
A Priori State Synchronization for Fast Failover of
Stateful Firewall VNFs

Nicholas Gray∗, Claas Lorenz†, Alexander Müssig∗, Steffen Gebert∗, Thomas Zinner∗, Phuoc Tran-Gia∗
∗University of Würzburg, Würzburg - {nicholas.gray,alexander.muessig,steffen.gebert,zinner,trangia}@informatik.uni-wuerzburg.de

†genua GmbH, Kirchheim - claas lorenz@genua.de

Abstract—Network Functions Virtualization (NFV) replaces
physical middleboxes with software instances running network
functions in cloud environments. To support this new paradigm,
it is necessary to port the code basis from highly specialized
hardware devices to virtual machines running on COTS hard-
ware. In order to fully exploit the inherent capabilities of cloud
environments it is further necessary to redesign the software
to support a large amount of distributed, cooperating function
instances instead of single, isolated and monolithic instances. This
development can be observed for network functions like stateful
firewalling. Until now, available software firewalls lack support
for active/active operation in clustered environments, which
hinders horizontal scalability. This is due to the fact that the
required synchronization of connection states among the cluster’s
instances is an impediment that still has to be resolved. Therefore,
this work investigates different synchronization strategies and
mechanisms, which allow to share connection states among the
cluster to maintain scalability and high-availability.

I. INTRODUCTION

Current firewall functions are implemented as hardware
middleboxes and located within the physical network paths.
To protect the network from external threats, the firewall is
placed at the perimeter where different security boundaries
are connected. In order to ensure reliable connectivity, such
firewalls are deployed in high availability (HA) setups using
1:1 protection. Therefore, two identical devices are deployed,
one as active instance forwarding the traffic, while the other is
running as dedicated backup instance, ready to take over once
the active instance fails. Replication of all connection states of
a stateful firewall towards the standby device allows this in-
stance to continue operation within minimal downtime in case
of a failure. The connected hosts automatically communicate
with the currently active instance, as the whole cluster uses
one virtual IP address, which the active instance occupies and
announces using ARP. As only half of the deployed resources
can be used and scalability is limited, an increase of capacity
often requires a replacement of both physical devices. Further,
they are placed within the physical path and thus are hard to
exchange without service interruption.

To tackle these drawbacks, which occur for firewalling as
well as for other types of middleboxes, the concept of Network
Function Virtualization (NFV, [1]) receives increased popular-
ity. The tightly integrated middlebox appliances are replaced
by flexible Virtualized Network Functions (VNFs) running as
software instances. Such a VNF deployment benefits from
the advantages of cloud computing, i.e., scalability, improved
energy efficiency, and increased flexibility. Currently available
software implementations already perform very efficient packet

and state inspection [2]. However, these implementations do
not yet allow fine-grained, horizontal scalability, as expected
by NFV implementations. Following the example of hardware
firewalls, their scalability is limited to a 1:1 protection with a
dedicated backup instance for failover.

Different architectures for stateful NFV-based firewalling
are proposed in [3]. In this context, the synchronization of
connection states among all cluster firewall nodes is stated
as a major challenge. Such synchronization is required for
seamless failover, as well as scale in and scale out procedures.
This stems from the fact that every packet can induce a
transition of the connection state, which needs to be propagated
among all cluster nodes. Therefore, effective strategies for
this synchronization are required and discussed, as well as
evaluated, in the remainder of this work. Based on a proof-
of-concept implementation, which allows to select particular
synchronization strategies and levels, the effects on the data
plane performance are evaluated. The evaluations vary the
degree of state synchronization regarding different TCP con-
nection states, as well as the access strategy to the shared state.
Furthermore, the influence of increased synchronization load
caused by different cluster sizes is investigated.

