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Abstract—The Internet of Things (IoT) is expected to play an
increasingly important role in next-generation mobile networks.
Detailed knowledge of this type of traffic and the associated
signaling in those networks is of interest to operators and
standardization in order to run these networks successfully. The
aim of this study is to characterize IoT signaling traffic for mobile
communication networks (i) from a network operator’s point of
view, (ii) at device level, and (iii) for the establishment of data
connections. General statistics on signaling and device behavior,
such as the observed IoT traffic volume and message composition,
are given before device classes with statistically different signaling
behavior are identified. Finally, by characterizing the aggre-
gated signaling traffic, we show that the Markov assumption,
widespread in standardization and literature, regarding the
aggregated arrival process for data connections does not apply
in reality.

Index Terms—IoT, mobile networks, signaling, dataset, mod-
eling, measurement, GTP, SIGTRAN

I. INTRODUCTION

Assessing the traffic carried in a communication network is
an important task in order to operate a network successfully.
In particular with new types of traffic that have fundamentally
different characteristics, such as the traffic occurring in the
context of the Internet of Things (IoT) [1-5], those assess-
ments are essential to plan and operate networks accordingly.

With IoT traffic, a number of new characteristics arise in
the networks. By 2022, it is expected to have ~18 billion IoT
devices, 1.5 billion of which use cellular connectivity [6, 7].
These devices span heterogeneous areas such as industrial,
healthcare, residential, automotive, sports, and entertainment.
Between 2016 and 2022 there is an average growth of 21% per
year, driven by new use cases [7]. This growth in numbers as
well as the heterogeneity raises the question of the scalability
of the underlying infrastructure. Further, the characteristics of
traffic are fundamentally changing with IoT, especially given
the growth in machine-to-machine communications [8]. For
2020 about 41% or 12.86 billion IoT devices are installed as
smart home devices [9]. The traffic generated by smart home
IoT devices differs from the traffic generated by conventional
devices [10]. In general, a mixture of machine-driven and
event-driven traffic patterns is expected for upcoming IoT
traffic [2].

From a technical perspective, this change in traffic is met by
a different handling of IoT devices in the networks compared

to previous mobile use cases. Newly emerging IoT mobile
virtual network operators (MVNOs) run specialized service
platforms providing worldwide device connectivity by leverag-
ing already existing infrastructure of mobile network operators
(MNOs). By providing global coverage to their customers
through roaming agreements, MVNOs can provide their ser-
vice without setting up a dedicated physical cellular network
infrastructure. This technical setup results in a mixture of
traffic with unknown characteristics in the mobile core, since
traffic comes from different locations and devices worldwide,
different applications. In addition, different customers are be-
ing aggregated through the usage of few carrier networks [11].
This leads to unknown signaling traffic in the control plane,
which results in significant uncertainties for the operation
of networks [12, 13]. Overall, technical questions such as
the volume of expected signaling traffic, the identification of
certain classes of devices, or the identification of possible
approaches to system optimization become important.

To provide a first step towards these issues, this paper aims
at characterizing IoT signaling traffic for mobile networks
(i) from a network operator’s point of view, (ii) at device level,
and (iii) for data connection establishment.

A large scale dataset is obtained by monitoring signaling
transport (SIGTRAN) as well as 3GPP GPRS Tunneling
Protocol (GTP) signaling traffic of over 270k IoT devices in
cooperation with an MVNO that provides global IoT connec-
tivity through over 500 roaming partners in 192 countries. In
this work, we dissect the signaling behavior of devices using
2G/3G network connectivity and provide a broad overview
regarding the signaling volume for both protocol stacks as well
as a detailed evaluation regarding the occurrence of specific
signaling patterns in the case of IoT traffic. Furthermore, we
identify features characterizing the signaling behavior of single
IoT devices and perform a device classification based on the
identified signaling characteristics. We evaluate the signaling
behavior exhibited by devices of different device classes and
show that the devices of different classes exhibit statistically
significant differences regarding their signaling traffic. Finally,
we dissect the arrival process of new data connections as a
proxy for system load and present approaches to model the
aggregated arrival process of the observed devices. We show
that the Markov assumption, widespread in standardization
and literature, regarding the aggregated arrival process for data



connections does not apply in reality. The methodology used
to obtain the results as well as the structure of the document
is shown in Figure 1.

