(©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been published in 2018 28th International

Telecommunication Networks and Applications Conference (ITNAC), 21-23 Nov. 2018, https://doi.org/10.1109/ATNAC.2018.8615342.

Towards an Active Probing Extension for the
ONOS SDN Controller

Christopher Metter*, Valentin Burger*, Zheng Huf, Ke Pei' and Florian Wamser*

*University of Wiirzburg, Institute of Computer Science, Wiirzburg, Germany
{christopher.metter|valentin.burger|florian.wamser } @informatik.uni-wuerzburg.de

THuawei, Corporate Reliability Departement, Shenzhen, China
{hu.zheng|peike } @huawei.com

Abstract—Network monitoring is a complex task and is al-
ways a trade-off between granularity of information and the
performance impact of the monitoring itself on the network.
SDN controllers, such as the ONOS SDN controller make this
challenge easier as they can supply centralized information over
the whole network. In our previous work, we analyzed the built-
in detection mechanism of ONOS and revealed a lack of detection
performance and the vulnerability of this process to jitter. These
results have also been verified by measurements. In this paper, we
present an active probing extension for the ONOS SDN controller
that overcomes these shortcomings by emitting probing packets
that are transmitted through the network. Packet loss is detected
by calculating statistics of a list which contains data from
previous packets. The evaluation by the means of measurements
proves the benefits in terms of detection performance and
controller load of this application. Furthermore, our extension is
able to detect jitter in the data plane and to automatically adapt
the probing process to these conditions.

Index Terms—SDN controller; Network monitoring; De-
tection; ONOS; Active Probing; Extension

1. INTRODUCTION

With the introduction of Software-Defined Networking
(SDN) in the late 2000s, network engineers have been given
a new and powerful tool to operate and administrate their
networks. SDN offers through its logically centralized and
programmable controller flexibility and better availabilty with
the decoupled control plane by enforcing rules independent
of the data plane by the controller with a global view over
the network. One beneficiary of this new paradigm is the
complex area of failure detection and failure recovery in
modern networks.

Currently, the common approach to detect failures in net-
works relies on the line rate protocol, which is already several
years old. This technology monitors the port status of a direct
link to another device. As soon as a port status change is
detected, the controller is notified through special control
messages. After the reception and evaluation of this message,
the controller then calculates an appropriate reaction to this
challenge, e.g. rerouting of flows that used the faulty link.
Furthermore, common SDN controllers, e.g. ONOS [1] or
OpenDaylight [2], use the so called Link Layer Discovery
Protocol (LLDP) [3], to detect changes in the detected topo-
logy. By frequently sending LLDP packets on each link, the

controller knows which device is connected to which other
device. Each reception of such an LLDP packet resets a timer.
If the timer expires, e.g. due to a sudden link failure, the
controller assumes that its link is now faulty. This mechanism,
whilst being good for the detection of a topology, is not
suitable for the detection of link failures other than complete
link outages. As our research in previous work has shown,
this mechanism is especially vulnerable against packet loss in
the data plane [4]. It is possible that the controller takes more
than a minute to successfully detect that a link is faulty and
recovery mechanisms are activated.

Therefore, our goal is to develop an extension that is able
to reliably detect packet loss in the data plane for one of the
common SDN controllers, namely ONOS. This extension uses
provided knowledge of the controller and extends it by adding
an active probing mechanism to its features. Furthermore,
as has been brought up in [4], the whole probing process,
as implemented by ONOS, is error-prone against jitter in
the data plane. The effect is that, even when the link itself
is still useable, the controller treats a link as a faulty one.
This undesirable effect is considered by an extension to
our probing application and implemented in it. Additionally,
the extension takes current network conditions, e.g. packet
loss, into account and optimizes its probing parameters. Our
evaluation shows that our active-probing extension enhances
the detection performance of the ONOS controller for the
cases of packet-loss and jitter in the data plane.

This paper is structured as follows. Section II presents
related work and the background on failure detection within
SDN networks. Afterwards, in Section III, the active probing
extension is presented. Section IV introduces our testbed, the
measurement scenario, and the evaluation of the detection
performance of the controller. Finally, Section V summarizes
the content of this paper and gives an outlook to further work
on this topic.

II. BACKGROUND AND RELATED WORK

This section describes the basics of SDN failure detection
necessary to understand the presented probing extension and
its evaluation. We show how currently link errors are detected

Fig. 1. LLDP Mechanism

and then discuss the disadvantages and challenges that cur-
rently prevail. We conclude the section with an overview of
related work.