The remainder of the work is structured as follows: Sec-
tion II describes current software firewall implementations and
their synchronization strategies, before detailing the concept of
a firewall VNF based on cloud principles in Section III. The
proof-of-concept implementation used to evaluate the effects
on the data plane performance is described in Section IV. This
is followed by the description and discussion of the results in
Section V-B, which are conducted by running in a testbed.
Finally, Section VI concludes this work and gives directions
for future work.

II. BACKGROUND AND RELATED WORK

The feature set of a firewall implementation can be cate-
gorized as follows:

Packet filter: Based on a static rule set, all packets matching
these rules are forwarded. For every packet, only the
configured rule set is investigated. This very limited
approach can be easily implemented using SDN, as no
dynamic provisioning of rules to the networking devices
is required and only source and destination IP addresses
and transport layer ports are checked.

Stateful firewall: Packet headers up to the transport layer are
investigated and checked against the static rule set, as well
as the list of active connections. Any packet which can

1

c ©
20

15
IE

E
E

.
Pe

rs
on

al
us

e
of

th
is

m
at

er
ia

l
is

pe
rm

itt
ed

.
Pe

rm
is

si
on

fr
om

IE
E

E
m

us
t

be
ob

ta
in

ed
fo

r
al

l
ot

he
r

us
es

,
in

an
y

cu
rr

en
t

or
fu

tu
re

m
ed

ia
,

in
cl

ud
in

g
re

pr
in

tin
g/

re
pu

bl
is

hi
ng

th
is

m
at

er
ia

l
fo

r
ad

ve
rt

is
in

g
or

pr
om

ot
io

na
l

pu
rp

os
es

,

cr
ea

tin
g

ne
w

co
lle

ct
iv

e
w

or
ks

,
fo

r
re

sa
le

or
re

di
st

ri
bu

tio
n

to
se

rv
er

s
or

lis
ts

,
or

re
us

e
of

an
y

co
py

ri
gh

te
d

co
m

po
ne

nt
of

th
is

w
or

k
in

ot
he

r
w

or
ks

.
T

he
de

fin
iti

ve
ve

rs
io

n
of

th
is

pa
pe

r
ha

s
be

en
pu

bl
is

he
d

in
N

et
w

or
ke

d
Sy

st
em

s
(N

et
Sy

s)
,

13
-1

6
M

ar
ch

20
17

,
ht

tp
://

dx
.d

oi
.o

rg
/1

0.
11

09
/N

et
Sy

s.
20

17
.7

90
39

64



Fig. 1: Concept of the distributed VNF firewall including load balancing among horizontally scaled VNF instances and cluster
of element manager instances.

be assigned to an active connection, including the reverse
direction, is allowed to pass through. By validating the
TCP state machine, the conformance with the protocol
is checked based on the flags in the TCP headers. An
implementation only using SDN features is possible, yet
slow [3].

Application-layer firewall: The most complex variant of fire-
walling investigates the application layer protocol, e.g.,
HTTP. Due to the complexity of these protocols, such
firewall implementations require tremendous amounts of
CPU power and often cause false positives.

Given the disadvantages of application-layer firewalling,
most networks use stateful firewalling, which is also investi-
gated in this work.

An implementation of a DMZ, a special firewall setup,
based on ClickOS [4] is described in [5]. The authors conclude
that current virtualization infrastructure does not yet provide
satisfying features for NFV deployments. While the scalability
aspect of VNFs is mentioned, no further discussion is led.
In [6] the authors investigate synchronization mechanisms
merely of the state of application instead of the entire virtual
machine, to provide fast failovers. In contrast, a guideline for
migrating the local state of NFVs to a shared memory cluster
is discussed in [7]. OpenNF [8] provides a framework for
developing and synchronizing the state of NFV applications in
SDN-enabled networks. The performance of the OpenDaylight
SDN controller in a clustered setup is investigated in [9]. The
authors investigate the behavior in case of database partitioning
as well as controller failover.