The work is based on two major contributions. First, a
large-scale dataset is presented containing signaling traffic of
a global deployment of IoT devices from various use cases.
Second, the dissection of signaling behavior and a subsequent
proposal of classification metrics is given to distinguish IoT
devices via their signaling traffic with an analysis of the
corresponding arrival processes.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of research work within the area
of mobile IoT traffic. Section IIT introduces background infor-
mation on MVNOs and their architecture including relevant
signaling procedures. A general description of the dataset and
preprocessing steps for preparing the raw data is provided in
Section IV. Section V dissects the dataset and presents detailed
general statistics. In Section VI, the classification mechanism
and results are presented. Section VII deals with the analysis of
the arrival process of new PDP context establishments. Finally,
Section VIII concludes this work.

II. RELATED WORK

Previous related research in the field of IoT traffic falls
into two categories. Investigation of traffic characteristics and
datasets related to IoT deployments on the one hand and
research regarding the signaling efforts of both machine to
machine (M2M)-centric mobile networks as well as common
mobile networks on the other hand. Studies investigating the
traffic characteristics of IoT devices at a large scale, i.e.
evaluating global scenarios including roaming devices, are still
lacking from the general literature. Further, while all of the
following studies investigate traffic patterns of IoT devices,
they all focus on data plane traffic.

Regarding research on IoT traffic characteristics, the authors
of [2] have compiled a taxonomy of available traffic patterns
observed in IoT networks and investigated the applicability of
the Poisson approximation in the context of IoT traffic. Further
research in the area of IoT traffic modelling compares human
generated traffic to M2M traffic [10, 14], proposed source
traffic [5] and traffic models [15] as well as classification
mechanisms for smart devices using WiFi [4] or general com-
munication networks [1]. Finally, there exist studies analysing
M2M communication [16]. However, all of the above focus on
data plane traffic. Hence, when it comes to analyzing signaling
traffic of mobile IoT devices beyond a single MNO, to the best
of our knowledge, no other studies are available at the time
of writing.

III. BACKGROUND

This section introduces the general architecture of an
MVNO and provides a brief background on the signaling
traffic that occurs when data roaming is carried out as in
networks with MVNOs.

A. MVNO Platform Description

Figure 2 shows an abstract scenario of a device roaming
in 2G/3G. Here, the roamer connects to the VPLMN! SGSN?
and VLR? components for data connectivity with GTP* and
SIGTRAN? connectivity with MAP®, respectively. The visiting
network components subsequently communicate with the cor-
responding services, HLR’ for SIGTRAN, GGSN?® for GTP,
in the home network. The colored marks in Figure 2 indicate
the points of measurement at which signaling traffic has been
monitored for the dataset used in this work since these are
the only points for incoming signaling traffic for an MVNO.
Note that the shown architecture is strongly simplified and
only shows messaging flows relevant for the collected dataset,
namely signaling between SGSN and GGSN, HLR as well as
between VLR and HLR.

B. Roaming Signaling Procedures

During mobile roaming, devices need to perform two main
procedures to establish either network connectivity or data
connectivity. With only network connectivity, IoT devices
can only send or receive calls or text messages. Based on
preliminary investigations, both modes have proven to be
representative of [oT MVNOs, as some devices save energy
and only perform network attachment, while others establish
a full connection to the network with data connectivity.

For network attachment, devices perform an attach proce-
dure to register with the visiting network VLR. The roamer
sends an attach request to the VLR that includes, among other
information, its identity (i.e. IMSI). Subsequently, the VLR
initiates the authentication procedure with the corresponding
home network HLR. After authentication, the VLR uses the
update location procedure to update the location information
stored at the HLR and thereby completes the procedure to
establish network connectivity without data connectivity.

Analogously, signaling during data roaming consists of
similar procedures between the visited SGSN (VSGSN) and
HLR. Instead of an update location procedure, the VSGSN
initiates an update GPRS location procedure. Finally, the
roamer can activate a new PDP context by requesting a home
network APN (Access Point Name). The roamer’s request
triggers the VSGSN to resolve the APN and a following PDP
Context Request towards the home network GGSN (HGGSN).
After successful completion, the roamer is able to use data
connectivity.

