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Abstract—In the context of QoE management, network and
service providers commonly rely on models that map system
QoS conditions (e.g., system response time, paket loss, etc.) to
estimated end user QoE values. Observable QoS conditions in the
system may be assumed to follow a certain distribution, meaning
that different end users will experience different conditions. On
the other hand, drawing from the results of subjective user
studies, we know that user diversity leads to distributions of
user scores for any given test conditions (in this case referring
to the QoS parameters of interest). Our previous studies have
shown that to correctly derive various QoE metrics (e.g., Mean
Opinion Score (MOS), quantiles, probability of users rating
“good or better”, etc.) in a system under given conditions, there
is a need to consider rating distributions obtained from user
studies, which are often times not available. In this paper we
extend these findings to show how to approximate user rating
distributions given a QoS-to-MOS mapping function and second
order statistics. Such a user rating distribution may then be
combined with a QoS distribution observed in a system to finally
derive corresponding distributions of QoE scores. We provide two
examples to illustrate this process: 1) analytical results using a
Web QoE model relating waiting times to QoE, and 2) numerical
results using measurements relating packet losses to video stall
pattern, which are in turn mapped to QoE estimates.

I. INTRODUCTION AND BACKGROUND

QoE management mechanisms deployed by system and
network providers rely on models that map observable QoS
performance measures to application level metrics, which may
in turn be used to estimate overall Quality of Experience (QoE)
as perceived by end users. Such models are derived from
subjective user studies, where end users are exposed to various
test conditions, such as different system QoS conditions (e.g.,
loss rates, delays), or different application level conditions
(e.g., video stalls, web page load time) and asked to provide
subjective rating scores. Ratings are commonly averaged to
obtain a Mean Opinion Score (MOS), thus resulting in so-
called QoS-to-MOS mapping functions.

In the context of subjective user studies, with different users
perceiving both quality and value differently, [1], user diversity

A script implementing the Beta distribution approximation and
QoE metrics for arbitrary QoE measurements is published at Github:
https://github.com/hossfeld/approx-qoe-distribution

will inherently impact the distribution of rating scores for
a given test condition [2], [3]. While a MOS value for a
given test condition represents an “average user” rating, the
drawback lies in averaging out user diversity, thus providing
no insights into actual QoE distributions across users.

From a QoE management point of view, previous work has
argued that there is a clear interest among network/service
providers in estimating the distribution of QoE ratings in
their system, rather than just estimating a single MOS value
[3]. Such insights into QoE distributions allow providers to
derive metrics such as Good or Better (GoB) ratio (giving the
probability that for a given condition, the user rating will be
“good or better” [4], corresponding to ratings 4 or 5 on a 5pt.
Absolute Category Rating, ACR, scale), Poor or Worse (PoW)
ratio (the probability that user ratings will be 1 or 2 on a 5pt.
ACR scale), or various quantiles. Depending on a provider’s
QoE management goals, such metrics can provide valuable
input for QoE control and optimization, such as invoking
resource (re)allocation mechanisms.

In our previous work [5], we have tackled the challenge
of how to derive a QoE distribution in a system, given: 1)
the distribution of a system performance condition, and 2)
the user rating distribution for fixed values of the condition
as observed in subjective studies. We briefly summarize our
previous findings as follows:
• We proved a fundamental relationship showing that the

expected QoE in the system can be derived by applying
the MOS mapping function f(x) to the measured QoS
distribution X in the system: E[Q] = E[f(X)].

• We showed that to derive additional QoE metrics in
the system it is necessary to use corresponding map-
ping functions derived from user rating distributions
in subjective studies. E.g., to derive the GoB in the
system, a QoS-to-GoB mapping function g(X) is needed:
GoB[Q] = E[g(X)].

• We showed that to derive the complete QoE distribution
in a system with a given system performance distribu-
tion, we need to know the distributions of rating scores
observed in the subjective study per tested performance
condition.
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In realistic cases, studies for the most part report only
QoS-to-MOS mapping functions, thus leading to the challenge
of how to derive the aforementioned metrics. In this paper,
we build on our previously reported results by proposing a
methodology for approximating user rating distributions,
given only a QoS-to-MOS mapping function and second order
statistics. We select the parametric Beta distribution and
derive its parameters based on the MOS and standard deviation
of opinion scores (SOS). We then illustrate how to combine
this rating distribution with a system parameter distribution so
as to obtain the QoE distribution in the system.