III. VNF-BASED CLOUD FIREWALL

In highly dynamic cloud environments with frequently
changing virtual networks, the premise of a clearly definable
gateway position is not given anymore. In this work, we focus
on the realization of the VNF-centric approach proposed in [3].
By applying means of Software Defined Networking (SDN) and
NFV, this serves as a foundation for implementing a scalable
and fault tolerant cloud firewall.

A. Concept of a VNF-based Firewall

Figure 1 illustrates the proposed architecture of the pro-
posed VNF-based cloud firewall. It is comprised of two
dimensions – the packet processing on the data plane and the
control and management plane functionality on top.

In the data plane, the packets flowing through the network
are processed by the cluster consisting of multiple virtual
firewall instances running on Commodity-off-the-Shelf (COTS)
server hardware. All of these VNF instances have access to
the shared state table and could potentially take over any
connection that was previously handled by another instance.
Depending on the resource usage, additional instances can be
added or removed as needed. Each VNF instance connects to
the firewall’s element manager (EM, [10]), which is responsi-
ble for coordinating the firewall cluster.

The element manager takes over control and management
functionality by monitoring the cluster state. This includes the
configuration of the firewall rules, supervision of the health
of connected VNF instances, as well as signaling additional
resource demands to the NFV infrastructure. The EM cluster
itself applies a leader election to decide about the particular
instance, which actively coordinates the whole cluster, dictates
the configuration, and serves as representative to external
entities.

On the network side, load balancing functionality provided
by the SDN is used to distribute the load among the firewall
instances. The load balancing applies hashing to ensure that
all packets of a connection are forwarded to the very same
instance, which ensures that synchronization delays have no
negative effect during normal operations. In the case of scale in
or scale out, the load balancer’s buckets are recalculated so that
the IP address space is equally distributed among the instances.
One, or in large clusters more, instances are running as shared
backup to take over the traffic of a failing instance, but until
then only participate in the state synchronization passively.
In contrast to reconfiguring the load balancing in the SDN
switches to equally distribute the traffic among the remaining
instances, such 1:1 replacement can be done with a single
request, e.g., using OpenFlow’s group action. This n+1 setup
offers a good trade-off between resource utilization and fast
failover.

2



Node A

Node B Confirm
Write

Instruct
Write

Write to
database

Forward
packet

(a) Synchronous.

Node B

Node A

Confirm
Instruction

Forward
packet

Write to
database

Instruct
Write

(b) Asynchronous.

Fig. 2: Data write access strategies.

B. State Synchronization Strategies

Given the need of a low-latency, a priori state synchroniza-
tion among all cluster nodes in conjunction with high rates of
incoming connections, the need for effective synchronization
mechanisms is apparent. A multitude of options exist, how this
shared state can be managed and accessed. These options will
be described in the following and evaluated later on.

1) Synchronization Level: Due to the stateful traffic pro-
cessed by the firewall cluster, an implementation choice is
given by the granularity of state changes shared with the other
instances. Regarding the TCP states, the following options are
available:

Full: Any state change is synchronized among the whole
cluster, i.e., all TCP state changes imposed by the three-
way handshake and connection termination.

Established: Only the long-lasting state after the successful
handshake, as well as information about successfully
closed connections is propagated within cluster-wide, i.e.
the ESTABLISHED and CLOSED states. All intermediate
states are only held locally.

2) Synchronization Strategy: The required consistency of
the state table update among the cluster nodes offers another
option with potential influence on data plane performance.

Sync: After sending information about the new connection,
the instance waits for write confirmations of all other
instances, as illustrated in Figure 2a. This ensures that this
particular state change is available on the backup instance,
in case of its own failure.

Async: After sending information about the new connection,
the instance waits only for the confirmation that all other
nodes received this update, ignoring the fact that they did
not persist this change, yet. This procedure is illustrated
in Figure 2b.

Based on these options, the firewall cluster can be opti-
mized for a consistent operation or tuned towards increased
performance. Besides these, further implementation-specific
options can also have an influence on a distributed VNF
implementation.