IV. DATASET
A. Data Description and Processing

The raw data collected in this work consists of all SIG-
TRAN and GTP messages between HLR and VLR as well

!Visiting Public Land Mobile Network

2Serving GPRS Support Node

3Visitor Location Register

43GPP GPRS Tunneling Protocol

3SIGnaling TRANSsport protocols (extension of the SS7 protocol family)
SETSI/3GPP Mobile Application Part

"Home Location Register

8Gateway GPRS Support Node
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as between HLR and VSGSN in a roaming scenario. Conse-
quently, all messages belong to the ETSI/3GPP Mobile Appli-
cation Part (MAP) protocol as part of the SS7 signaling system
(ITU-T Q.700-series) or the 3GPP GPRS Tunneling Protocol
(GTP) respectively. This includes signaling for authentication,
network attachment, data connectivity as well as mobility.
Table I provides a list of messages captured and parsed in the
scope of this work. The table also shows the corresponding
dialog classification based on message sequences.

The messages contained in the raw dataset are assembled
into Dialogs using Apache Spark. To this end, a state-machine
keeps track of the current signaling state of each device
throughout the dataset and matches messages belonging to
the same dialog. Here, a dialog is defined as a single signaling
interaction between serving and home network and each dialog
consists of all messages related to the initial request. A dialog
is considered finished when the corresponding response has
been captured. Hence, in accordance with the specifications
of the SS7 signaling system as well as the GTP protocol, the
dialog assembly process generates the dialog types presented
in Table L.

These dialog types have been selected for further study as
they, as well as their corresponding errors, contribute 95% of
the total observed traffic volume. All remaining dialogs have
been combined into groups labeled OTHER in the case of
SIGTRAN and PDP_OTHER in the case of GTP. These di-
alogs are mostly related to SMS transmission and interrogation
requests, which have not been evaluated in this work.

B. Dataset Overview

The dataset has been collected between 01.01.2020 and
31.01.2020. Figure 3 shows a timeseries over the whole month
with the number of million dialogs per hour depicted along
the y-axis. It can be seen that the timeseries exhibits gradual
growth in signaling traffic over the monitored period. The
blue line shows a linear regression with a constant of 0.71
million dialogs and a coefficient of 0.00042 million dialogs
per hour. Furthermore, the data exhibits a cyclic pattern
with 31 peaks, exactly the number of observed days. On
January 8th an operator outage lead to a significant signaling
incident, inducing roughly fourfold signaling traffic for about
20 minutes before returning to baseline. The specific reason
for the incident is unfortunately unclear. In total, signaling
traffic from 346 different mobile networks in 192 countries
has been observed during the measurement period.

Table II presents an overview of key characteristics re-
garding the dataset. Between the two monitored signaling
types GTP and SIGTRAN, roughly 274k devices have been
observed, 84.1% of which have established at least one GTP
tunnel in the observed time frame. In total, devices have
generated around 1.4 billion signaling messages, 72.3% of
which relate to successful signaling procedures. 11.9% are
related to technical errors and 14% have been actively rejected
by the system. After assembling the raw data into dialogs,
about 650 million dialogs could be identified, 69.2% of which
have been successful, 12.5% have failed and 15.2% have been
rejected by the system. A more detailed dissection of errors
and rejected messages is provided in Section V-B.

V. GLOBAL IOT STATISTICS FOR THE DATASET

This section summarizes general IoT statistics for the
dataset before presenting a detailed decomposition of the
dataset. Finally, we present temporal correlations within the
dataset and show common signaling patterns that have been
observed.

A. General Statistics

On average, 172k unique IoT devices have been observed
per day. A device is counted as active if either a successful
updateLocation (UL) dialog after authentication or PDP con-
text creation (PDP_CREATE) has occurred. Broken down to



TABLE I: Dialog types generated by assembling corresponding messages. op code in brackets. n € [1, oo].

