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Abstract—Virtualization paradigms like cloud computing, soft-
ware defined networking (SDN), and network functions virtual-
ization (NFV) provide advantages with respect to aspects like flex-
ibility, costs, and scalability. However, management and orches-
tration of the resulting networks also introduce new challenges.
The placement of services, such as virtual machines (VMs),
virtualized network functions (VNFs), or SDN controllers, is a
multi-objective optimization task that confronts operators with
a multitude of possible solutions that are incomparable among
each other. The goal of this work is to investigate mechanisms
that enable automated decision making between such multi-
dimensional solutions. To this end, we investigate techniques from
the domain of multi-attribute decision making that aggregate
the performance of placements to a single numeric score. A
comparison between resulting rankings of placements shows that
many techniques produce similar results. Hence, placements that
achieve good rankings according to many approaches might be
viable candidates in the context of automated decision making.
In order to illustrate the functionality of the different scoring
mechanisms, we perform a case study on a single network graph
and a fixed number of objectives and service instances. Addition-
ally, we present aggregated results from broad evaluations on the
Internet Topology Zoo and a larger number of objectives as well
as varying numbers of service instances. These allow making
more reliable statements about the mechanisms’ performance
and agreement.

Index Terms—Cloud Service, Placement, Orchestration, Multi-
Objective Optimization, Pareto Frontier

I. INTRODUCTION

Network and cloud operators benefit from virtualization
paradigms in terms of costs, flexibility, scalability, and vendor
independence. In contrast to the prevalent deployment of dedi-
cated computing resources for services like firewalls, load bal-
ancers, SDN controllers, or cloud applications, these services
can nowadays be virtualized and hosted on commercial off-
the-shelf (COTS) hardware deployed anywhere in the network.

However, management and orchestration techniques are
required in order to achieve and maintain a high degree of
flexibility and assert that QoS and QoE constraints are met.
In particular, the placement of service instances within the
network can have a significant impact on both, user and oper-
ator satisfaction. Since goals like low latency among service
instances and low latency between services and end users can
be competing, finding suitable placements corresponds to a
multi-objective optimization task.

In addition to the increased complexity of algorithms that

can solve such problems, the solutions they return can not
always be compared with each other due to different domains
and units of the objectives. Especially in the context of
automated and dynamic service migration and instantiation,
however, algorithms need to choose one distinct solution.

The contribution of this work is the investigation of the level
of agreement between the rankings of multiple automated deci-
sion making algorithms. This is done in a three step approach.
First, four methods for determining the relative importance
of different objectives are selected and compared with each
other. In contrast to approaches that determine such weights
a priori, the methods used in this work take into account
characteristics of the solutions that are returned by the multi-
objective optimization algorithm. Second, four mechanisms for
aggregating the performance of a multi-dimensional solution
into a single score are selected. Finally, the rankings of
solutions that result from different combinations of weighting
and aggregation techniques are characterized. On the one
hand, analyzing solutions that consistently achieve high ranks
according to many approaches might lead to more efficient
methods for identifying viable placements. On the other hand,
the comparison can help to derive guidelines for choosing the
appropriate ranking mechanism for a particular problem.

In a case study, we demonstrate the particular behavior
of the investigated mechanisms for an exemplary network
and three objective functions, i.e., three optimization goals.
Furthermore, we extend our work from [1] by an extensive
analysis of 58 real-world network topologies from the Internet
Topology Zoo [2], a total of five objective functions, and
varying numbers of service instances that are placed. By
aggregating the results of these analyses, we can compare the
different weighting and ranking methods in terms of aspects
like agreement and consistency across problem instances.

The remainder of this work is structured as follows. After an
overview of related work in Section II, the data set is presented
alongside the resulting problem instances in Section III. The
selected methods for assessing the weight of each objective
dimension are introduced and compared in Section IV. These
methods are then used as input for aggregation algorithms
that assign a single score to each placement. In Section V,
the four selected aggregation algorithms are discussed and
compared with respect to the rankings of placements they
produce. Finally, Section VI concludes the work.
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II. RELATED WORK

Resouce management in clouds [3], in particular, the place-
ment of cloud services in data centers has become an in-
creasingly important problem. Typically, many parameters and
metrics regarding resource utilization and performance have to
be taken into account within the cloud and the network. Thus,
different methodologies are proposed in literature to place the
virtual machines efficiently. In the context of placing virtual
network functions (VNF), [4] investigates a weighted sum
approach, while [5] uses a linear program to find an optimal
placement. Also [6], [7] propose linear programs for chains
of VNF, while [7] adds a Pareto analysis to investigate the
trade-offs between the different dimensions.