A. SDN Failure Detection

SDN is a networking paradigm in which the data and con-
trol plane is decoupled from each other so that decisions can
be made about where traffic is sent, independently from the
forwarding itself [5]. In an SDN network the SDN controller
constitutes the control plane of the network and is responsible
for (1) maintaining a global view of network, (2) determining
forwarding rules via one or more applications running on the
controller, and (3) updating and requesting statistics and link
status for the global view of the network. Switches constitute
the data plane where the traffic is forwarded in a switch, at
best at line rate.

The current prevailing approach for fault detection in an
SDN-based network is the following. Detection is handled
centrally by the controller by sending LLDP packets through
the data plane. The general case is shown in Fig. 1. Here,
the controller creates and sends an LLDP packet within an
Openflow packet out (P_OUT) message to each connected
switch (1), cf. Section III. The switch probes the links by
forwarding the packet at all ports (2) or sending back the re-
ceived packets to the controller (3). Thus, with this procedure,
the controller receives every probing interval an LLDP packet
from each link as a response to its initiation and detects where
working links are in the network. If the SDN controller does
not receive a return packet within a predefined timeout period,
it can conclude that there is a link failure and a port within
the network has failed.

Our previous work investigated the detection performance at
an ONOS SDN controller under hazardous network conditions
such as partial packet loss with LLDP [4]. A mathematical
analysis of the built-in detection mechanism of ONOS reveals
a lack of detection performance. For example, a packet loss
value of 50 % is only detected after more than one minute
has passed. These results were also verified by measurements.
Furthermore, we showed that the ONOS SDN controller is
also vulnerable against link impairing effects such as jitter in
the data plane. With the default detection mechanism already
small values of jitter can lead to a false positive detection of
a link failure. In the worst cases this can lead to a constant

flapping of links status, decreasing the overall availability and
performance of a network. In this paper we now want to
address these weak points by designing and implementing an
active probing extension that overcomes them.

To sum it up, the current approach as described by current
controllers such as ONOS has disadvantages. First, due to its
nature as an active probing mechanism, it has the difficulty
to choose the probing interval in a meaningful way. If the
time interval is too long, the failure is detected too late. If the
interval is too short, significant network overhead is generated.
This problem gets even more severe with jitter in the network.
Currently, the setting for the probing interval is set to 3s as
default value in ONOS controller. Second, the approach is that
one can not monitor a link with partial packet loss, since the
SDN controller would consider each partial recurring error as
sequential failure, resulting in an oscillation of the detection
of link failures.

B. Related Work: Existing Failure Detection Approaches

This section presents related work on the topic of SDN
failure detection. Google’s well-known B4 network presents
one of the biggest SDN architectures with failure detection [6].
It uses OpenFlow to control low-cost switches, which leverage
control at network edges and allow for multipath forwarding.
They keep track of a link failure and enable a dynamic
bandwidth reallocation in case of link or switch failure.
Trinocular by Quan [7] is an outage detection system that uses
active probing to understand reliability of edge networks. This
approach learns the status of the Internet with probes driven
by Bayesian inference. In [8], the authors propose a detection
mechanism based on switches’ internal periodic link probing
for stateful SDN data plane abstractions like P4.

Another group of detection mechanisms is based on Bi-
directional Forwarding Decision (BFD) protocol where the
works propose to use the BFD daemon present in Open vS-
witch to detect failures and ensure fast failure recovery [9, 10].
In [11], a controller-based monitoring scheme and optimi-
zation model is proposed in order to reduce the number of
monitoring iterations that the controller must perform to check
all links.

Furthermore, several commercial link detection mecha-
nisms are built in switches for enterprise networks, including
Cisco UniDirectional Link Detection (UDLD) Protocol [12],
Juniper Monitor Ethernet Delay-Measurement [13]. Alterna-
tive solution might be passive probing via passive switch
measurements [14].