IV. IMPLEMENTATION

In this section the prototypical implementation1 of the
firewall VNF, which is later used to evaluate the previously
described synchronization options, is described. Additional
options offered by the particular software stack, which have
an influence on the consistency versus performance trade-off
are discussed.

This prototype is built in Erlang/OTP [11], a functional
language designed for high availability and concurrency. As
implementation for the shared state holding the firewall rules
as well as the particular status of every currently active
TCP connection, Erlang’s built-in Mnesia database is used.
Mnesia operates as in-memory database, offers high through-
put key/value access, and allows SQL-style transactions to
ensure consistent writes. Replication of data towards other
cluster nodes can be specified on a per-table basis. The two
components, namely the element manager and firewall VNF
instances, are described in the following.

A. Element Manager (EM)

As described in Section III-A, the EM is responsible for
configuration and management of the overall firewall cluster.
In the current implementation, high-availability mechanisms
are out of focus and only a single instance is used. The leader
election part can be added by using an established distributed
consensus algorithm like Raft [12].

The EM instance reads its configuration from a file, which
includes the desired cluster size, as well as the static firewall
rules. It listens for other Erlang VMs to join its cluster and
register as firewall instances, as well as instances leaving the
cluster. In each of these events, the current number of active
and backup instances is evaluated, and potentially additional
actions are triggered. As described in Section III-A, a defined
number of instances are kept as backup for failure cases, while
any change regarding the active instances receiving traffic, the
load balancer is updated. Therefore, the EM connects to the
built-in REST API of the Ryu controller [13], which manages
the connected OpenFlow switches.

B. VNF Instances

The VNF instances execute the actual filtering functionality
by inspecting all incoming traffic and forwarding only per-
mitted packets towards their destination. During startup, the
VNF instance connects to the EM and receives its runtime
configuration from there. After synchronizing the shared state
provided by the other cluster nodes, the VNF is ready to
receive traffic. Whether an instance is used actively for packet
processing or remains in the status of a backup instance is
the EM’s decision. For evaluating different synchronization
modes, the prototypical implementation offers two different
database tables to hold the state of active TCP connections.
One table is replicated among all cluster nodes, while the other
is held locally only. Depending on the currently investigated
synchronization mode, the particular table is used to store,
e.g., intermediate states like SYN-RECEIVED with the whole
cluster or only keep this information for the current node.

1The source code is uploaded upon paper acceptance

3



Fig. 3: Implemented layers to access the shared state including
available options.

For receiving packets from the network interface, a RAW
socket is opened, which provides the complete Ethernet frames
to the firewall instance. As this implementation does not termi-
nate TCP connections, no TCP stack is required. Nevertheless,
the headers of Layer 2 - 4 need to be parsed in order to be
compared against the configured rules and also the flags of
incoming packets are checked against the TCP state machine.
For performance reasons, the state table is checked for an
active connection first. If no connection is found, the rule
table is consulted, which is by far more complex, as wild
card rules need to be evaluated. In case the packet is part
of an already existing or new, but valid connection, it is
forwarded towards the destination using the VNF instance’s
egress interface. Otherwise, the packet is dropped. For every
state change, this information is stored in the particular table,
which is then synchronized with the other cluster nodes or not.

C. Implementation-specific Synchronization Options

In addition to the synchronization strategies described in
Section III-B, the used Erlang Mnesia database offers another
option that might have an influence on the consistency versus
performance trade-off. Similar to SQL databases, write op-
erations into the shared state can be done using transactions
or via a direct access, potentially loosing consistency during
concurrent access. Furthermore, a third synchronization level
None is implemented, which serves as a baseline for the
evaluation and keeps all connection states only on the local
node, where even the ESTABLISHED state is not shared.
The resulting options of the prototypical implementation are
depicted in Figure 3 and evaluated for their influence on the
connection setup times in the next section.