Related problems, which have been discussed recently, are
the placement of virtual machines in distributed architec-
tures [8] as well as the placement of SDN controllers. Both
are also multi-objective optimization problems, which have
to take into account a large set of parameters and metrics.
Weighted sums (e.g., [9]) and linear programs (e.g., [10]) are
widely used. Additionally, the Pareto frontier is analyzed when
different alternatives are incomparable. Due to state explosion,
the problem of obtaining the Pareto frontier is frequently tack-
led heuristically [11], [12]. However, no automated decisions
can be taken from Pareto frontiers. Based on our work in [1],
we present an extended evaluation of several mechanisms that
can be used to approach this problem.

Therefore, we will transform the Pareto frontiers into a
ranked list of alternatives. To compare the rankings when the
underlying order of alternatives is unknown, we will mainly
rely on correlation coefficients and techniques based on prob-
abilistic ranking models. In [13], the rank correlation between
the pairs of ranking is calculated using either Spearman’s
ρ or Kendall’s τ . [14] proposes a measure of agreement
between rankings based on removal of disputable elements.
A basic model for order statistics was developed by Thur-
stone [15], and [16] constructed an equivalent model based
on choice probabilities. Mallow [17] presented simplified and
analytically tractable models induced by paired comparison.
[18] investigates concordance between different judges (i.e.,
rankings) based on Mallow’s model to detect outlier rankings.
[19] proposes to compare the distribution of ranks by box
plots and derive a degree of discordance based on the inter-
quartile range. The goodness of fit of simple ranking models
is investigated in [20], and metric based ranking models are
discussed in [21]. A classification of probabilistic ranking
models can be found in [22].

III. DATA SET DESCRIPTION

In order to investigate the practical feasibility of the differ-
ent weighting and ranking methods that are discussed in this
work, realistic input data is required. To this end, we use 58
different network graphs from the Internet Topology Zoo [2]
and use the freely available POCO tool [23] to exhaustively
evaluate all possible service placements with respect to a total
of up to five objective functions. While results are consistent
among different networks, some characteristics depend on

statistics like the number of nodes and the diameter of the
graph. On the one hand, we present detailed results and
statistics for the Internet2 OS3E topology which is chosen as
an exemplary representative. This allows for accurate insights
into the functionality of the different weighting and scoring
mechanisms. On the other hand, we provide aggregated results
and statistics regarding the whole data set in order to identify
topology-independent relationships between the various mech-
anisms.

A. Internet2 OS3E

Table I provides an overview of the Internet2 graph as
well as the resulting problem instance. In order to keep
the solution space small enough to visually illustrate the
effects and behavior of the presented methods, only four
service instances are placed in the network and the number of
objectives is limited to three. Although this results in a total
of 46, 376 distinct placements, only ten of those are Pareto
optimal and thus relevant during the decision making process.
In the context of larger search spaces, e.g., when placing more
services or dealing with networks that have more nodes, an
exhaustive evaluation of all possible placements might not be
feasible due to time and resource constraints. For such cases,
a trade-off between accuracy and runtime can be achieved
by employing heuristic approaches that can approximate the
Pareto frontier [11].

TABLE I: Information regarding the Internet2 OS3E topology
and the corresponding problem instance used in the case study.

