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Abstract—The number of smartphones connected to wireless
networks and the volume of wireless network traffic generated
by such devices have dramatically increased in the last few
years, making it more challenging to tackle wireless network
monitoring applications. The high-dimensionality of network data
provided by current smartphone devices opens the door to the
massive application of machine learning approaches to improve
different wireless networking applications. In this paper we study
the specific problem of Quality of Experience (QoE) prediction
for popular smartphone apps, using machine learning models
and in-smartphone measurements. We evaluate and compare
different models for the analysis of smartphone generated data,
including single models as well as machine learning ensembles
such as bagging, boosting and stacking. Results suggest that, while
decision-tree based models are the most accurate single models
to predict QoE, ensemble learning models, and in particular
stacking ones, are capable to significantly increase accuracy
prediction and overall classification performance.

Keywords—Machine Learning; Ensemble Learning; QoE Pre-
diction; Smartphone Measurements.

I. INTRODUCTION

The ever-increasing number of mobile devices connected
to wireless networks is heavily modifying the traffic observed
in these networks. The traffic volumes and big data generated
by smartphones opens the door to novel data-driven network
management paradigms, in which network operation can be
dramatically enhanced and simplified by the automatic anal-
ysis of network measurements. The high-volume and high-
dimensionality of mobile network data provided by current
network measurement systems calls for the massive applica-
tion of machine learning approaches to improve data-driven
networking.

There is however a major challenge in applying machine
learning models at large-scale for handling network measure-
ments; selecting the best machine learning model for a specific
problem is a complex task - it is commonly accepted that
there is no silver bullet for addressing different problems
simultaneously. Indeed, even if multiple models could be
very well suited to a particular problem, it may be very
difficult to find one which performs optimally for different
data distributions and statistical mixes.
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Deep-learning models are today widely used in multiple
signal processing problems, particularly in image processing,
where they have shown an outstanding performance. However,
neural-networks based models, and particularly deep-learning
models, have an inherent problem linked to model visibility
and interpretation: a deep-learning model is a black-box which
can automatically perform feature selection from input raw
data and provide highly accurate predictions, but it is very
difficult to understand their functioning. Indeed, it becomes
very challenging to understand the reasons of a particular
classification result, and in particular to understand the input
features leading to such a result, as input features derived
directly from a deep neural network architecture can be in
general meaningless to a domain expert. This is one of the
reasons why their application to networking problems is so
far quite limited. In addition, deep-learning models are highly
data-eager and training them is extremely costly in terms of
computational power, which might term them unsuitable for
different networking problems which require periodical re-
training or where labeled data are difficult to get.

In this paper we pose ourselves a simple question: which
type of machine learning model should be generally used in the
analysis of wireless network measurements? Intuition suggests
that rule-based models could be in principle a good match for
wireless network analytics, as network protocols are highly
structured and operate in a rule basis. We therefore present
a comparative analysis of different machine learning models,
applied to the specific problem of Quality of Experience
prediction in smartphones.

We consider standard and well known machine learning
models, which shall ease the interpretation of results and make
them more applicable to common networking practitioners.
These models include decision-trees - single trees and random
forests, naive bayes models, neural networks, support vector
machines and nearest neighbor search models. We additionally
consider collaborative- or ensemble-learning models, covering
the three basic paradigms available in the ensemble-learning
domain: bagging, boosting and stacking. Rather than finding
the best model to explain the data, ensemble-learning methods
build a set of models and then decide between them with
some combinatorial approach, seeking complementarity among
models. Ensemble methods use multiple learning algorithms to
obtain better predictive performance than could be obtained
from any of the constituent learning algorithms alone. In
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principle, if no single model covers the true prediction behind
the data, an ensemble can give a better approximation of
that oracle, true prediction model. An ensemble of models
also exhibits higher robustness with respect to uncertainties
in training data, which is highly beneficial for generalization
of results.

This paper builds on top of our recent work on machine
learning for QoE prediction [2], where we study the perfor-
mance of single machine learing models for QoE prediction
in smartphones, and on ensemble-learning models for network
analytics [6], where we explore the application of ensemble-
learning techniques to network security and anomaly detection
problems. The reminder of the paper is organized as follows.
Sec. II presents a partial overview on the related work. In Sec.
IIT we briefly describe the evaluated machine learning models.
Sec. IV describes the evaluated QoE prediction problem and
characterizes the corresponding dataset. Sec. V presents the
experimental results of the study, benchmarking the accuracy
of the proposed models. Finally, Sec. VI concludes the paper.