Dialog Abbreviation Contained Messages

Short Description

sendAuthenticationInfo ~ SAI

sendAuthenticationInfo Request(56)—

VLR, VSGSN request authentication vectors

sendAuthenticationInfo Response(56)

updateLocation UL

updateLocation Request(2)—

VLR updates location information at HLR

n X (insertSubscriberData(7) Request—
insertSubscriberData Response(7))—

updateLocation Response(2)

updateGprsLocation UL_GPRS

updateGprsLocation Request(23)—

VSGSN updates location information at HLR

n X (insertSubscriberData Request(7)—
insertSubscriberData Response(7))—
updateGprsLocation Response(23)

cancelLocation CL

cancelLocation Response(3)

cancelLocation Request(3)—

HLR deletes location information at VLR, VSGSN

create pdp context PDP_CREATE

createPDPContext Request(16)—

VSGSN establishes new GTP tunnel

createPDPContext Response(17)

update pdp context PDP_UPDATE

updatePDPContext Request(18)—

VSGSN updates existing GTP tunnel

updatePDPContext Response(19)

delete pdp context PDP_DELETE

deletePDPContext Request(20)—

VSGSN closes existing GTP tunnel

deletePDPContext Response(21)
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Fig. 3: Number of signaling dialogs over time in January 2020.
TABLE II: Dataset overview and key data points.
s o - Messages Dialogs
Protocol Devices Operators  Countries  Type ’ Abs. Frac. ’ Abs. Frac.
Error 14400550  0.010 3849272  0.006
Reject 198425402  0.140 99212701  0.152
SIGTRAN 274184 (100%) 346 192 Success | 595878305 0419 037 | 235523346 0361 0!
Unknown 26165873  0.018 20829090  0.032
Error 154987535  0.109 77593654  0.119
GTPv1 230602 (84.1%) 191 152 Success 431698276  0.304 0.413 | 215848695 0.331 0.449
Unknown 186 0.000 9 0.000

hours, roughly 55k devices are active on average. In total,
all devices generate an average traffic volume of 20 million
signaling dialogs per day, 875k per hour, or 244 dialogs per
second within our dataset.

With regard to modeling purposes, the average number
of signaling dialogs per day and device amounts to 103
with a standard deviation (sd) of 1485 and a coefficient of
variation (c) of 14.4. The high coefficient of variation indicates
high heterogeneity among devices.

Out of the 230k devices using data connectivity, on average,
a device establishes 21.9 connections (sd: 84.7, c: 3.86) per
day. The average duration is 2890 seconds (sd: 20205, c:
6.99). The high variation here is a further indicator for highly

heterogeneous behavior of the devices active in the dataset.

B. Errors and Rejected Dialogs

Of the 1.4 billion signaling messages, 27.7% relate to
unsuccessful signaling procedures, with errors and rejected
messages contributing 12.5% and 15.2%, respectively. An
error is defined as an invalid sequence of signaling messages,
such as incomplete or out of order interactions. As it is nearly
impossible to identify the reason for incomplete dialogs, the
observed errors are not evaluated in more detail at this point.

Some dialogs have been actively rejected by the home
network. These contain mostly requests from devices equipped
with SIM cards that have not been activated, are no longer ac-



TABLE III: Dialog composition of signaling trace.

Protocol Dialog Type Abs.  Frac.
SAI 172618050  0.26
SAI_REJECT 87962499  0.13
UL 31013855  0.05
CL 21343648 0.03
OTHER 20829090 0.03
UL_REJECT 11049617  0.02

SIGTRAN UL_GPRS 10547793  0.02
UL_GPRS_ERROR 1726272 0.00
UL_ERROR 1200272 0.00
SAI_ERROR 860920  0.00
UL_GPRS_REJECT 200585  0.00
CL_ERROR 61808  0.00
PDP_CREATE 93915264 0.14
PDP_DELETE 93236365 0.14
PDP_CREATE_ERROR 77556648  0.12

GTPvl PDP_UPDATE 28697066  0.04
PDP_DELETE_ERROR 36009 0.00
PDP_UPDATE_ERROR 997  0.00
PDP_OTHER 9 0.00

tive or are not allowed to establish data or phone connectivity.
In this context, two reasons for rejected dialogs are prevalent.