Property Value
Number of nodes 34
Number of placed
services

4

Number of distinct
placements 46, 376

Number of Pareto
optimal placements 10

Objective functions
Mean latency to end users πavg latency

Maximum latency to end users πmax latency

Imbalance between service instances πimbalance

As mentioned in the previous paragraph, three different
objective functions are taken into account when assessing the
performance of each placement. These include two latency-
related measures, namely, the mean and average latency be-
tween services and end users. We use the longitude and latitude
information that is provided for each node to calculate the
Euclidean distance between nodes and approximate the latency
of each link. For multi-hop paths, the latency is defined as
the sum of latencies of all involved links. Furthermore, the
load imbalance between service instances is defined as the
difference between the number of end users assigned to the
instance with the highest and lowest amount of end users,
respectively. Several statistical properties of these objective
functions are presented in Table II. Additionally, Figure 1 dis-
plays the cumulative distribution function of objective values
that are attained across all placements.
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Due to the fact that the latency measures are continuous,
they yield significantly more distinct values, resulting in
smooth CDF curves. In contrast, the imbalance is always
an integer value which is constrained by the number of
nodes in the topology. Hence, individual steps are visible in
the plot. Since the average latency between end users and
services is calculated from 34 individual latencies, outliers
are smoothed out and the resulting variance is relatively low.
The values of the maximum latency objective have a higher
variance and fewer distinct values since the maximum does
not necessarily change between similar placements that share
multiple controller locations.

TABLE II: Various statistics of the objective functions that are
used in the case study.

Objective Number of distinct values Mean Variance
πavg latency 45, 311 0.195 0.001

πmax latency 244 0.491 0.013

πimbalance 29 0.305 0.019
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Fig. 1: Empirical CDFs of objective values that are attained
in the example scenario.

B. Internet Topology Zoo

For the evaluation of networks from the Internet Topology
Zoo, we chose networks whose size n ranges between 25
and 50 nodes. This ensures that the exhaustive evaluation
of all possible placements with POCO can be performed
within a reasonable time frame. Using each of the resulting
58 topologies, we calculated placements of k ∈ {3, 4, 5}
service instances and evaluated them with respect to a total of
five objectives, resulting in a total of 174 problem instances.
In addition to the abovementioned imbalance and latency
measures, the average and maximum latency between each
pair of service instances is also taken into account. These
objectives are referred to as πavg inter-latency and πmax inter-latency,
respectively. In the following, we present various aggregated
statistics of the set of problem instances that are discussed in
this work.

Similarly to Table II, Figure 2 presents the distribution of the
number of distinct values that are attained by each objective
function per problem instance. In this context, a problem
instance is characterized by the number of placed instances, k,
and the network graph. Qualitatively, the statistics across all
problem instances are similar to those in the Internet 2 graph,
i.e., the continuous average latency measures have the largest
number of distinct values. They are followed by the objectives
that consider the maximum latency, which are also continuous.
Finally, the imbalance is integer-valued and restricted by the
number of nodes in the network, n. Hence, it attains the lowest
amount of distinct values.
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Fig. 2: Empirical CDFs of the number of distinct function
values per problem instance for each objective function.

In addition to the number of distinct values, the variance
plays an important role when quantifying the relative impor-
tance of an objective. For all problem instances, Figure 3
displays the distribution of the variance of each objective
across all possible placements for a problem instance. Al-
though the average latency measures attain the highest number
of distinct values, they show the lowest variance. The reason
for this characteristic is that the averages are formed from
many individual latencies and do not differ much between
placements. Furthermore, the variance of the average inter-
instance latency is higher than that of the average latency
between end users and services. This stems from the fact that
πavg inter-latency is based on fewer individual latencies and can
take on extreme values when all instances are placed close
to each other in a cluster or are distributed at the edge of the
network, respectively. As discussed in Section III-A, objectives
that quantify the maximum latency have a higher variance
due to the wider range of attained values (cf. Figure 1).
Similarly, the imbalance measure is based on the maximum
load difference between service instances and takes on a
large number of values, resulting in a high variance. For all
objectives, the 90% quantiles of the variance distribution are
below 0.05.

To further motivate the need for mechanisms that map a
multi-obective result vector to a single score, the distributions
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of the number of Pareto-optimal placements for different num-
bers of placed service instances, k, are illustrated in Figure 3b.
For a given number m of Pareto-optimal placements on the x-
axis, the value on the y-axis represents the fraction of problem
instances whose five dimensional Pareto frontier includes up
to m elements. The different numbers of service instances,
k, are denoted by differently colored curves. The number
of placed service instances has a direct impact on the total
number of distinct placements, which can be calculated as the
binomial coefficient

(
n
k

)
. Hence, the size of the Pareto frontier

also increases due to the increase of incomparable pairs of
objective vectors, in particular. While a human decision maker
might compare and choose from a couple of alternatives in an
objective space with few dimensions, comparing one thousand
and more different solutions in a practical time frame seems
unlikely.
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(a) Variance per objective
function across all problem
instances investigated in this

work.
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Fig. 3: Empirical CDFs of the variance per objective and the
size of the Pareto frontier.