II. STATE OF THE ART

This paper deals with machine learning for QoE monitor-
ing and analysis, specially on cellular networks and mobile
devices; there is an assorted list of tools to measure network
performance: some examples are Mobilyzer [15] and Netalyzr
[16]. In [17] we introduced YoMoApp, an app to passively
monitor YouTube QoE-related features in smartphones. In
[18] we describe an on-line monitoring system for YouTube
QoE in cellular networks using in-network measurements only.
QoE Doctor [13] measures mobile app QoE, using active
measurements at both application and network layers. Close
to our work, authors in [14] propose an approach to evaluate
mobile apps QoE using passive in-network and in-device
measurements.

In [2], [3] we study the same dataset analyzed in this
work, either using single machine learning models [2] or basic
statistical data analysis techniques [3].

A recent trend in QoE-based network monitoring considers
the analysis of encrypted network traffic. Indeed, there has
been a sort of re-vival for low-level network-based QoE mon-
itoring rather than relying on application-layer metrics. As an
example of such approaches based on encrypted network-layer
measurements, authors in [4] evaluate a machine learning-
based architecture that estimates YouTube QoE from features
derived from packet sizes, inter-arrival times, and throughput.
A similar approach is presented in [5], where authors rely
on real cellular network measurements to predict typical QoE
indicators for streaming services (e.g., played resolutions,
stalling events), based on features such as round-trip times,
packet loss and chunk sizes. Here, the authors also used
machine learning as a promising technique for large-scale
quality monitoring and prediction.

III. MACHINE LEARNING MODELS

In the context of supervised learning there are several
approaches for predictive model training based on labeled data.
The performance of a particular algorithm or predictor depends
on how well it can assimilate the existing information to ap-
proximate the oracle predictor, i.e. the ideal optimal predictor

defined by the true data distribution. However, knowing a priori
which algorithm will be the best suited for a given problem
is almost impossible in practice. One could say that each
algorithm learns a different set of aspects of reality from the
training datasets, and then their respective prediction capability
also differs between problems.

In the study we compare six standard machine learning
models previously used in the literature for the analysis of
network measurements, including: (i) decision-trees (CART),
(i) Naive Bayes (NB), (iii) Multi-Layer Perceptron (MLP)
Neural Networks, (iv) Support Vector Machines (SVM),(v)
Random Forest (RF) and (vi) Nearest Neighbors (k-NN). To
improve prediction results, we additionally study more com-
plex models, following the ensemble learning paradigm. The
ensemble learning theory permits to combine multiple single
models to form a (hopefully) better one. Ensemble methods
use multiple learning algorithms to obtain better predictive
performance than could be obtained from any of the constituent
learning algorithms alone. There are multiple approaches to
ensemble learning, including bagging [8], boosting [9], and
stacking [11]. All three are so-called “meta-algorithms”, defin-
ing different approaches to combine several machine learning
techniques into one single predictive model referred to as meta
learner, to either decrease the variance (bagging), decrease
the bias (boosting) or improve the predictive performance
(stacking). We briefly describe all these approaches next.

A. Decision Trees

Classification And Regression Trees (CART) [12] define a
classification technique based on a tree graph, where inner
nodes correspond to a condition on a feature and leaves
are the outcome (i.e., the class). A CART represents a very
popular classification algorithm due to its simplicity (it can be
easily converted into a rule-based classification system) and
readability (it can be graphically represented). The training
follows a top-down greedy algorithm that works by iteratively
splitting the nodes, using normally an information gain based
metric as optimization criterion.

B. Naive Bayes

Naive Bayes (NB) is a very simple classifier based on
Bayesian statistics [12]. Despite its simplicity, it is widely used
as it is very efficient in a number of scenarios, especially in
high-dimensional datasets. It works by assuming that features
are mutually independent, which is not true in most cases,
hence the adjective naive. This assumption allows for an
easy calculation of the class-conditional probabilities, using
maximum likelihood estimation.