Inactive SIMs. Of 650 million dialogs, roughly 13.4% are
rejected due to devices with inactive SIM cards. These dialogs
are generated by 8.3% of the devices (23 002 devices) that have
at least one of their dialogs rejected with UnknownSubscriber.
Hence, this relatively small number of devices is responsible
for 13.4% of total signaling dialogs.

Invalid Roaming Attempts. Accordingly, 11 million di-
alogs (1.7%), generated by 15.2% of the devices (41874
devices), are rejected due to invalid roaming partner selection.
This occurs if a device selects a visited network that, e.g.
due to policy reasons or customer configuration, cannot be
used as a roaming partner. These dialogs fail with the message
RoamingNotAllowed.

C. Sequence of Messages

Table IIT decomposes the dataset according to the observed
dialog types as well as how much of the total signaling volume
each type contributes. The last column shows the arrival rate
for each dialog type. Note that arrivals during the incident
shown in Figure 3 have been removed here.

The table shows the significant portion of messages at-
tributed to inactive devices (SAI_REJECT) as well as invalid
roaming attempts (UL_REJECT). Furthermore, it can be seen
that a large fraction of errors is related to GTP context creation.
These errors occur mostly due to the APN rejecting the device
(10.7%) or APN Congestion (1%).

Temporal Correlation of Signaling Dialogs. In order to
improve the understanding of device behavior, Table IV shows
all dialog sequences observed in the dataset that contribute at
least 1% to the total number of dialog sequences. A dialog
sequence is thereby defined as a sequence of dialogs without
a significant pause inbetween dialogs. More specifically, the
timeseries of each device has been divided into bins of one
minute with a device being active if at least one dialog

TABLE IV: Dialog sequences with at least 1% contribution
(73% of total dialogs).

Dialog Sequence Abs. Frac

SAI_REJECT 46265888  0.157
SAI 32634374  0.110
PDP_DELETE 19907081  0.068
SAI_REJECT—SAI_REJECT 17088982  0.058
PDP_CREATE 14012643 0.048
PDP_DELETE—PDP_CREATE 13215440  0.045
PDP_CREATE—PDP_DELETE 8477924 0.029
SAI—SAI 8376366 0.028
UL 8059256 0.027
PDP_UPDATE 6094 100 0.021
SAI—PDP_CREATE 5682473 0.019
PDP_CREATE_ERROR 5046938 0.017
UL_REJECT 4624730 0.016
SAI—UL 4315840 0.015
UL_GPRS 4051486 0.014
SAI—PDP_CREATE—PDP_DELETE 3710986 0.013
SAI—PDP_DELETE—PDP_CREATE 3705860 0.013
SAI—SAI—PDP_CREATE 3170721 0.011
PDP_CREATE_ERROR—PDP_CREATE_ERROR 3123481 0.011
UL_REJECT—SAI_REJECT 2937871 0.010

occurs within each bin. The resolution of one minute has
been selected as it coincides with the timeout for activity in
the monitored mobile core. Based on this activity diagram,
a sequence is defined as all dialogs occurring in bins with
activity without there being a bin without activity inbetween.

Table IV shows that a significant portion of the resulting
sequences consist of three or less dialogs with the majority
only featuring a single dialog. We can also observe that a
significant fraction of sequences occurs due to devices closing
an already established PDP context, directly followed by the
creation of a new tunnel, meaning devices don’t establish a
tunnel, send data and close the tunnel. Instead, devices close
and reestablish PDP contexts, send their data and leave the
tunnel open until the next iteration.

VI. DEVICE CLASSIFICATION

As already observed earlier, the signaling behavior differs
significantly between devices. Hence, in the following section,
we establish a set of device features extracted from purely
evaluating signaling traffic and show that devices can be clus-
tered using the k-means algorithm. Table V shows the selected
features. Thereby, the error as well as reject rate denote the
fraction of dialogs resulting in errors or being rejected by
the system, respectively. Further, the grade of periodicity of a
device is defined as the sum of the autocorrelation values of
the three most significant lags observed while calculating the
autocorrelation for lags between 1 and 1500 in minutes. Thus,
this evaluation is able to identify periods of up to 24 hours for
devices with up to three significant periods.” Although further
features have been evaluated, our investigations have shown
that this minimal feature set is enough to classify devices
observed in the trace. Note that Section VII introduces an

9Devices with single period p also exhibit high autocorrelation values at
2p and 3p.