IV. WEIGHTING METHODS

In order to aggregate the performance of a placement that
is evaluated with respect to multiple objective functions into
a single value, the mechanisms that are analyzed in this work
require weights for each considered dimension. Hence, we first
discuss methods for obtaining these weights based on the set
of placements and the corresponding objective values.

In the following, the weight of the j−th objective is denoted
as wj and weights are normalized, i.e.,

∑m
j=1 wj = 1 in case

of m objective functions. Additionally, objective values are
also normalized prior to applying the weighting mechanisms.
The observed values for n placements and m objective dimen-
sions are stored in an n ×m matrix A which is transformed
into the normalized matrix R according to Equation 1.

rij =
amax
j + amin

j − aij

amax
j + amin

j

(1)

In this equation, amin
j = mini aij and amax

j = maxi aij
refer to the minimum and maximum values of the j-th
objective, respectively.

A. Uniform Weighting

As a baseline naı̈ve approach, we use a weighting mecha-
nism that does not take into account any observed data and
assigns equal weights to every objective, i.e., wuni

j = 1
m .

B. Entropy-Based Weighting

In information theory, (the Shannon) entropy is used as a
means to quantify the amount of information that is stored
in a message [24]. The key idea behind the entropy-based
weighting method consists of assigning higher weights to
objective dimensions that carry more information, i.e., those
that have a higher number of distinct values and low individual
occurrence probabilities for each value. Based on [25], the
weights are calculated in three steps. First, observed values
are normalized for each dimension (cf., Equation 2).

pij =
rij∑n
i=1 rij

, j ∈ {1, . . . ,m} (2)

Then, the entropy is determined by means of

ej = − 1

lnn

n∑

i=1

pij ln pij , j ∈ {1, . . . ,m}. (3)

Finally, the weight is calculated as

went
j =

1− ej∑m
i=1(1− ei)

, j ∈ {1, . . . ,m}. (4)

C. Weighting Based on the Coefficient of Variation

Intuitively, objectives whose values cover a wide range of
different values tend to have a higher impact on the total result-
ing performance of a placement than objectives that attain only
few values or values that are very close to each other. Hence,
we investigate the suitability of the coefficient of variation
for quantifying the relative importance of an objective. The
coefficient of variation is defined as the ratio between the
standard deviation and the mean of observed values. Thus,
the weights are calculated according to Equation 5. σj and μj

refer to the standard deviation and mean of the j-th objective,
respectively.

wcv
j =

σj

μj∑m
i=1

σi

μi

, j ∈ {1, . . . ,m} (5)

D. Weighting Based on the Standard Deviation

Similarly to the weighting approach that is based on the
coefficient of variation, this mechanism uses the standard
deviation in order to calculate the relative weights.

wsd
j =

σj∑m
i=1 σi

, j ∈ {1, . . . ,m} (6)
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Fig. 4: Relative weights of objectives according to different
weighting mechanisms for Internet2 OS3E topology.

E. Comparison

In order to allow for a comparison between the different
weighting mechanisms, Figure 4 presents the weights of indi-
vidual objectives according to the four weighting approaches
for the Internet2 OS3E topology. The x-axis denotes the three
objectives, the height and color of the bars represent the weight
and weighting method, respectively.

While the weights that are returned by the different mech-
anisms differ in terms of absolute values, the relative order of
objectives is consistent. Having the lowest variance and the
narrowest interquartile range, the latency between end users
and services is assigned the lowest weights. As discussed in
Section III, the maximum-based measure has a higher variance
and thus also results in higher weights when compared to its
average-based counterpart. The highest weights are assigned
to the imbalance measure. This can be explained by the high
variance that is observed for the imbalance objective.