C. Neural Networks

Multi-Layer Perceptron (MLP) is an artificial neural net-
work composed of multiple layers of neurons, each of them
generally represented by a non-linear function [12]. The layers
are fully connected in a feed-forward scheme. Each neuron
employs an activation function that maps the weighted inputs
to the output that is passed to the following layer. The weights,
originally set to random values, are iteratively adjusted during
the training phase, using a well-known approach referred to as
back-propagation.
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D. Support Vector Machines

Support Vector Machines (SVM) are non-probabilistic bi-
nary classifiers [12]. SVM is considered one of the most
powerful supervised classification algorithm. It works by rep-
resenting each feature vector in a multidimensional space and
trying to find a linear separation (i.e., an hyperplane) for the
classes. In some cases, however, a linear separation of the
space is not possible, hence it uses the so-called kernel trick,
which implicitly increases the dimensionality of the space,
resulting in an easier separation in a much higher dimensional
space, due to the increased sparsity.

E. Random Forest

Random Forest (RF) is an ensemble technique based on
multiple instances of decision trees, each one based on a
different part of the training set, randomly selected. These
instances are called bootstrapped samples. The final outcome
is generally decided by majority voting among all the boot-
strapped samples.

F. k Nearest Neighbors

The k-Nearest Neighbors algorithm (k-NN) is a non-
parametric approach used for either classification or regression.
In both cases, the input consists of the k closest training
examples in the feature space. In k-NN classification, the
output is a class membership. An object is classified by a
majority vote of its neighbors, with the object being assigned
to the class most common among its k nearest neighbors.

G. Bagging and Boosting Algorithms

Bagging - for Bootstrap Aggregation, decreases the vari-
ance of the prediction model by generating additional training
data from the original dataset. Bagging trains each model in
the ensemble using a randomly drawn subset of the training
set, and each model in the ensemble is then combined in an
equal-weight majority voting scheme. Increasing the training
data size using a single input dataset does not improve the
prediction accuracy, but narrows the prediction variance by
strongly tuning the outcome.

Boosting involves incrementally building an ensemble by
training each new model instance based on the performance of
the previous model. Boosting is a two-steps approach, where
one first uses subsets of the original data to produce multiple
models, and then boosts their performance by combining
them, also using majority voting. Different from bagging,
boosting subset creation is not random but depends upon the
performance of the previous models, and every new subsets
contain the misclassified instances by previous models.

We take decision-tree based models for both bagging and
boosting, which is a very common approach. In the case of
bagging, we consider a Bagging Tree model. We take an
AdaBoost [10] Tree model for boosting, which uses decision
trees as first level learners. AdaBoost (short for Adaptive
Boosting) trains subsequent models in favor of those instances
misclassified by previous ones. AdaBoost is sensitive to noisy
data and outliers, but in general, it can be less susceptible to
over-fitting.

Table I: Input features for QoE prediction.

KPI Name | KPI Description (U — reported by user) |

MOS overall user experience (U)

ISP cellular network operator

RAT radio access technology

SIG avg. signal strength
THmax max. session downlink flow throughput
THavg avg. session downlink flow throughput
DUR session duration

VOL session volume

FLOW.atio ratio (# flows up)/(# flows down)

CELL cell id

LOC user location context (U)

H. Stacking

While bagging and boosting generally use the same type of
model in all the different training steps (e.g., decision trees),
stacking aims at exploring the input data space through base
models of different type. Stacking is the ensemble learning
model that really makes use of a meta learner, which uses the
output of the base learners as input for prediction. The point of
stacking is to explore a space through the different properties
of different models, each of them capable to learn some part
of the problem, but not the whole space. The meta leaner is
said to be stacked on the top of the other based models, hence
the name.

General ensemble learning approaches might be prone to
over-fitting the data. In [1] a simple stacking learning algorithm
named Super Learner is proposed as a possible solution for
this over-fitting limitation. It proposes a method to minimize
the over-fitting likelihood using a variant of cross-validation. In
addition, the Super Learner provides performance bounds, as
it performs asymptotically as good as the best available single
hypothesis predictor, for each predicted pattern.