TABLE V: Features used for device classification.

Featurename  Description

Error Rate Percentage of dialogs resulting in errors

Reject Rate Percentage of dialogs resulting in reject

Periodicity Sum of autocorrelation of three most significant lags

additional feature to further refine the clustering performed
here.

Evaluating the within-cluster sum of squares using the
elbow-method, & = 5 has been decided to be a suitable
number of clusters to perform the k-means algorithm on.
The resulting clusters correlate with the expected outcome
according to expert knowledge contributed by the MNVO. In
order to visualize the results of the clustering, Figure 4 shows
the biplot resulting from the primary component analysis and
plotting the two most significant primary components against
each other. Each point represents one device and the colors
represent the assigned cluster. Additionally, the arrows and
labels indicate the influence of the original features on the
shown primary components. This visualization allows a visual
identification of the relation between features and the resulting
clusters. We identify the five clusters as Non-Periodic (Green),
Semi-Periodic (Pink), Periodic (Blue), High Error Rate (Red)
and High Reject Rate (Yellow).

@

PC2 (32.6% explained var.)
S

P

TejectRate

-6 -3 0 3 6
PC1 (38.8% explained var.)
Fig. 4: Biplot of two most significant primary components and
influencing original features.

Figure 5 shows the distribution of devices among those five
identified clusters. It can be seen that a significant portion of
devices exhibits non-periodic or semi-periodic behavior, with
the other classes containing only 16% of devices altogether.

A. Signaling Characteristics by Device Class

In order to validate the classification with respect to dif-
fering device behavior within the identified classes we now
compare signaling characteristics between classes. Figure 6
shows the empirical cumulative distribution function (ECDF)
of inter sequence inter arrival times, meaning the distribution
of the time between activity phases per device over all devices
within one device class.

It can be seen that the different device classes exhibit
differing behavior regarding their sequence inter arrival times.
Periodic devices show clear peaks at inter arrival times of
30, 60, and 120 minutes. The two sided Kolmogorov-Smirnov
(KS) test confirms statistically significant differences regarding
the sequence interarrival times.

Analogously, Figure 7 shows the ECDF of the GTP context
duration for the same set of device classes. Note that the
classes High Error Rate and High Reject Rate have been omit-
ted here, since their signaling behavior is strongly influenced
by their high number of erroneous and rejected dialogs and
a comparison to regular devices regarding their GTP context
durations would be invalid. Additionally, the y-axis has been
limited to [0.7, 1] to make the effect more visible. The KS test
once again shows statistically significant differences for each
pair of distributions.

While less prominent, periodic devices again show peaks at
context durations 30, 60 and 120 minutes, indicating a corre-
lation between the two values. As already shown in Table IV,
a significant fraction of sequences intend to either create or
delete PDP contexts, further validating this observation.

Finally, when it comes to the distribution of dialog types
used by devices of each class, with the exception of high error
rate and high reject rate, no significant difference between
classes could be observed. In the case of the error and reject
classes, the fraction of rejected and erroneous dialogs is, by
definition, higher compared to other classes.

VII. AGGREGATED PDP CONTEXT ARRIVAL PROCESS

Finally, in order to better understand the underlying arrival
process of the devices resulting from the performed classi-
fication, we examine the aggregated arrival process of newly
established data connections. To this end, we dissect the arrival
process of PDP_CREATE dialogs. This subset of messages
has been selected as it acts as a proxy for the general system
load for MVNOs since a successful PDP_CREATE requires
successful SAI, UL, and UL_GPRS dialogs beforehand.

As already stated before, large parts of literature and stan-
dardization [2, 15, 17, 18] assume Markov properties when
dealing with the aggregated arrivals in large scale IoT environ-
ments. The Markov assumption is suitable as the superimposed
traffic of an infinite number of sources exhibits memoryless-
ness, according to Palm-Khintchine [19]. However, in the
following, we show that the assumption does not hold true
in reality due to the presence of time synchronous devices,
but can be restored through additional device classification
and filtering. Note that the synchronous behavior of devices
is expected to stem from firmware implementation specifics
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rather than actual synchronization between independent de-
vices. Devices seem to be programmed to transmit data at fixed
times, instead of fixed intervals, resulting in quasi synchronous
behavior in the aggregated traffic.