A comparison of the absolute weights that are assigned by
the weighting methods shows that the mechanisms that are
based on standard deviation and the coefficient of variation
return similar values. This phenomenon can be explained by
the fact that objective values are normalized prior to applying
the weighting methods. Thus, the normalization using the
mean that is applied in the context of the latter does not
have a large impact on the final weights. Finally, the entropy-
based weighting approach yields the widest range of weights,
i.e., between less than 0.1 and more than 0.6. This indicates
a higher sensitivity towards the objectives’ variance, which
seems to be the main influence factor on the resulting weight
for all weighting methods that take into account observed
objective values.

Figure 5 shows the weight coefficients for each weighting
method applied to the problem instances of the Topology Zoo
and five dimensions. Figure 5a shows weights for uniform
weighting, Figure 5b for entropy-based weighting, and the
bottom plots show the resulting weights based on coefficient
of variation (Figure 5c) and standard deviation (Figure 5d),
respectively. The x-axis of each plot represents the IDs of
the different problem instances. Each bar shows the weights
of each dimension according to the investigated weighting
method. From bottom to top, the weights of average latency

(black), maximum latency (dark brown), imbalance (light
brown), average inter-latency (orange), and maximum inter-
latency (yellow) are stacked. For better visibility, the legend
was omitted for Figures 5b–5d, but is the same as in Figure 5a
for all plots.

The uniform weighting assigns each dimension the same
weight, which can be seen in Figure 5a. The entropy-based
weighting in Figure 5b gives high scores to the maximum
inter-latency, which receives a weight of around 0.5 for most
of the topologies. As in the case study of the Internet2 OS3E
topology, the high variance of the maximum inter-latency (cf.
Figure 3a) is responsible for the high weights. The second
highest scores are given either to average inter-latency or
imbalance, which are highly fluctuating depending on the
particular problem instance. Maximum latency and average
latency receive the smallest weights due to the small variance.
As already observed for the Internet2 OS3E topology, also
for the Topology Zoo problem instances the weighting based
on coefficient of variation resembles much the weighting
based on standard deviation, and both weight distributions are
less skewed than entropy-based weights. While the weight-
ing based on coefficient of variation generally gives higher
weights to maximum inter-latency and lower weights to aver-
age latency, the resulting weights of the standard deviation
method are closer to the uniform weighting. In this case,
maximum inter-latency, average inter-latency, and imbalance
have weights of around 0.25 each, and maximum latency and
average latency share the remaining 0.25 almost equally.

To sum up, the weighting method has a significant impact.
Aside from uniform weighting, the other weighting algorithms
emphasize the characteristics of the dimensions differently,
which results in divergent weightings. This is not only ob-
served for the case study of the Internet2 OS3E graph, but
also for the problem instances of the Topology Zoo. Espe-
cially, the entropy-based weighting results in the most skew
weights and shows a high variability for different topologies.
In contrast, weighting based on coefficient of variation and
standard deviation results in less skew and consistent weights
over all graphs.

V. RANKING METHODS AND RESULTS

A. Ranking Methods

To aggregate the scores aij of the different attributes j of the
placement i to an overall ranking score ρi, four well-known
multi-attribute decision methods will be considered.

First, we consider Simple Additive Weighting (SAW) [26],
which computes the overall score by adding the normalized
attribute scores rij =

amin
j

aij
multiplied by the weights wj .

ρSAW
i =

∑

j

wj · rij

A similar ranking method is Multiplicative Exponent
Weighting (MEW) [27], which calculates the overall score as
the product of the normalized attribute scores rij =

amin
j

aij
,

5
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Fig. 5: Relative weights of objectives according to different weighting mechanisms for the Topology Zoo. The legend of
Figure 5a applies to all plots.

which are given the respective weight as exponent.

