other
hand, the Spirent C1 dedicated testing platform is utilized. The
two mechanisms are evaluated with respect to the accuracy of
their measurements of several components of the FlowMod
processing time. Furthermore, they represent different classes
of mechanisms that are available to network operators who
need to make sure that a planned SDN deployment meets
the requirements of a particular use case. The aspect of
switch performance evaluation is especially relevant since our
measurements show significant differences between different
switch models.

Results of the experiments with three switches from three
different vendors show that both mechanisms achieve an
accuracy in the sub-millisecond range when compared to mea-
surements performed with dedicated capture cards at wiretaps.
Except for one switch model with unexpected behavior, the
mechanisms achieve similar accuracy levels independent of
the device under test. Furthermore, high correlations between
measurements at the tools and the wiretaps indicate that
measured values can be used to derive performance measures
even more accurately.

In addition to the benefits regarding costs and ease of use,
the Java-based controller module also has the capability to
run during normal operation. This enables features like switch
performance monitoring at low costs in terms of resource

overhead. Finally, we observe a high correlation between the
time until receiving the Barrier Reply message and the time
until the rule installation in the switch is actually completed.
Therefore, it is possible to increase the state consistency
between controller and switch by utilizing such a controller
module.

ACKNOWLEDGMENT

This work has been performed in the framework of the
CELTIC EUREKA project SENDATE-PLANETS and is partly
funded by the BMBF. The authors alone are responsible for
the content of the paper.

REFERENCES

M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, and W. Kellerer, “Inter-
faces, Attributes, and Use Cases: A Compass for SDN,” Communications
Magazine, IEEE, 2014.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM CCR, 2008.

M. KuzZniar, M. Canini, and D. Kosti¢, “OFTEN testing OpenFlow
networks,” in European Workshop on Software Defined Networking
(EWSDN), 2012.

“OFTest — Validating OpenFlow Switches,” Big Switch Networks.
[Online]. Available: http://www.projectfloodlight.org/oftest/

A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching:
Data plane performance,” in IEEE International Conference on Com-
munications (ICC), 2010.

P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, ‘“Performance char-
acteristics of virtual switching,” in IEEE 3rd International Conference
on Cloud Networking (CloudNet), 2014.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,” in
Passive and Active Measurement, 2012.

C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, and A. Moore,
“OFLOPS-Turbo: Testing the Next-Generation OpenFlow switch,” in
European Workshop on Software Defined Networks (EWSDN), 2014.
M. Shahbaz, G. Antichi, Y. Geng, N. Zilberman, A. Covington,
M. Bruyere, N. Feamster, N. McKeown, B. Felderman, M. Blott et al.,
“Architecture for an open source network tester,” in Proceedings of
the ninth ACM/IEEE symposium on Architectures for networking and
communications systems, 2013.

M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an OpenFlow architecture,”
in Proceedings of the 23rd international teletraffic congress, 2011.

S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and
D. Simeonidou, “An analytical model for software defined networking:
A network calculus-based approach,” in IEEE Global Communications
Conference (GLOBECOM), 2013.

M. Jarschel, T. Zinner, T. Hohn, and P. Tran-Gia, “On the Accuracy of
Leveraging SDN for Passive Network Measurements,” in Australasian
Telecommunication Networks & Applications Conference (ATNAC),
2013.

“OpenFlow Switch Specification v1.5.0,” Open Networking
Foundation, 2014. [Online]. Available: https://www.opennetworking.org/!
images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf

(1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

http://www.projectfloodlight.org/oftest/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

	Introduction
	Related Work
	Methodology
	Methods of Sending FlowMod Messages
	Measurement Tools and Devices Under Test
	Measurement Setup

	Results
	Comparison of Switch Behavior
	Accuracy Assessment of Measurement Mechanisms
	Correlation Analysis of Measurement Mechanisms

	Conclusion
	References