V. EVALUATION

After describing the used testbed setup, the previously
introduced options for state synchronization will be evaluated
regarding their influence on the connection setup times.

A. Methodology

To evaluate the different synchronization strategies im-
plemented in the firewall VNF, measurements in the testbed
depicted in Figure 4 were conducted. The element manager, the
firewall instances, as well as the hosts generating the data plane
traffic are running as KVM-based virtual machines on one
physical server2. The VMs3 are running Erlang 18 on Debian

2Dual Intel Xeon L5420, four cores at 2.50 GHz, 16 GB RAM
3EM: 2 CPU cores, 1 GB RAM; VNF instances: 4 CPU cores, 3 GB RAM

Linux 8.5 and use the VirtIO network driver. For generating
the data plane traffic that is filtered by the firewall cluster,
HTTP requests using Apache Bench (ab, [14]) are sent at a
specified concurrency level towards a Varnish HTTP caching
server [15], which operates completely in memory to avoid any
bottlenecks. By configuring ab’s concurrency level, different
load can be induced on the firewall cluster. An instance of
Open vSwitch running on the host system acts as a load
balancer and is managed by the Ryu SDN controller.

One variant of this testbed (cf. Section V-B3) is an ex-
pansion towards additional physical and virtual hosts running
within the same local network. To evaluate the influence of an
increased cluster size with instances running on remote hosts,
additional instances that only participate in the synchronization
are launched within an OpenStack cloud.

The clients implemented by Apache Bench establish a
TCP connection to the Varnish server and download a 1 Byte
HTML file. As the keep-alive mechanism is disabled, the
server immediately tears down the connection after serving the
file. Per run, a total of 10,000 downloads are initiated and each
run is repeated 10 times. Based on this, the following figures
mark the 95% confidence interval. The connection setup times,
which are the objective of all following evaluations, are mea-
sured within the firewall and denote the time interval between
receiving the client’s SYN packet and its second packet, which
completes the three-way handshake.

B. Results

Based on measurements, the synchronization strategies
are evaluated regarding their impact on the connection setup
times when passing through the firewall VNF. At first, the
impact of asynchronous and synchronous write modes to the
shared state are investigated, followed by the different levels of
synchronizing particular TCP states. Finally, the influence of
different VNF cluster sizes and the impact on the experienced
connection setup times is described.

1) Influence of Write Modes to Shared State: The synchro-
nization level is set to only share the ESTABLISHED state
among the cluster. Figure 5 shows the measured connection
setup times for load levels of 25 and 100 concurrent con-
nections. As expected, the dirty data access outperforms the
more consistent transactional data access by 2 ms and up to
15 ms for a load levels of 25 and 100 concurrent connections
respectively. Furthermore, it can be seen that the number of
concurrent connections has significantly higher impact on the
connection setup times than the chosen synchronization strat-
egy. The comparison of the different synchronization methods
shows that the synchronous write mode performs worse than
the asynchronous approach when used in combination with
the dirty write mode, as the instance processing a packet
has to wait for a write confirmation by all other instances.
In contrast, the combination of synchronous writes together
with transactional data access poses an exception to this
observation. For both concurrency levels, the asynchronous
strategy results in higher connection setup times.

2) Influence of Synchronization States: Figure 6 details
the investigation of connection setup times. Again, the y-
axis displays the mean connection setup time measured at the

4



Master

SDN Controller: RYU
(REST API)

Open vSwitch

VNF VNFVNF

External
Network

Apache
Bench

Internal 
Network

Varnish
Cache

Client

Server

OpenStack CloudPhysical
Server

VNF VNF
. . .

Fig. 4: Testbed for conducting performance measurements.