The paper is organized as follows. Section II illustrates
the process of deriving QoE in a system, applying the pre-
viously mentioned fundamental relationship between QoE in
the system and subjective user studies for arbitrary QoE
metrics. Section III provides analytical results using a Web
QoE model relating waiting times to QoE, while Section IV
gives numerical results based on measurements relating packet
losses to video stall frequencies and durations, which are in
turn mapped to QoE estimates. Conclusions and outlook are
given in Section V.

II. METHODOLOGY

Figure 1 provides an overall picture of deriving QoE at the
system level. In a system, its users will experience changes in
system performance, caused by network effects (e.g., losses,
response times, throughput), or application / service con-
figuration (e.g., blurriness, number of stalls, stall duration,
infrastructure capacity). The system’s performance depends
on various system conditions, including its configuration, its
implementation, the system operational state, and the system
utilization. Since the system utilization varies as the offered
load varies, the users will experience different performance,
in this paper represented by a (potentially multi-dimensional)
random variable, which we write in scalar form X . The cumu-
lative distribution function (CDF), H(x), and the probability
density function (PDF), h(x), of X are:

H(x) = P (X ≤ x), h(x) = d

dx
H(x) (1)

Two different users experiencing the same (multi-
dimensional) system condition (e.g., stall frequency and du-
ration), x, may rate the situation differently due a variety
of reasons (e.g., user mood, expectations, past experiences),
which we refer to as user diversity. This is represented by a
random variable Q|x for the QoE user ratings, given the same
system condition x, with the CDF Q(i|x).

Q(i|x) = P (Q ≤ i|X = x) (2)

We obtain a probability mass function (PMF) and a probability
density function (PDF), q(i|x), for discrete and continuous
rating scales, respectively.

The H(x) might change due to reconfiguration or reimple-
mentation of the system and its service, or due to changes
in the offered load or system utilisation. In user studies,
the Q(i|x) is typically obtained under certain (controlled or

observed) system performance conditions, which do not reflect
the H(x) (i.e., current system performance distribution).

A. Derivation of System QoE Distribution

Q is the random variable for the QoE user ratings over all
the system performance conditions, with the CDF Q(i)

Q(i) = P (Q ≤ i) =
∫
x

Q(i|x)h(x)dx (3)

which is obtained by integrating over the (potentially multi-
dimensional) QoS parameter X . For example, if X is two-
dimensional, a double integral is to be computed. We may
directly derive the PMF and PDF for a discrete and continuous
user rating scale, respectively.

q(i) =

∫
x

q(i|x)h(x)dx (4)

Please note, when X is a discrete distribution (as typically
obtained in measurements, e.g., number of stalls, total stall
duration discretized in bins), the sum is computed over all
possible conditions of x

Q(i) = P (Q ≤ i) =
∑
x

Q(i|x)h(x)dx (5)

using the discrete PMF h(x), see Section IV for an example
of multidimensional discrete empirical measurements.

Knowing the distribution Q allows us to derive various
metrics of interest, such as the expected system QoE E[Q],
the ratio of users rating Good-or-Better GoB[Q] = P (Q ≥ k)
where k indicates ’good’ on the rating scale, or the ratio of
users rating Poor-or-Worse PoW [Q] = P (Q ≤ j) where j
indicates ’poor’ on the rating scale .

B. Using Empirical Distributions from Subjective Studies

The probabilities Q(i|x) may be estimated from user ratings
obtained by means of subjective studies, e.g., in the laboratory,
via crowdsourcing, or by field trials, as long as the system con-
dition x is observed. If the set of k ratings, Ix = {i1, · · · , ik},
is available from a study under test condition x, then we can
estimate the empirical distribution of P (Q = i|X = x) from
the data set, Ix.

Besides empirical distributions, parametric models of the
QoE distribution may be utilized. For example, literature has
shown that for web QoE, the conditional user rating distribu-
tion Q|x for a particular waiting time x may be approximated
with a binomial distribution [3]. This example of a parametric
distribution will be considered in Section III.