III. TOWARDS AN ACTIVE PROBING APPLICATION FOR
THE ONOS SDN CONTROLLER

As observed in our previous work, ONOS, in its current
version, is unable to meet service provider requirements in
certain scenarios. As the approach of ONOS has several shown
limitations, we create a new detection application for the
ONOS controller that increases the detection performance for
the case of packet loss in the data plane to enable carrier-grade
networking.

g4 Load Config | Active Probing @ i
((((((o Application » Event detection
e.g.: high packet loss °

value on link [A; B]

» Select new link for (2]
Northbound probing
API » Generate probe packet °
o » Topology Information &
(Update) » Event notification (7]
» Forward received probe e.g.: link [A; B] down
packets » Send probe packets o

Fig. 2. Schematic Concept of the Application

First, before designing the application, required features
have to be defined. The new probing application should be
able to detect packet loss and link delay in the data plane
by using an active probing mechanism. As we rely on the
ONOS controller, the app should be designed to interact with
it using the Northbound API. This API offers a well defined
interface between additional applications on top, such as our
detection mechanism, and the connected network devices on
the bottom. The controller offers information on the status of
the devices, for example flow traffic statistics, and transforms
actions from an application into device-specific commands.
As the controller is the ”brain” of SDN, and most network
operation comes to a halt without it, the application should
not generate a utilization overhead on the controller resources
such as CPU load or memory utilization.

This section presents a description of the general concept
of the application, and gives insights into the most important
components, such as the structure of the probing packets and
how the statistics of each link are calculated. Finally, its
functionality and performance is evaluated with measurements
in a testbed.

A. Concept of the Application

Fig. 2 shows the schematic concept of the application.
On top, the active probing application is depicted, at the
bottom the controller. After the activation of the probing
application, the initial configuration is loaded and the current
topology known to the controller is requested o Based
on this topology, the application now selects a new link
between two data plane devices for the probing process 9 and
automatically generates a new probing packet 9 This packet
is then handed over to the controller via the Northbound API.
The controller then injects this packet through its Southbound
API into the data plane @. At the sink of the link, the probing
packet is automatically redirected to the controller, which, in
turn, passes this packet to the active probing application e
The application now processes this packet and updates the link
properties, e.g. the packet loss and the link delay @ If one of
these properties surpasses a threshold, for example the packet
loss is greater than 10%, a notification is triggered and sent to
the controller via the Northbound API o The controller then
is able to calculate an appropriate reaction, e.g. recalculating
the routes of flows that traverse a link with bad quality.

End
Chassis ID Port ID “'L'fe o Optional TLV List of
Ve LLDP

Type Length oul Subtype Device ID | Name | Departure Time | Packet ID | Packet Mode

et e

7Bit 9Bit 24 Bit 8 Bit Custom String with 0 — 507 Bytes

Value with 0 — 511 Bytes

Fig. 3. LS3LLDP Packet Structure

B. Probing Packet Structure

For each link, an INFO3LLDP probing packet is sent each
predefined probing interval. The packet structure is expanding
the IEEE 802.AB LLDP standard [3]. The exact structure
consists of an Ethernet frame, a number of mandatory LLDP
TLVs (Type-Length-Value), an optional TLV list, here de-
picted as LS3 Content and finally an “end of LLDP” TLYV, see
Fig. 3. Setting the destination MAC address of the Ethernet
frame to a special multicast address, and the Ethertype of this
packet to 0x88cc, ensures that network devices receiving this
packet are able to handle it. Each of the TLVs, regardless of
mandatory or optional, has three fields. Field 1 is the type of
the TLV with 7 bits (e.g. 1 for chassis id or 2 for port id).
Field 2 is 9 bits wide and describes the length of the following
value. Field 3 is the actual value with a length ranging from
0 (minimum) to 511 (maximum) bytes. This structure is used
for each TLV, even for the optional TLVs and the “end of
LLDP” TLV. The mandatory TLVs include the chassis id, the
port id, and the time-to-live. For the advanced purposes of
our probing application, we use optional TLVs with a unique
OUI (organizationally unique identifier), in order to identify as
packets generated from our application, and multiple subtypes
followed by a value. These subtypes are device id, name,
departure time, packet id, and packet mode. The device id
identifies the source switch of this packet. The name field is
used to identify this packet as an INFO3LLDP packet. The
departure time field is set to the system time of the host of
this packet at the time of creation and is used to calculate
the transmission time of a packet upon receipt. The packet
id is incremented for each packet and is used to determine
packet loss on a link, as explained later on. The effect of
the packet mode will also be described below. In order to
transmit multiple values (e.g. the whole set) via one single
LLDP packet, for each information a new TLV is created and
attached to the packet.