14.20 16.43 15.53 15.97 47.49 62.43 50.29 59.22

Concurrency Level 25 Concurrency Level 100

0

20

40

60

Async. Sync. Async. Sync.
Synchronization Method

C
on

ne
ct

io
n 

S
et

up
 T

im
e 

[m
s]

Context Dirty Transaction

Fig. 5: Average connection setup times for varying load levels
when using different data access and write modes.

firewall instances and the x-axis groups the varying synchro-
nization strategies. Within one group, the bar color reflects the
synchronization level of different TCP states.

In most cases, higher connection setup times are observed
for the more comprehensive synchronization levels Established
and Full, as more state changes are synchronized with the
entire cluster. Synchronizing only the ESTABLISHED state
introduces the risk of connection resets during the initial
handshake, while it reduces the average setup time by roughly
16% in the case of async dirty. The calculated risk of an
inconsistency during failover situations seems worthy, as the
client’s operating system will automatically try another con-
nection attempt without the user noticing.

As seen before, the exception is the transaction context
regarding synchronous versus asynchronous writes, however,

12
.4

2
14

.2
0

17
.9

3

12
.2

0
15

.5
3

19
.7

4

19
.1

5
16

.4
3

23
.0

3

18
.7

0
15

.9
7

24
.3

1

41
.6

2
47

.4
9

56
.7

4

41
.9

2
50

.2
9

55
.4

7

62
.7

7
62

.4
3

72
.1

7

62
.7

7
59

.2
2

74
.9

1

Concurrency Level 25 Concurrency Level 100

0

20

40

60

Async.
Dirty

Sync.
Dirty

Async.
Trans.

Sync.
Trans.

Async.
Dirty

Sync.
Dirty

Async.
Trans.

Sync.
Trans.

Synchronization

C
on

ne
ct

io
n 

S
et

up
 T

im
e 

[m
s]

Sync. Level None Established Full

Fig. 6: Varying synchronization levels when using different
synchronization and access strategies.

the differences are very minor with overlapping confidence
intervals in many cases. Even more prevalent is the faster
connection setup in the case of the Established synchronization
level for the transactional data access experiments compared
to no state sharing among the cluster at all. A possible expla-
nation for this is the split into a local and a shared state table
(cf. Section III-B) so that write operations can be parallelized
by the Mnesia database. As the None level only uses the
local table, the transactional write access requires serialized
processing, resulting in higher connection setup times.

3) Influence of Cluster Size: Based on the evaluations
described before, it can be seen that the amount, as well as
the strategy of state synchronization can significantly influence
VNF performance. One critical feature of VNFs has yet been
neglected in the evaluations: The requirement to scale the
network function horizontally across many more instances to

5



0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Connection Setup Time [ms]

C
D

F

Cluster Size 3 6 9

Synchronization Async. Dirty Sync. Transaction

Fig. 7: Influence of cluster size for 100 concurrent connections.

distribute the load and allow to dynamically adapt to the
resource demands. Therefore, the following evaluation expands
the previously local cluster consisting of two firewall VNF
and adds additional instances running on remote hosts in an
OpenStack cloud within the same LAN.

Figure 7 depicts the cumulative distribution functions of
the average connection setup times for 100 concurrent connec-
tions. For the sake of readability, only the strategies optimized
for performance (async dirty) and consistency (sync transac-
tion) are illustrated using solid and dashed lines respectively.
The individual line colors represent the results for a varying
cluster size of 3, 6, and 9 firewall VNFs, while all but one
instance are only synchronizing without receiving any traffic.
Still, the effect of a growing cluster is clearly visible and
induces additional synchronization overhead for the instance
processing the traffic resulting in augmented connection setup
times. The results show that the performance-oriented configu-
ration performs similar in 20% and significantly better in 80%
of the cases than the consistent configuration.

VI. CONCLUSION AND FUTURE WORK

Traditionally used hardware firewalls have drawbacks due
to their physical deployment model and resulting scalability
limitations. NFV address these challenges by implementing
network functions in software that can be operated and scaled
in a cloud-like environment. The feature set of software
firewall implementations, however, lacks the ability to run
in clustered environments, where multiple instances can be
used for processing traffic. Based on our previous work [3],
implementation options for VNF-based firewalling approach
with a focus on state synchronization among the instances were
discussed and evaluated.