ρMEW
i =

∏

j

r
wj

ij

The Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) [26] normalizes the attributes rij =

aij∑
i
a2
ij

, and computes the distances to an optimal placement

with all best weighted normalized attribute values vmin
j =

mini(wjrij), and to a worst placement composed of all worst
weighted normalized attribute values vmax

j = maxi(wjrij).
Then, the separation between the optimal and the worst
placement is computed by

smin
i =

√∑

j

(wjrij − vmin
j )2

smax
i =

√∑

j

(wjrij − vmax
j )2

The resulting ranking ρi is the relative closeness to the ideal
solution:

ρTOPSIS
i =

smax
i

smin
i + smax

i

VIKOR [28] relies on the best and worst attribute values,
amin
j and amax

j . Then, for each placement, scores are calcu-
lated by two strategies:

Si =
∑

j

wj

amin
j − aij

amin
j − amax

j

, Ri = max
j

(
wj

amin
j − aij

amin
j − amax

j

)

The final ranking score for each placement is then computed
with a parameter γ, 0 ≤ γ ≤ 1, for the weight of each
strategy, and the best and worst values of Si and Ri, i.e.,
Smin = mini Si, Smax = maxi Si, R

min = mini Ri,
Rmax = maxi Ri:

ρV IKOR
i = γ

Si − Smin

Smax − Smin
+ (1− γ)

Ri −Rmin

Rmax −Rmin

We set γ = 0.5 to give equal weight to both strategies.
Together with the four weighting methods presented in

Section IV, this gives 16 different ranking methods, i.e.,
weighting-ranking combinations, for the multi-objective place-
ment problem. Due to the vast amount of distinct placements,

we will apply the 16 methods only to the subset of Pareto-
optimal placements, i.e., the set of placements in which no
attribute can outperform any other attribute.

B. Case Study for Internet2 OS3E Topology

First, the performance of the weighting-ranking combina-
tions is investigated for the Internet2 OS3E topology and three
dimensions, i.e., rankings of the ten Pareto-optimal points are
compared. Table III lists the highest and lowest correlations
between different combinations in terms of Kendalls’s τ and
Spearman’s ρ rank order correlation coefficients. It can be
seen that generally high correlations can be achieved between
all ranking algorithms. In contrast, small negative correlation
can be seen only for VIKOR with uniform weights. Thus,
this might give some evidence that the investigated algorithms
mainly agree on the inherent order of the elements.

TABLE III: Highest and lowest correlations between different
combinations of weighting and ranking methods on Internet2
OS3E topology.

Method 1 Method 2 τ ρ

(went, ρSAW ) (went, ρMEW ) 1.00 1.00

(went, ρSAW ) (went, ρTOPSIS) 1.00 1.00

(went, ρSAW ) (went, ρV IKOR) 1.00 1.00

(wsd, ρMEW ) (wsd, ρTOPSIS) 1.00 1.00

(went, ρMEW ) (went, ρTOPSIS) 1.00 1.00

(went, ρMEW ) (went, ρV IKOR) 1.00 1.00

(wuni, ρMEW ) (wuni, ρTOPSIS) 1.00 1.00

(went, ρTOPSIS) (went, ρV IKOR) 1.00 1.00

(wsd, ρSAW ) (wuni, ρV IKOR) −0.11 −0.16

(went, ρSAW ) (wuni, ρV IKOR) −0.11 −0.15

(went, ρMEW ) (wuni, ρV IKOR) −0.11 −0.15

(went, ρTOPSIS) (wuni, ρV IKOR) −0.11 −0.15

(went, ρV IKOR) (wuni, ρV IKOR) −0.11 −0.15

Another metric for measuring the agreement between rank-
ings was proposed by Gordon [14]. Gordon’s α is defined as
the number of objects, which are contributing to the agreement
between the rankings: α := N − δ. Thus, it can be computed
as the difference between the length of the ranking N and
the minimum number of objects δ, which have to be removed
to ensure a perfect agreement between the reduced rankings.
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Gordon’s α confirms the high correlation coefficients, as there
are many pairs of rankings with a perfect agreement of
α = N = 10, see Table IV. The lowest value of α is 4, which
shows that still the ranking order is not completely inverted
by any weighting-ranking combination.

TABLE IV: Highest and lowest Gordon α scores for
weighting-ranking combinations on Internet2 OS3E topology.