C. Link Statistics Calculation

As soon as a probing packet is received by the probing
application, the information of the packet is decoded, and the
reception time is recorded. Out of this information, a new link
object is created. The measurement algorithm now checks, to
which link object in the previously mentioned queue it fits.
This entry then is removed from the queue. Afterwards, the
packet id is put into the list of the last received packet ids
and the link latency now is calculated via the difference of
reception and transmission time. Based on the list of received

List length = 300

Oldest received packet id Last received packet id

Fig. 4. Exemplary Packet History

packet ids, the packet loss rate of a link can be calculated.
The list always contains 300 entries, where the first entry is
the id of the oldest received packet, the last entry the id of
the last received probing packet. As soon as a new packet
is received, it is put at the end of the list and the first entry
is removed. Now, based on the difference of the last packet
id and the first id in the list, it can be calculated how many
packets have actually been received.

An example is illustrated in Fig. 4. Here, the last packet
id is 345, the oldest is 15. The difference of both ids is
330. As the length of the list is 300, the packet received
rate is 300/330 = 0.91. Therefore, the packet loss rate is
1 — (packet received rate) = 1 — 0.91 = 0.09.

If the application does not receive a probing packet for
a predefined timeout #, the link is put under investigation
and a link failure event is triggered: probe packets with the
aforementioned packet mode set to “special” are generated.
If these packets are received, the above progress comes into
play. If not, this link is considered down and its updated
status is forwarded to the controller which then is able to
take appropriate actions, e.g. adopt the routing of the installed
flows.

D. Evaluation of the Benefits of the Active Probing Extension

After designing and implementing this application its
functionality and performance has to be evaluated. Therefore,
measurements comparing the detection performance of ONOS
with its own detection application and with our new active
probing application have been conducted. For this purpose
the testbed of Fig. 5 is used. One physical server is running
Mininet to emulate a network topology of four switches. The
topology of the testbed is a ring-topology with four switches.
To each of the switches one simulated host is connected.
Two physical servers form the ONOS controller cluster. The
switches are load-balanced between these two nodes, i.e. one
controller node controls two switches.

In order to test the detection capabilities of ONOS for the
packet delay, both with and without our extension, packet loss
is configured on the data plane link between switch 1 and 2. To
be able to determine the reactions and their delay, the signaling
traffic between the controllers and their connected switches is
recorded and evaluated after each run. Analyzing these traces
allows us to calculate the mean reaction time and the detection
probability of each scenario. For scenarios evaluating the
active probing application, the vanilla detection application

c:r:rf ONOS orTf ;
Server 1 Cluster Server 2
S -
! N i
. .

" rv N
—d é;witch 1 5witc|-|;é é
Host 1 ost 2

Switch 4 Switch 3

o

3

Host3

¢
| &

Host 4

Fig. 5. Testbed Overview

10 T T T

Mean CPU usage [%]

0 H L A
0 50 100 150

Measurement Time [s]

Fig. 6. Mean CPU usage with and without the Active Probing Application
enabled

has been disabled and, accordingly, the new probing app has
been installed and activated.

At first we will investigate the resource utilization of the
application in comparison to a vanilla ONOS configuration.
Afterwards, the enhanced detection performance is evaluated
using different scenarios and configurations. The presented
data represents the mean values of 10 repetitive measurement
runs. If not mentioned separately, a packet loss value of 10%
has been configured in the data plane.

1) Resource Utilization: Fig. 6 and 7 show the resource
utilization on side of one of the controller hosts with and
without using the active probing application. Of course, the
measurements involved the collection of the statistics from
both servers. However, our investigations have shown that
their behavior only differs marginally, and, therefore, it is
sufficient to display only the results of one of the hosts.
For this scenario the application has been configured with a
probing interval of 30ms and a timeout of 100 ms. The red
line displays the usage without the application, the blue line
the usage with the application installed and activated. Fig. 6
shows the mean CPU utilization during the whole time of
the measurement. The x-axis depicts the measurement time
in seconds, the y-axis the mean CPU usage in percent. Both
measurements show only a small CPU usage varying between
1 and 3% throughout the measurement. Additionally, the
measurement with the extension enabled is only insignificantly
higher than the one without.