C. Beta Distribution Approximation for Q|x
Typically, in the literature, such a set or parametric distribu-

tion is not provided, but only the QoS-to-MOS mapping and
the description of the test conditions used in the study. We
then have to use the QoS-to-MOS mapping, and second order
statistics (standard deviation or sample variance) or the SOS-
hypothesis [6] (postulating a square relationship between MOS
and standard deviation of opinion scores, SOS), and select an
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System and services
• utilization, request patterns,
• configuration,
• implementation, . . .

System parameter distribution X
Parameter X of the system is measured and is a (multi-
dimensional) random variable (RV).
H(x) = P (X ≤ x), h(x) = d

dxH(x)

Subjective studies
For fixed conditions x, user ratings (random variable, RV)
are measured in a subjective study incl. diversity of test
subjects.

Conditional rating distribution Q|x
• empirical distribution
• parametric distribution (Sec. III)
• Beta distribution approx. with f(x) and θ (Sec. IV)

⊙combine distributions

random variable X , e.g.
response time

e.g. MOS mapping f(x)
SOS parameter θ

QoE distribution Q in the system
The QoE distribution Q over all users is Q(i) = P (Q ≤ i) =

∫∞
x=0

Q(i|x) · h(x)dx. The distribution Q allows to derive
metrics like expected QoE in the system, E[Q], or GoB in the system GoB[Q].

Fig. 1. Overview on system QoE (being observed in a real system) and user rating distributions in a subjective study.

appropriate probability density function that fits the available
statistics from the study.

The main contribution of this paper is the answer to the
following fundamental question:

Fundamental question: How can we derive QoE distri-
butions in systems when observing QoS only? How can
we approximate the QoE distribution in practice using
existing QoS-MOS mapping functions?

We approximate the conditional QoE distribution Q|x for
condition x by using a continuous Beta distribution Z0 with
parameters a and b which is defined on the interval [0; 1]. For
obtaining a QoE distribution in the range of [L;H], e.g. the
common 5-point scale [1; 5], the Beta distribution is linearly
transformed.

Z = (H − L)Z0 + L with Z0 ∼ Beta(a, b) (6)

Accordingly, the expected value is E[Z] = (H−L)E[Z0]+L
and the variance is V ar[Z] = (H − L)2V ar[Z0].

The parameters a, b of the the Beta distribution depend on
the MOS value m = E[Q|x] and the corresponding standard
deviation s = Std[Q|x] for condition x. While the MOS
value m = f(x) is obtained by the QoS-to-MOS mapping
function, we derive the standard deviation by utilizing the SOS
hypothesis [6]. The SOS hypothesis provides a relationship
between the mean opinion score (MOS) m and the standard
deviation of the opinion scores (SOS) s. Thereby, the SOS
parameter 0 < θ < 1 is independent of the particular condition

and holds for a certain service, e.g. θ = 0.25 is measured in
subjective studies for web QoE [3].

s2 = θ(H −m)(m− L) (7)

With the well known expected value and the variance of
the Beta distribution Z0, we are therefore able to derive the
parameters a and b for a given MOS value m and SOS
parameter θ. It is H > L.

E[Z0] =
a

a+ b
=
m− L
H − L

(8)

V ar[Z0] =
ab

(a+ b)2(a+ b+ 1)
=
θ(H −m)(m− L)

(H − L)2
(9)

This is algebraically transformed and we obtain the parameters
of the Beta distribution as a function of the MOS m and given
SOS parameter θ.

aθ(m) =
(1− θ)(m− L)
θ(H − L)

bθ(m) =
(1− θ)(H −m)

θ(H − L)
(10)

As a final result of the Beta distribution approximation, we
describe the conditional QoE distribution Q|x for a MOS value
m = f(x) on a rating scale [L;H] as Beta distribution with the
parameters aθ(m) and bθ(m). Thereby, the SOS parameter θ is
given for the service under consideration and a MOS mapping
function f(x) is available.

Z0 ∼ Beta(a, b) with a = aθ(f(x)), b = bθ(f(x)) (11)
Q|x = (H − L)Z0 + L (12)

3



The CDF of the Beta distribution is described with the
incomplete Beta function B(y, a, b) and the complete Beta
function B(a, b) with parameters a, b as in Eq.(10).