To this end, Figure 8 shows the message density over one
hour for all device classes for the whole trace. Hence, the
y-axis shows the probability of an arbitrarily selected dialog
happening within the corresponding minute along the x-axis.
The plot is shown to visualize the synchronized behavior of
devices within the trace. Although devices are expected to not
synchronize their signaling behavior with other devices, clear
synchronization patterns can be observed within the trace.
Specifically, increased density between 0 and 5 minutes as well
as peaks at minutes 0, 5, 15, 35 and 45 can be observed. This
behavior violates the assumption of memorylessness, as in a
process exhibiting the Markov property, the message density
would need to be constant.

However, based on the message density function of single
devices, we are able to identify time synchronous devices and
hence divide the arrival process in synchronized and non-
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Fig. 8: Message probability density function of PDP_CREATE
dialogs for the probability that messages occur at a specific

minute within any hour during the entire trace.
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Fig. 9: ECDF of maximum message density over all devices
with at least 30 activity phases.

synchronized devices. To this end, we examine the maximum
message density for messages of a specific device, as is shown
in Figure 8 for all devices. This classification is based on
the assumption that the message density function of a non-
periodic, non-synchronized device would follow a uniform
distribution. Figure 9 shows the ECDF of the maximum
message density over all devices with at least 30 activity
phases. This limitation is introduced as the density value is
not significant for devices with less than one activity per day.

Based on the distinct knee observed in the figure, devices
with a maximum message density of at least 0.075 are
classified as synchronized. This results in 23% of devices
being classified as synchronized. Note that this classification
has been performed in addition to the clustering performed
earlier, so each device can be classified by both their signaling
behavior as well as their synchronicity. Figure 10 shows the
same plot as Figure 8 with devices split into synchronized and
non-synchronized classes.
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Fig. 10: Message probability density of PDP_CREATE dialogs
over minutes within anyab hour of the trace per synchroniza-
tion class.

It can be seen that non-synchronized devices now exhibit
a uniform message density distribution while synchronized
devices feature the peaks observed before as well as low
baseline density.

Base on these observations we can now assume the arrival
process of non-synchronous devices to exhibit memorylessness
and consequently negative exponentially distributed interar-
rival times. To this end, Figure 11 shows the Q-Q-plot of the
empirical interarrival times of all non-synchronized devices,
irrespective of device class, and the corresponding negative
exponential fit. The red marks show the 10% to 90% quantiles,
the gray marks show the 1% to 99% quantiles. It can be seen
that the interarrival times of the aggregated process of all non-
synchronized devices can be closely approximated using an
exponential distribution as it is the case for Markov processes.
Furthermore, the interarrival times exhibit no significant au-
tocorrelation with the largest observed value being 0.017 for
lags between 1 and 1000.
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Fig. 11: Q-Q-plot of interarrival times of non-synchronized
devices.

VIII. CONCLUSION

In this work, we presented the results of our analysis of
a 31 day IoT signaling trace containing more than active
270k IoT devices of an MVNO operating worldwide. We
found that about 84% of the observed 2G/3G devices use
data connectivity with the remaining 16% only using network

connectivity for phone and text messaging as they do with
circuit-switched services. We have shown that devices exhibit
significant differences regarding their signaling behavior and
extracted features that allow the modelling of different device
classes based on the rate of erroneous and rejected dialogs as
well as the periodicity of devices. We have shown that devices
identified by this classification mechanism exhibit statistically
significant differences when it comes to their signaling be-
haviour. Finally, by evaluating the aggregated arrival process of
new data connections, we have shown that the often assumed
memorylessness does, surprisingly, not hold true in reality
due to the presence of time synchronous devices, but can be
restored through additional classification and filtering steps.
Next steps include the behavioral classification of different
IoT devices to better understand their behavior and be able to
move towards a detailed source traffic model of single devices
as well as performance models of large scale systems.
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