— 1200 T T T

B

M
—
o
1S3
S

800 1

400} 4

200 1

Mean Memory usage [

0 L L L
0 50 100 150 200
Measurement Time [s]

Fig. 7. Mean RAM usage with and without the Active Probing Application

Fig. 7 shows the mean memory usage with and without the
active probing application. The x-axis shows the measurement
time in seconds, the y-axis the memory usage in megabytes
from 0 to 1200 MB. Again, only a small difference is noticea-
ble: Whereas the measurement without the probing application
starts at 1000 MB and slowly decreases to a final value of
950 MB, the measurement with the app activated requires
1050 MB and slowly decreases to 1000 MB. Nevertheless, as
the host of this controller instance has had a total of 16 GB
of memory available, both memory usages do not carry any
weight.

Looking at the resource utilization, the goal of not overloa-
ding the controller host with our application has been accom-
plished. For the case of the CPU load, the utilization more or
less remains the same. For the case of the RAM load, the usage
even is smaller than before. The reasons for this behavior
are simple: Whereas the vanilla ONOS probing mechanism
creates instances for each connected switch, our application
only runs one instance per controller host. Therefore, less
RAM is required.

2) Detection Performance: Fig. 8 shows the detection
rate of the active probing interval after 10 runs. The x-axis
displays multiple configured data plane packet loss values,
ranging from 3 to 50%. The y-axis displays the detection rate
in percent. For the lowest packet loss values of 3 and 5%, the
probing application offers a detection rate of 10%. For 10%
and 15% packet loss the detection rate increases to 70%. A
detection rate of 90% has been measured for the packet loss
values between 20 and 30%. Beyond that, the application is
in 100% of the cases able to detect the configured packet loss
in the data plane.

In Fig. 9 the reaction times of the active probing application
for multiple packet loss values are depicted. The x-axis shows
the packet loss values ranging from 3 to 50%, the y-axis the
reaction time in seconds. Beginning with a detection time of
around 96 seconds for 3%, the detection time continuously
decreases with an increasing packet loss value. For 5% the
reaction takes place within 85 seconds. 10% of packet loss
is detected within 47 seconds, 15% within 42 seconds, 20%
after 40 seconds. Roughly 37 seconds required to detect 30%
of packet loss, 29 seconds for 40%, and, finally, 50% of packet
loss are detected within 19 seconds.

In summary, the results of Fig. 8 and 9 demonstrate

100

80

60

40

Detection Rate [%]

20

3 5 10 15 20 30 40 50
Packet Loss [%]

Fig. 8. Detection rate of the Active Probing Application

Mean Reaction Time [s]

3 5 10 15 20 30 40 50
Packet Loss [%]

Fig. 9. Reaction times with the Active Probing Application enabled

the increased detection performance of the active probing
application. In terms of detection rate, the new application
surpasses the performance of the native ONOS detection
mechanism. Our model, and the provided measurements, in
our previous work show a detection probability of 10% for a
packet loss probability of 40% [4]. The new application, in
comparison, already offers this detection rate for packet loss
values of 3%. Additionally, the detection times have decreased
as well. Before implementing the active probing mechanism,
the detection time for packet loss value of 40% was around
100 seconds. After the successful implementation of the app,
the detection of this link status is already possible after 29
seconds. Reviewing the resource utilization on side of the
controller host also reveals that the goals in terms of overhead
have been kept. The new application offers a better detection
performance whilst requiring the same or even less CPU or
RAM usage.

IV. ADAPTING TO CHANGE

The proposed mechanisms for the active probing application
does not yet consider one parameter that requires conside-
ration: the constant change in the network, especially the
variance in the packet inter-arrival times. Especially the impact
of jitter in the data plane has been introduced and analyzed
in [4].

Taken from this work are Equations 1 and 2 which we are
used again for the optimization algorithm. Equation 1 is used

to determine the mean detection time of a link failure with
packet loss p

1 1 1

tdetec 707>\:7 7’779 . 1
d,t“t(p) pw'AJmYn(l—p A) ()
The minimum value for the timeout # can be calculated
by evaluating the inverse cumulative distribution function of
a normal distribution Nl_/l)\ ,(p) with mean § and standard

deviation o depending on the tolerated false positive rate fyq

Omin(X 0, fran) = NyA (1= fra) - (@)

A false positive in this case describes the event that a link
failure is considered as faulty due to jitter in the data plane.

The remainder of this section focuses on proposing an
algorithm that is able to cope with these conditions. After-
wards, the implementation and combination with our probing
extension is evaluated.