Q|x(y) = P (Q|x ≤ y) =
B( y−LH−L , a, b)

B(a, b)
(13)

Then we obtain the unconditional system QoE distribution
Q with the PDF h(x) for the condition X according to Eq.(3).
The CDF is defined for any y ∈ [L;H].

Q(y) = P (Q ≤ y) =
∫
x

Q|x(y)h(x)dx (14)

III. CASE STUDY: WEB QOE

In the following, we consider a simple example to illustrate
how to derive the QoE distribution in the system. We study a
single web server offering users a certain service like access
to a static site or authentication [7]. Literature provides web
QoE models that may be utilized to map the waiting times
to QoE. In particular, a recent web QoE model [8] describes
an exponential relationship between the speed index (SI) as a
proxy for perceived page load times (PLT) and MOS values.

A. QoE Model: Binomial Distribution

The exponential MOS mapping function follows the IQX
hypothesis [9] and reveals a sensitivity parameter β ≈ 0.25,
cf. [8]. This MOS mapping function f(x) maps the response
time x of the web service to a MOS value on a 5-point absolute
category rating scale ranging from 1 (bad) to 5 (excellent).

f(x) = ne−βx + 1 (15)

with n = 4 due to the used 5-point rating scale, and β = 0.25.
Furthermore, the analysis of a subjective study on web

QoE [3] revealed that the user ratings Q|x can be accurately
approximated by a binomial distribution for given x. Hence, a
discrete QoE rating scale is used. Thus, for any response time
x of the system, we may approximate the distribution of Q|x
with a Binominal distribution, Q|x ∼ Bino(n, p)+1 with the
expected user rating E[Q|x] = np + 1 corresponding to the
MOS value f(x), which allows to derive the parameter p of
the binomial distribution.

Q|x ∼ Binom(n, p) + 1 with p = f(x)−1
n = e−βx (16)

The probability that the user rating is Q|x = i is

P (Q|x = i) =

(
n

i− 1

)
e−βx(i−1)(1− e−βx)n−i+1 (17)

for i = 1, 2, 3, 4, 5 and n = 4, β = 0.25. For the sake of
simplicity, we use the term ‘waiting time’ in the following
when referring to the speed index as proxy for the user
perceived waiting time.

B. Waiting Time Model: Lognormal Distribution

Different configurations of the web service result with
various waiting times. Those waiting times are assumed to
follow a log-normal distribution which is observed in practice
for system response times, e.g. Enterprise Resource Planning
(ERP) transaction systems [10]. Please note that the actual
distribution is not relevant for the illustration. The log-normal
distribution has two parameters µ and σ which may be derived
for given mean E[X] and standard deviation Std[X] of the
waiting time X ∼ LOGN(µ, σ). The PDF of the log-normal
distribution is

h(x) =
1

xσ
√
2π
exp

(
− (lnx− µ)2

2σ2

)
(18)

Figure 2 shows the PDF h(x) for the three different system
configurations with same mean waiting times E[X] = 4 s, but
different standard deviations (2 s, 4 s, 8 s).

C. Deriving the QoE Distribution in the System

Based on the fundamental relation (Eq.(3)) in Section II,
the QoE distribution in the system can be derived as follows:

P (Q = i) =

∫ ∞
x=0

P (Q|x = i)h(x)dx , ∀i = 1, . . . , 5 (19)

This integral is derived numerically using Eq.(17) and Eq.(18).
Figure 3 shows the QoE distribution as filled circles, depend-
ing on the standard deviation of the waiting time. From the
QoE distribution, we can easily observe the ratio of users in
the system with poor or bad QoE (PoW ratio) as well as
good or better QoE (GoB ratio). Interestingly, the GoB ratio
increases with increasing variance in the system. This seems to
be counter-intuitive, but log-normal distributions with the same
expectations and growing variance get more heavy-tailed,
cf. Figure 2, which usually indicates worse performance.
However, a higher variance implies even more users with
shorter waiting times, which improve the GoB ratio. On the
other hand, a couple of users experience very long waiting
times, which do not imply big differences in (anyway bad)
QoE according to the exponential mapping, but yet a sinking
PoW ratio as the variance of the waiting time increases.