In this work, different strategies regarding the amount of
TCP states, as well as the write strategies to the shared state
were investigated. The results indicate that a synchronization
strategy aiming at performance allows up to 20% lower TCP
connection setup times than using a synchronization strategy
that enforces consistency across all instances within the cluster.

In addition, the influence of the cluster size was investigated,
which supported the previous results.

Future work should focus on evaluating an alternative in-
memory store, like memcached or Redis, as well as the effects
caused by sacrificing consistency and resulting issues during
instance failover. Furthermore, [3] introduces a hybrid VNF
approach, which relies on dynamically offloading of traffic-
intense flows to the switching hardware. Building upon the
implementation of the current work, novel research question
regarding offloading strategies for effective use of the limited
hardware resources should be investigated.

ACKNOWLEDGMENT

This work has been performed in the framework of the
KMU-Innovativ project SarDiNe funded by the BMBF. The
authors alone are responsible for the content of the paper.

REFERENCES

[1] ETSI, “Network functions virtualisation - an introduction, benefits,
enablers, challenges & call for action,” Oct. 2012.

[2] S. Gebert, A. Müssig, S. Lange, T. Zinner, N. Gray, and P. Tran-
Gia, “Processing time comparison of a hardware-based firewall and its
virtualized counterpart,” in 8th EAI International Conference on Mobile
Networks and Management (MONAMI 2016), Abu Dhabi, United Arab
Emirates, October 2016.

[3] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert,
N. Gray, T. Zinner, and P. Tran-Gia, “An SDN/NFV-enabled
Enterprise Network Architecture Offering Fine-Grained Security Policy
Enforcement,” IEEE Communications Magazine, vol. (to be pub-
lished), 2016. [Online]. Available: http://www.comnet.informatik.uni-
wuerzburg.de/staff/members/steffen gebert/

[4] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’14, Berkeley, CA, USA, 2014.

[5] L. Bondan, C. R. P. dos Santos, and L. Z. Granville, “Management
requirements for ClickOS-based network function virtualization,” in
10th International Conference on Network and Service Management
(CNSM) and Workshop. IEEE, 2014, pp. 447–450.

[6] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A
high availability framework for middleboxes,” in Proceedings of the
4th annual Symposium on Cloud Computing. ACM, 2013, p. 1.

[7] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller, “Stateless
network functions,” in Proceedings of the 2015 ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network Function Vir-
tualization. ACM, 2015, pp. 49–54.

[8] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network
function control,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 163–174, 2015.

[9] D. Suh, S. Jang, S. Han, S. Pack, T. Kim, and J. Kwak, “On performance
of OpenDaylight clustering,” in 2016 IEEE NetSoft Conference and
Workshops (NetSoft), June 2016.

[10] “Network functions virtualisation (nfv); management and orchestration;
report on architectural options,” ETSI, ETSI GS NFV-IFA 009 V1.1.1,
July 2016. [Online]. Available: http://www.etsi.org/deliver/etsi gs/NFV-
IFA/001 099/009/01.01.01 60/gs NFV-IFA009v010101p.pdf

[11] “Erlang programming language.” [Online]. Available: http://erlang.org/
[12] D. Ongaro and J. Ousterhout, “In search of an understandable consensus

algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, 2014.

[13] “Ryu 4.5 documentation - RESTful API,” 2016. [Online]. Available:
http://ryu.readthedocs.io/en/latest/app/ofctl rest.html

[14] “ab - apache HTTP server benchmarking tool,” Aug. 2016. [Online].
Available: https://httpd.apache.org/docs/2.4/programs/ab.html

[15] “Varnish HTTP cache.” [Online]. Available: https://varnish-cache.org/

6