A. Automated Probing Rate Adaptation in the App

As shown in the previous work [4] the timeout 6 has to
be increased depending on the jitter on the link to fulfill a
certain target rate of false positive link failure events. To fulfill
a certain target detection time, the timeout ¢ can be reduced
or the probing rate A can be increased, which, in turn, affects
the rate of false positive link failures. Hence, there is a trade-
off between a low rate of false positive link failure events
and a low failure detection time. To keep the load on the
controllers low, the probing rate 6,,;, has to be minimized
after the formula of Equation 7 of [4]. Therefore, we propose
an algorithm for a self-optimized process that meets the target
rate of false positive link failure events f rail and the target
mean detection time #gepec; (c.f. Equation 4 of [4]) given the
tolerated packet loss rate p and minimizes the controller load.
The term false positive link failure describes the event when
a link failure is triggered due to an exceeded timeout due to
jitter instead of lost probing packets (cf. [4]).

Algorithm 1 Probing Rate Adaption

1: procedure PROBING RATE ADAPTION
2: Input Parameters:

3 tolerated packet loss rate p

4 tolerated false positive rate f Fail

5: target detection time #g¢scc
6
7
8
9

: Variables:
jitter o
probing frequency A
: timeout 6
10: start:
11: Determine 0(\, o, ffail) based on Equation 2
12: Calculate expected detection time ¢ getect (P, 0, A) based on
Equation 1
13: Set probing frequency A := X - tgetect (D, 0, \) /tdetect
14: Go to start

Optimizes
» Probing frequency
» Probing timeout

Measures
» Packet delay
» Packetloss

;)
> Jitter Probing Probing
Extension Rate
Optimizer
Open Network Operating System
Fig. 10. Schematic Integration of Algorithm 1 into the Active Probing

Extension

At first, the new timeout # is calculated according to
Equation 2. Afterwards, by using the new timeout, the new
expected detection time is calculated according to Equation 1.
Finally, the new probing frequency is set to the old probing
frequency times the quotient of the expected and the old
detection time. Afterwards, the process restarts at the begin-
ning, and, therefore, is always adapting to the current network
situation.

B. Integration with the Active Probing Application

In order to take advantage of the proposed auto-adapting
algorithm, it has to be implemented and integrated with the
already existing active probing application. The only missing
information inside the application is the current network jitter.
The probing frequency and the timeout are both configuration
parameters that can be read from the application. The target
variables tolerated packet loss rate p, tolerated false positive
rate ffm-l, and the target detection time fgetecr are input
parameters that will be loaded upon start-up of the application.

The app already measures the one-way latency of each con-
nected link with each transmitted probing packet. Therefore,
to determine the network jitter, only a new data field has to
be created that stores the difference in link delay from one
measurement point to the next one. The remainder of the
implementation is putting together the data and implementing
Algorithm 1.

Figure 10 shows the new optimization cycle of the ap-
plication. The active probing extension measures the packet
delay, the packet loss and the jitter of a link of the network
topology. These values are then put into the algorithm. Based
on the predefined configuration parameters, the algorithm
then calculates a new probing frequency and a new probing
timeout for the current environment conditions. This output
is then used to modify the actual probing frequency and the
probing timeout of the active probing extension. As network
environment parameters such as link delay, network jitter, and
packet loss tend to change over time, this whole optimization
process is repeated regularly.

C. Evaluation

In order to highlight the advantages of the self-optimization
algorithm, measurements with and without activated self-
optimization have been conducted. In order to proof the
functionality of the auto-optimization feature of the active
probing application new measurements have been performed.
The testbed of Section III-D has been used again.

e I T
T L
E250F 1
S 200t .
2L
£ 150f :
=)
c
5 100
o
& sof 1
0 L 1 - - B
0 100 200 300 400
Measurement Duration [s]
Fig. 11. Impact of Jitter on Probing Interval
25 T T T
_20 r 1
2 Without Optimization
S
s With Optimization
o)
o)
o
[®)
0 L L L
0 100 200 300 400

Measurement Duration [s]

Fig. 12. CPU Usage both with and without the Optimization Algortihm
enabled

At first the actual adaption of the probing rate under
changing jitter levels is investigated. In this scenario, the
probing interval for the probing extension without the opti-
mization has been set to 100 ms and the timeout-factor to 3,
resulting in an expected detection time of 300 ms. Fig. 11
shows the jitter interval in orange, the probing interval for
measurements without the optimization algorithm enabled in
blue and the probing interval for measurements with the
optimization algorithm enabled in red. In this scenario, the
jitter level changes each 50 seconds.