Method 1 Method 2 α

(went, ρSAW ) (went, ρMEW ) 10

(went, ρSAW ) (went, ρTOPSIS) 10

(went, ρSAW ) (went, ρV IKOR) 10

(wsd, ρMEW ) (wsd, ρTOPSIS) 10

(went, ρMEW ) (went, ρV IKOR) 10

(wuni, ρMEW ) (wsd, ρTOPSIS) 10

(went, ρTOPSIS) (went, ρV IKOR) 10

(went, ρSAW ) (wuni, ρV IKOR) 4

(wuni, ρSAW ) (wsd, ρV IKOR) 4

(wsd, ρMEW ) (wuni, ρV IKOR) 4

(wuni, ρMEW ) (wuni, ρV IKOR) 4

(wsd, ρTOPSIS) (wuni, ρV IKOR) 4

(wuni, ρTOPSIS) (wuni, ρV IKOR) 4

Probabilistic ranking models give another approach to com-
paring the obtained rankings. Luce [16] constructs proba-
bilities for a ranking ρ = (i1, i2, . . . , iN ) from conditional
probabilities. Thus, after r − 1 stages, pir is defined as the
probability that the element ir is the most preferred element
from the set of remaining elements B = {ir, . . . , iN}. By
repeating the choice, this gives the probability of the rating ρ
as:

P (ρ) =
N−1∏

r=1

pir∑
j∈B pj

The highest Luce probabilities are obtained by a ranking,
which was created by the combinations (wuni|wsd, ρMEW )
and (wuni|wcv|wsd, ρTOPSIS). This means, this ranking gives
high ranks to the elements, which are most preferred by
all weighting-ranking combinations. Note that this ranking
is also the modal ranking in the resulting set of rankings.
All four entropy based algorithms output the same ranking,
which reaches the second highest Luce probabilities. Towards
the other end, the SAW and VIKOR algorithms and the
standard deviation (sd) and coefficient of variation weighting
(cv) output rankings with low probabilities (with the above
mentioned exceptions).

Mallow’s Φ-model is based on paired comparison of the
ranked elements. It can be formulated as

Pρ0,θ(ρ) =

(∑

ρ

θX(ρ0,ρ)

)−1

· θX(ρ0,ρ), 0 ≤ θ < ∞,

in which X(ρ0, ρ) is Kendall’s τ distance, i.e., the number of
disagreements between ρ0 and ρ. ρ0 is an a priori set location
parameter (e.g., the modal ranking or an averaged ranking),
and θ is a measure of variation, which will be fitted from the

rankings with a table given in [18]. Following the methodology
presented by Feigin and Cohen in [18], the model also allows
to detect outlier rankings. Using the averaged ranking as
location parameter and fitting θ accordingly, the highest proba-
bility is obtained by the ranking of (wcv, ρMEW ). The second
highest probabilities are achieved by the modal ranking, which
already accounted for the highest Luce probabilities. Again
the entropy rankings have the third highest probability. This
means that these three rankings are closest to the averaged
ranking, which was chosen as location parameter. Using the
modal ranking as location parameter, the order of the first
and second rating would change, but the entropy rating would
still receive the third highest probability. The outlier detection,
which mainly depends on the fitting of θ, indicates that
(wcv, ρMEW ) is an outlier ranking with a too high probability,
and (wuni, ρSAW ) and (wuni, ρV IKOR) are outliers with a
too low probability close to 0. In particular, this means that
the disagreements for (wuni, ρSAW ) and (wuni, ρV IKOR) are
exceptionally high compared to the averaged or modal ranking.

Following the approach described in [19], Figure 6 shows
a boxplot of the ranks of the different placements sorted by
median. It can be seen that there are small boxes for the first
five placements, which means that there is a large agreement
among the different weighting-ranking combinations. Only for
the last five placements, there is some disagreement among
the different rankings. Still several outliers can be observed,
however, taking a detailed look at the data, most outlier ratings
stem from uniform weighting of the attributes. Thus, this
weighting method seems to be inappropriate for ranking the
placements.
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Placement

R
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Fig. 6: Pareto optimal placements and their ranks according
to the presented ranking mechanisms.

To sum up, the different ranking methods showed a high
agreement, especially for the top-ranked placements. This
means, among the investigated methods, no weighting-ranking
combination stands out and most of them are well suited to
combine the Pareto-optimal placements into a single score.
Nevertheless, the results suggest that the use of uniform
weights can lead to outlier rankings, which do not reproduce
the majority rankings.
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Fig. 7: Average correlation coefficients between rankings of different weighting-ranking combinations for all topologies.