In the study, we consider two flavors of Super Learner for
stacking, using five of the six aforementioned single models
as base learners (i.e., CART, NB, MLP, SVM and k-NN): a
simple majority voting based algorithm (Stacking MV), where
the output of the base learners are equally weighted to decide
on the final output, and GML (Generic Machine Learning),
which basically computes weights in an exponential fashion,
using the classification accuracy of each base learner. This
approach permits to reduce the influence of low accuracy base
predictors.

IV. QOE PREDICTION FROM SMARTPHONE DATA

For the sake of QoE prediction in cellular traffic, we use
network and QoE measurements collected in a user field trial
taking place in 2015 and detailed in [2], where 30 users
equipped with their own devices connected to their preferred
cellular operators evaluated three apps as part of their normal
daily Internet activity during two weeks: YouTube (watching
short videos); Facebook (timeline and photo-album browsing),
and Gmaps (satellite maps browsing). QoE feedback was
reported for each session through a customized QoE crowd-
sourcing app, according to a discrete, 5-levels ACR Mean
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Figure 1: Empirical distribution of multiple input QoS features measured at the network layer.

(a) YouTube Feature Correlation.

(b) Facebook Feature Correlation.

(c) Gmaps Feature Correlation.

Figure 2: Inter features linear correlation for each app. The thicker the edge connecting two nodes, the higher the correlation

between the corresponding features.

Opinion Score (MOS) scale, ranging from “bad” (i.e., MOS
= 1) to “excellent” (i.e., MOS = 5). Users additionally report
the acceptablity of the service as a binary feedback, stating
whether he would continue using the application under the
corresponding conditions or not (note than in this paper we
only focus on the MOS predictions).

In addition, each device has a passive flow-level traffic
monitor which records flow-level network traffic statistics,
associating flows to apps generating them. The 10 different
session-based KPIs in Tab. I are derived from the flow-
based measurements, which are then synchronized to the QoE
feedbacks (MOS scores) using time stamps. The KPIs include
features such as average and maximum flow throughput per
session, flow size, duration, average signal strength, RAT, ISP,

locations, etc. The prediction problem consists in predicting
the correct MOS score value (5-classes classification problem),
using the session-based KPIs as input. Full details on the
dataset are available in [2].

Fig. 1 depicts the empirical distributions of some of the key
features measured at the network layer. Figs. 1(a,b) show that,
as expected, YouTube flows are way larger than Facebook and
Gmaps ones, but their durations are rather similar, which could
be linked to the specific characteristics of the applications
themselves. There is also a clear difference in the achieved
downlink flow throughputs, as reflected in Figs. 1(d,e). Fig.
1(c) shows that the biggest share of flows are transmitted
over fast HSPA+ and UMTS connections, but a non-negligible
fraction of flows are carried over EDGE, potentially resulting
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Figure 3: Global accuracy, recall and precision achieved by the base ML models for QoE prediction.

in poor QoE. Finally, Fig. 1(f) shows that about 70% of the
flows are transmitted with a signal strength higher than -90
dBm, which is normally considered as an excellent coverage
threshold, whereas only 5% of the flows correspond to signal
strength below -105 dBm, which is considered as bad coverage.

To conclude, and to better understand the relations between
the considered features and the prediction target - MOS scores,
Fig. 2 shows the absolute magnitude of the inter-features
linear correlation values as well as the linear correlations to
both MOS and acceptability scores, considering circular plots.
The thicker the edge connecting two nodes, the higher the
correlation between the corresponding features.

Not surprisingly, the most relevant features are the average
and the maximum session throughput. Bulky sessions (i.e.,
bigger VOL) are generally better perceived and translate into
higher acceptability, which might be linked to the specifics of
the contents being consumed - e.g., HD video or better reso-
lution maps, and the better usage of the available bandwidth.
As expected, signal strength is also positively correlated to
QoE, as the higher the signal strength, the better the connec-
tion performance - e.g., higher throughput and lower latency.
Interestingly, longer YouTube sessions experience a worse
QoE; a deeper analysis of longer YouTube sessions shows that
many of them are rather small, suggesting the occurrence of
stalling. ISP also appears as a relevant feature, and specially
for acceptability, suggesting that service quality is different
for the different operators on the field trial, as well as the
corresponding user expectations. Recall that participants had
their own data contracts, so a better look into the characteristics
of these contracts in terms of agreed performance and cost
would shed light on this. Location is also relevant, and in
particular for the case of Gmaps, where correlations between
QoE and LOC are much higher.