With the probing interval of the extension without the
optimization, the change in the jitter level does not impact
it in any way. The probing interval is constantly at 100 ms.
The optimized version, in contrast, shows an adoption to the
changed networking environment. Already small changes in
the probing interval can be a drastic difference in the actual
reaction time if a failure happens with such environment
parameters. As previously introduced, a small change in the
jitter level can have a huge impact if the probing extension
does not react to it [4]. As soon as the jitter increases, the
timeout factor increases as larger timeouts lead to a reduced
false positive rate of link failure events. Additionally, as
demonstrated later on, this change in the probing frequency
has an impact on the resource utilization of the controller host.
Throughout the whole measurement the adaption time of the
optimization mechanism is on average 3 seconds. This factor
is influenced by two factors: First, the probing extension has
to detect the jitter level, which takes some time, as probing

W
o

—_— lWithout Optimization
2, [Iwith Optimization

)

E20f 1
l_

C

k=)

S 10} 1
Q

)

(m)

0

5 10 15 20 30 40
Packet Loss [%]

Fig. 13. Reaction times to packet loss events both with and without the
Optimization Algorithm enabled

packets have to be transmitted, received and analyzed. Second,
as we use multiple controllers, a synchronization between
these two nodes is required. For this setup, the synchronization
time has been set to 5 seconds. Decreasing these values is
possible, but would not necessarily increase the detection
performance.

Fig. 12 shows the CPU usage for above scenario. The
CPU usage for the controller host without the optimization
algorithm enabled is shown in blue, the usage with the
optimization Algorithm enabled is shown in red. Here, the
previously mentioned difference in the CPU usage is visible.
Without the optimization, the CPU usage is always in between
8 and 11%, with the exception of a few peaks. With the
optimization enabled, the CPU usage is lower throughout
the measurement, with values between 3 and 8%. Each time
the probing interval is increased, the CPU load is reduced,
and vice versa. The memory utilization for both with and
without the optimization has also been analyzed. But, as the
measurement showed little to none difference in the results,
they are not shown here. The memory utilization was at levels
that have been shown in Seczion III-D.

In order to measure the detection time for the case of
link failure in the data plane, the scenario settings have been
changed. The optimization algorithm calculates a probing
interval of 208 ms and a time-out factor of 1.2. For the non-
optimized variant, a probing interval of 100 ms and a time-out
factor of 3 is chosen. As the actual packet loss in the data plane
has no impact on the optimization process, the calculated
parameters remain constant. In Figure 13 the reaction times
for both with and without the optimization algorithm are
compared. For this scenario, the topology is set up and running
without any packet loss for 150 seconds. Afterwards, as
introduced in Section III-D, packet loss is added to the link
between switch 1 and switch 2. Finally, the network is set
back to 0% packet loss for the next measurement. The x-axis
of Figure 13 shows multiple packet loss values from 5 to 40%,
the y-axis shows the detection time to a packet loss event in
seconds. The values for the probing extension without the
optimization algorithm are depicted in blue, the results with
the optimization algorithm in yellow, respectively. In red 95%
confidence intervals are shown. Overall, the measurements

present the expected results. In all cases increasing the packet
loss decreases the reaction time. Enabling the optimization
mechanism decreases these times to 7 and 5 seconds.

Furthermore, the optimization algorithm constantly outper-
forms the non-optimized version of the probing extension. The
decrease of the reaction time for increasing packet loss can be
explained by the mechanism of the active probing extension.
In order to detect packet loss on a link three consecutive
packets have to be lost. Therefore, increasing the packet
loss increases the probability of three consecutively dropped
packets on a link. This phenomena has been introduced an
explained in our previous work [4]. It also explains the per-
formance gain of the optimization algorithm. The optimization
algorithm analyzes the configuration parameters and calculates
a suiting probing interval and timeout. In order to optimize
the reaction time for the case of packet loss, it reduces the
timeout. With this setting less than two consecutive packets
have to be lost to trigger a detection, which has a higher
probability of three consecutively dropped packets.

Overall, the performance gains of the optimization me-
chanism are as expected. With normal network environment
parameters, close to 0% packet loss and Oms of jitter, the
algorithm relaxes the probing interval and, therefore, requi-
res less CPU resources. Furthermore, under harder network
conditions, the optimization algorithm detects a challenging
situation and decreases the probing interval in order to incre-
ase the detection performance.