C. Broad Evaluation on the Topology Zoo

The presented case study is generalized by applying the
methodology to the 174 problem instances of the Topology
Zoo and five dimensions. The aggregated performance over
all instances provides better insights on the performance
of each of the weighting-ranking combinations. Figure 7a
shows the average Kendall τ correlation coefficient for all
pairs of weighting-ranking combinations. Figure 7b shows the
corresponding Spearman ρ correlation coefficients. In both
figures, the color at area (i, j) indicates the average correlation
coefficient between combination i and combination j over
all problem instances according to the color scale on the
right. A perfect correlation is indicated by a yellow area (e.g.,
(i, i) ∀ i), while darker colors show a lower correlation. A
correlation coefficient of 0 is shown in brown, while dark
brown to black colors represent negative correlations.

It can be seen that both average correlation coefficients
give similar results for all pairs of combinations. The darker
colors of row/column 1, 5, 8, and 13 indicate that the rankings
generated by SAW generally have little or even negative
correlations with the other rankings. The average Kendall and
Spearman correlations are especially low for combination 1,
i.e., (wuni, ρSAW ). Moreover, it can be seen that uniform
weighting (1 – 4) results in lower average correlations. The
highest correlations can be observed among the combinations
with entropy-based weighting (5 – 8), which means that those
combinations generally output similar rankings.

Figure 8 shows the aggregated performance of all
weighting-ranking combinations according to the Luce proba-
bilities. For each combination, it shows the number of problem
instances for which its ranking had the highest Luce probabil-
ity. It can be seen that combination 10, i.e., (wcv, ρMEW ),
outputs the ranking with the highest Luce probability on
almost half of the problem instances. In general, it can be
seen that the ranking of combinations with MEW (2, 6,
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Fig. 8: Number of topologies for which weighting-ranking
combination output the ranking with highest Luce probability.

10, 14) often has the highest Luce probability. According
to that evaluation, SAW (1, 5, 9, 13) performs second best.
The other ranking methods perform much worse. Regarding
the weighting algorithm, weightings based on coefficient of
variation (9–12) and entropy (5–8) perform best. They often
output rankings with high Luce probabilities, while uniform
weighting and weighting based on standard deviation give
rankings with low probabilities.

All in all, the problem instances of the Topology Zoo reveal
findings similar to those from the case study with the Internet2
OS3E topology. Uniform weightings are likely to produce
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rankings, which show little correlations to the rankings of other
weighting-ranking combinations. Also the usage of the SAW
ranking algorithm provides lower correlation coefficients, but
the resulting rankings have the highest Luce probabilities on
some problem instances. A worse performance is observed
for the TOPSIS and VIKOR algorithms, which could not
output rankings with high Luce probabilities. Instead, with re-
spect to these probabilities, all MEW combinations, especially
(wcv, ρMEW ), should be considered for ranking the Pareto-
optimal placements.

VI. CONCLUSION

In this work, we applied multi-objective decision making
methods to the problem of selecting the best placement for
a cloud service from a set of Pareto-optimal placements.
Therefore, we investigated four methods to determine the
relative importance of individual objectives (i.e., uniform,
entropy-based, coefficient of variation-based, and standard
deviation-based weighting), and four methods for aggregating
the performance of solution sets that are returned by multi-
objective optimization algorithms (i.e., simple additive weight-
ing, multiplicative exponent weighting, TOPSIS, and VIKOR).
We demonstrated, both for a single case study and for a broad
evaluation on a large set of problem instances, that most com-
binations of weighting and aggregation algorithms perform
sufficiently good for the investigated problem and have a high
level of agreement, especially on the top-ranked placements.
Only the usage of uniform weights was shown to cause outlier
rankings, which, nevertheless, can provide a complementary
view on the ranked placements. The best weighting-ranking
combination was multiplicative exponent weighting based on
coefficient of variation (i.e., (wcv, ρMEW )), which outputs
rankings with the highest Luce probabilities for the largest set
of problem instances. In case of all approaches, the weights
and ranks for a given set of placements can be efficiently
calculated by implementing the presented equations. However,
operators might need to employ heuristic approaches for large
problem instances in order to find feasible placements in a
timely manner. Eventually, the goal will be to derive guidelines
for choosing the appropriate ranking mechanism for Pareto-
optimal placements in the cloud service placement problem.
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