D. Beta Distribution Approximation

Figure 3 compares the CDF values of the discrete QoE
distribution Q, derived from the Binomial distribution, with the
CDF values of the continuous Beta distribution Q∗, which is
discretized through rounding and bounding to the scale [1; 5],

Q̂ = [Q∗] (20)

with probability mass function

Q̂(i) = P (Q̂ = i) = P (i− 0.5 < Q∗ ≤ i+ 0.5) (21)
= Q∗(i+ 0.5)−Q∗(i− 0.5)

for i = 1, . . . , 5. In Figure 3, the exact CDF values of the QoE
in the system are depicted as filled circles. The results from
the Beta distribution approximation are plotted as solid lines
with the SOS parameter θ = 1

n = 0.25, which is derived by
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Fig. 2. Web QoE example: The three curves indicate different systems with
same mean waiting time of m = 4 s, but varying standard deviation s which
impacts the tail of the distribution.
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Fig. 3. Web QoE example: Approximation of system QoE distribution with
Beta distribution. The different lines correspond to the CDF values CDFi(s)
for i = 1 (bad, red), 2 (poor, orange), 3 (fair, yellow), 4 (good, light green),
5 (excellent, green). The expected waiting time is E[X] = 4 s, while its
standard deviation s is varied on the x-axis. Thus, the lines correspond to
CDFi(s) = P (Q̂m,s ≤ i) where the discrete QoE distribution Q̂ms is
observed for a system with E[X] = m,Std[X] = s.

solving θ(5−np)(np−1) = np(1−p). It can be seen the that
differences are negligible and that the Beta approximation is
sufficient in practice to derive the QoE distribution.

IV. CASE STUDY: VIDEO STREAMING QOE

We illustrate how our approach might be applied in a more
complex use case, by considering a layered approach, where
the system’s QoS performance is first mapped to probability
distributions for application-layer KPIs, and then those are
used to estimate the QoE distribution itself. The performance
model is taken from [11]. In that paper, a model is provided
for deriving distributions of the number of stalls and their
duration for non-adaptive HTTP streaming. In spite of its
limitation in terms of lack of adaptation, the approach can be
applied to more complex scenarios, as it allows to decouple
the models [12]: instead of a single QoS to QoE mapping, we

now have a QoS to application-layer KPI mapping, and then
another mapping from this level to QoE.

A. Measurement Setup

The experiment in [11] involved a large number of parame-
ters, including loss ratio, loss burstiness, available bandwidth,
buffer size, and content (different movies). An emulated net-
work was setup, and the videos were streamed through it to
a Dynamic Adaptive Streaming over HTTP (DASH) play-
out emulator [13], which recorded stalling events and their
durations. From those measurements, two neural networks
were trained to estimate the distribution of the number of
stalls, as well as the stall durations for each experimental con-
dition. From these results, we obtain a joint two-dimensional
application-level KPI (QoS) distribution X as visualized in
Figure 4; this joint QoS distribution is mapped to MOS
according to the QoE model below.

B. Derivation of QoE Distribution

The QoE model consists of two parts. First, the application-
level QoS parameters are mapped to MOS values. Then, for a
certain MOS value and condition x, the entire QoE distribution
is derived based on the Beta distribution approximation with a
SOS parameter θ. In [14], an SOS parameter of θ = 0.3 was
observed for non-adaptive video streaming based on subjective
crowdsourcing studies with arbitrary devices from end users,
while [13] reported θ = 0.1 in a controlled laboratory study.

The MOS mapping function is provided in [15] based on
subjective studies of non-adaptive streaming and follows an
exponential relationship. This model takes into account the
number n of stalls and the total stall duration t normalized by
the video duration d (in seconds). In the experimental results,
videos of d = 60 s are considered.

f(n, t) = 3.5e−4.5·t/d−5.7·n/d + 1.5 (22)

For the condition x = (n, t), the QoE user rating distribution
is approximated for the MOS m = f(n, t) with the Beta
distribution and the parameters aθ(m) and bθ(m) as defined
in Eq.(10). The corresponding CDF is then given by Q|x(y)
for any y ∈ [1; 5].

Then, the CDF of the QoE distribution Q in the system is
numerically derived. Please note that the number of stalls is a
discrete random variable. Furthermore, the total stall duration
is discretized in time slots of 1 s, also yielding a discrete
random variable.