V. CONCLUSION

With the introduction of Software-Defined Networking and
its decoupling of the control from the data plane, network
engineers have been given a new, flexible and central tool to
monitor networks. An open source tool that allows for SDN-
enabled deployments is the ONOS SDN controller. According
to its developers, it offers reliability, scalability, and is already
production ready. The question whether this interplay of
technology is really working in the field is of high interest
for service providers and requires thorough analysis before
migration. Our previous work [4] has shown that ONOS is
unable to reliably detect link impairing effects such as packet
loss in the data plane. An exemplary result is that ONOS in its
default configuration requires more than one minute to detect
packet loss values of 50%. In order to improve the detection
performance multiple options exists.

The approach presented in this paper introduces an active
probing mechanism for the ONOS SDN controller as a Nort-
hbound API application. It generates, transmits, and receives
probing packets through and from the network. Therefore, it is
possible to derive network data on a link level, e.g. the packet
loss rate, or the the link delay. The evaluation performed in a
testbed shows that this application is to increase the detection
performance, both in rate and time, whilst only marginally
increasing the load on the controller resources, such as CPU
or RAM.

An additional feature presented in this paper is to implement
an self-adapting active probing mechanism into the ONOS

controller that adapts to the changes in the network conditions,
e.g. jitter. Furthermore, in order to tradeoff controller load
to detection performance, the time between two succeeding
packets and the internal timeouts are adapted to the current
network conditions. An algorithm that optimizes the whole
probing process during run-time has been presented. This al-
gorithm analyzes the current network environment parameters
and calculates new probing intervals and probing timeouts,
which have an impact on the detection performance. After-
wards, the algorithm is implemented as part of the already
existing probing extension. Measurements demonstrating the
difference between an enabled and a disabled optimization
algorithm are presented. Furthermore, under normal environ-
ment parameters, the probing interval will be increased and,
therefore, the CPU utilization on side of the controller can be

reduced. REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1-6.

[2] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight:
Towards a model-driven sdn controller architecture,” in 20/4 IEEE
15th International Symposium on A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM)(WOWMOM), June 2014, pp. 1-6.
[Online]. Available: doi.ieeecomputersociety.org/10.1109/WoWMoM.
2014.6918985

[3] 1. C. Society, “Station and Media Access Control Connectivity Disco-
very,” IEEE Std. 802.1ab, vol. IEEE Standard for Local and Metropo-
litan Area Networks, pp. i-204, 2009.

[4] C. Metter, V. Burger, Z. Hu, K. Pei, and F. Wamser, “Evaluation of
the Detection Capabilities of the ONOS SDN Controller,” in 7th IEEE
International Conference on Communications and Electronics (IEEE
ICCE 2018). 1EEE, 2018, pp. 1-6.

[5] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3—14, 2013.

[7]1 L. Quan, J. Heidemann, and Y. Pradkin, “Trinocular: Understanding
internet reliability through adaptive probing,” in ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
255-266.

[8] C. Cascone, D. Sanvito, L. Pollini, A. Capone, and B. Sanso, “Fast
failure detection and recovery in sdn with stateful data plane,” Interna-
tional Journal of Network Management, vol. 27, no. 2, p. €1957, 2017.

[9]1 N. L. Van Adrichem, B. J. Van Asten, and F. A. Kuipers, “Fast recovery
in software-defined networks,” in Software Defined Networks (EWSDN),
2014 Third European Workshop on. 1EEE, 2014, pp. 61-66.

[10] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Openflow: Meeting carrier-grade recovery requirements,” Computer
Communications, vol. 36, no. 6, pp. 656-665, 2013.

[11] S. S. Lee, K.-Y. Li, K.-Y. Chan, G.-H. Lai, and Y.-C. Chung, “Path
layout planning and software based fast failure detection in survivable
openflow networks,” in Design of Reliable Communication Networks
(DRCN), 2014 10th International Conference on the. IEEE, 2014, pp.
1-8.

[12] M. Foschiano, “Cisco systems unidirectional link detection (udld)
protocol,” Internet Requests for Comments, RFC Editor, RFC 5171,
April 2008.

[13] “Juniper Monitor Ethernet Delay-Measurement.” [Online]. Available:
https://www.juniper.net/documentation/en_US/junos/topics/reference/
command-summary/monitor-ethernet-delay-measurement.html

[14] A. Dusia and A. S. Sethi, “Recent advances in fault localization
in computer networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 4, pp. 3030-3051, 2016.