V. EVALUATION AND DISCUSSION

In this section we evaluate and compare the performance
achieved by the presented ML models. For the sake of training
and testing, we consider 10-fold cross validation in all the
results presented in this section. Parameters on each differ-
ent algorithm are calibrated based on best-performance, grid
search tests. We start by comparing the performance achieved
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Figure 4: Performance of RF model - ROC curves.

by the six base learning models, and then present a full
comparison including also the ensemble-learning approaches.

A. Single Base Learning Models

Fig. 3 reports the prediction performance achieved by the
six single base learning models for QoE prediction. Perfor-
mance is measured in terms of global classification accuracy
(i.e., correctly classified instances), as well as per class recall
and precision. Fig. 3 clearly shows that decision-tree based
models, and in particular RF ones, represent by far the most
accurate approach, for all the different quality levels. Still, as
we see more in detail next, predictions are not flaw-less and
some important mis-classifications occur.

To dig deeper into the RF out-performance, Fig. 4 depicts
the ROC curves and the corresponding confusion matrices
obtained with the RF model. Fig. 4 shows that the RF model
is very accurate to correctly spot out bad quality sessions (i.e.,
MOS = 1, 2 and 3), but is less accurate to correctly predict
higher quality ones; in particular, as depicted in Fig. 5, excel-
lent quality sessions (i.e., MOS = 5) are often misclassified as
good ones (MOS = 4), and as average ones (i.e., MOS = 3)
to a lesser extent.
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B. Including Ensemble Learning Models

To conclude with the study, we now include the ensemble
learning models within the analysis. Tab. II reports the results
obtained with all the models, using the Area Under the ROC
Curve (AUC) as performance metric. The machine learning
community most often uses the ROC AUC statistic for model
comparison, which is simple and informative. Tab. II reveals
again that predicting excellent QoE sessions (i.e., MOS = 5)
is more challenging than for the rest of the quality levels.
The CART and random forest models alone provide already
very good results, as also shown in Fig. 3. Still, the GML
model is capable to boost the prediction of excellent QoE
w.r.t. both CART and random forest by at least 5% to 10%,
suggesting a better fit for this scenario. Indeed, results highlight
the advantages of the stacking models, and in particular, the
GML model.

VI. CONCLUDING REMARKS

We have demonstrated the outstanding performance of
decision trees for the analysis of smartphone measurements
in predicting the QoE of the end users. Indeed, decision-
tree-based models provide in general better results in terms
of accuracy and prediction than other models, with a much
smaller computational overhead for decision trees as compared
to other models based on neural networks or support vector
machines. Decision-tree based models represent therefore a
very appealing machine learning model for QoE prediction,
not only because of their high accuracy and low computational
cost, but also due to a series of embedded properties, such as
model visibility, robustness to input noise, etc.

We have also shown the advantages of ensemble learning
techniques to improve prediction accuracy, and particularly
of the stacking GML approach. We found that not only the
GML based model has the ability to perform as well as the
best available single base level learner, but often achieves
better results. This includes also the case of both bagging and
boosting models, which are also outperformed by the stacking
models. Performance improvements are higher in scenarios
where the performance of the base predictors are relatively

Table II: ROC AUC for QoE prediction.

MOS 1 2 3 4 5

CART 0.972 0974 0.963 0972 0.900
Naive Bayes 0.766 0.874 0.714 0.707 0.703
MLP 0916 0951 0918 0.852 0.798
SVM 0.812 0928 0.742 0.717 0.734
Random Forest 0.992 0.989 0.987 0.988 0.960
k-NN 0.849 0917 0.765 0.756 0.657
Bagging Tree 0971 0977 0.996 0982 0.955
AdaBoost Tree  0.972  0.978 0.997 0.992 0.973
Stacking MV 0992 0965 0.984 0990 0.971
GML 0.992 0.996 0.997 0.995 0.985

low; when first learners performance is already high, there is
little room for improvement. We believe that this study would
enable a broader application of machine learning models to
the study of QoE prediction in network monitoring systems.
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