Q(y) =

∞∑
n=0

∞∑
t=0

Q|(n,t)(y)f(n, t) , y ∈ [1; 5] (23)

C. Results: Impact of loss rate

Figure 5 plots the CDF of the QoE distribution for differ-
ent packet loss ratios (4.8%, 9.6%, 14.4%). The solid lines
correspond to a high user diversity with a SOS parameter of
θ = 0.3, while the dashed lines are related to θ = 0.1, which
are inline with the crowdsourcing [14] and laboratory results
[13]. First of all, we observe that there is no big difference
of the curves for the different SOS parameter values reflecting
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Fig. 4. Video example: Empirical joint probability mass function h(n, t) of
the QoS conditions (i.e. number n of stalls and total stall duration t) for
a scenario with a packet loss ratio of 9.6%. The color indicates the joint
probability h(n, t).
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Fig. 5. Video example: QoE distribution depending on the packet loss ratio
and the SOS parameter reflecting the user diversity.

the user diversity, see also the GoB and PoW ratios in Table I.
Hence, if the SOS parameter is not known in practice, it may
be sufficient to derive the numerical results for both values
θ = 0.3 and θ = 0.1.

Figure 5 reveals significant changes in the shapes of the
QoE CDFs as the packet loss rate grows. While for a packet
loss of 4.8 %, GoB dominates (due to a majority of top ratings
of about 82%) and PoW is in the order of some few percent,
the CDFs become concave as loss increases, with significant
PoW above 60–80 %, and GoB in the order of some few
percent. The QoE distributions clearly indicate a change of the
operational regime from a (rather) good state (packet loss of
4.8 %) to a bad state (higher packet loss of 9.6 % and above).

V. DISCUSSION AND CONCLUSIONS

For service providers, QoE can be a much more complex
issue than just obtaining a nice, MOS-like indicator of how
quality looks like for their service(s). For many interesting
applications, ranging from pricing to monitoring to resource
optimization, it is important to take user diversity into account.

TABLE I
VIDEO EXAMPLE: GOB P (Q ≥ 4) AND POW P (Q ≤ 2) FOR DIFFERENT

PACKET LOSS RATIOS AND SOS PARAMETERS θ.

loss GoB GoB PoW PoW
(%) θ=0.3 θ=0.1 θ=0.3 θ=0.1

4.8 0.88 0.86 0.04 0.02
9.6 0.06 0.02 0.64 0.61
14.4 0.01 0.00 0.81 0.87

Ideally, service providers would have access to the distribution
of QoE across their service’s users. This is unfortunately not
possible in most cases, as most modeling efforts focus on QoS-
to-MOS type mappings.

In previous work, we showed that there exists a fundamental
relationship between the QoE in the system and the distribu-
tion of MOS values (in that the expected QoE in the system
will be the same as the expected MOS). We further showed
that while deriving MOS distributions is possible, these do
not usually correspond to the actual distribution of QoE in the
system, and that if other, more interesting metrics than MOS
(e.g., GoB ratio) are to be used, then the modeling efforts
should be extended to provide QoS-to-M type mappings, with
M being the desired metrics.

In this paper we have gone one step beyond, and propose
a method for estimating rating distributions (i.e., QoE distri-
butions), provided we have a QoS-to-MOS mapping and the
SOS parameter for that service. We used the Beta distribution,
and showed how to derive its parameters from the MOS and
SOS. We then showed how to combine this rating distribution
with that of the system’s QoS parameters, to finally derive an
estimate of the ratings distribution in the system.

We have illustrated the approach with two case studies. The
web QoE example provides a “mathematically nice” analytical
example, in which the distribution of QoS parameters is
assumed to be known. The HTTP video streaming example
shows how this can this be achieved in cases where the relevant
QoS parameters’ distribution is not known in advance. The
results in this paper provide a solution to the problem of
understanding the QoE distribution in a system, in cases where
the necessary data is not directly available in the form of
models going beyond the MOS, or where the full details of
subjective experiments are not available.
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A script implementing the Beta distribution approximation
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“QoE beyond the MOS: an in-depth look at QoE via
better metrics and their relation to MOS,” Quality and
User Experience, vol. 1, no. 1, 2016.
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