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Abstract Most of modern communication systems are based on operation of fixed-size
data packets like cells or slots. Due to this property discrete-time modelling techniques
are increasingly appropriate for performance evaluation purposes. In the first part of
this paper basic discrete-time analysis techniques are outlined, where the GI/GI/1 queue
with bounded delay is taken as an example to illustrate the methods. The second part
deals with discrete-time algorithms to analyse usage parameter control functions in ATM
systems, where two submodels are discussed. The first submodel is used to investigate the
traffic shaping function using a cell process spacer, where the characterization of cell traffic
passing the spacer is taken into account. The second submodel deals with the dimensioning
of cell delay variation tolerance, which appears in the generic cell rate algorithm used in
the user-network interface of ATM networks.

1. Discrete-time modelling and analysis technique

1.1 General

An increasing number of modern computer networks and communication systems operate
with fixed-size packets like cells in asynchronous transfer mode (ATM) systems or slots in
distributed queue dual bus (DQDB) subnetworks. Due to the cell-based nature of these
system concepts, discrete-time queueing models are the natural choice and offer various
advantages, compared to conventional methods. For the analysis of discrete-time models
methods operating in discrete-time and discrete probability environments are needed.
These methods can be subdivided into two main subclasses: i) analysis methods dealing
directly with probability distributions in time domain and ii) analyses in transform do-
main.

The main purpose of this paper is to illustrate the use of discrete-time analysis techniques,
considering models dealing with usage parameter control (UPC) functions in ATM systems
at the user-network interface (UNI). In these analyses, performance measures of interest



are usually the cell blocking probability (e.g. in the range of 10~° to 10~°) or the waiting
time distribution function with the percentiles. Thus, simulation methods normally reach
their limits very fast due to excessive computing time and the need of appropriate analysis
techniques is obvious.

This paper is organized as follows. In this section basic discrete-time analysis techniques
are outlined, where the GI/GI/1 queue with bounded delay is taken as example. This
model is the underlying model for the performance evaluation of the submodels in the next
section. Section 2 presents performance analyses of UPC functions in ATM systems, where
two submodels are discussed. The first submodel is used to investigate the traffic shaping
function using a generic cell process spacer, where the characterization of cell traffic
passing the spacer is taken into account. The second submodel deals with the dimensioning
of cell delay variation tolerance, which appears in the generic cell rate algorithm used in
the user-network interface of ATM networks.

1.2 Discrete-time GI/Gl/1 queue

Discrete-time models appear more frequently in performance evaluation of modern com-
munication systems and play an increasingly important role. On the one hand, new system
structures and principles often employ discrete or discretized basic time and data units.
As discussed above, examples are the concept of cells in ATM networks or time slots in
high-speed local and metropolitan area networks (e.g. DQDB). On the other hand, system
parameters and input values are often based on measured data, which are given in the
form of histograms. They are discrete-time by nature. These facts lead to the development
of discrete-time models in performance analyses in the recent literature.

For the analysis of this class of models, conventional methods operating in continuous
time are obviously inappropriate. Due to the lack of discrete-time methods they are used
in some cases in an approximate sense. In these studies equivalent continuous-time model
components are employed, e.g. the discrete-time stochastic arrival and service proces-
ses are approximately described by means of random variables with well-known time-
continuous types of distribution functions. A small number of studies [1, 2, 21, 23, 24,
29, 32, 33, 34, 37] deals with direct analysis approaches for discrete-time models. Most
of these studies take into account the discrete-time analysis of basic queueing models
like single server systems [1, 2, 23, 24, 32] or queueing networks [29]. Some other studies
present discrete-time analysis of general polling systems, overload control models in com-
munication switching systems [33], routing mechanisms [37] or multiplexing schemes in
modern communication system architectures [34]. A comprehensive survey can be found
in [21].

1.2.1 Algorithm for the GI/Gl/1 queue in time domain

We consider here the basic discrete-time GI/GI/1 queueing system. The term discrete-
time indicates here that the time axis is slotted in equidistant time units of length At.
The service time B is generally distributed and the arrival process is a general stochastic
process characterized by a generally distributed interarrival time A. Arriving customers



finding a busy server have to join an infinite capacity queue. Waiting customers in the
queue will be treated according to a first-in, first-out (FIFO) service discipline.

The main performance measures of interests are here the distribution functions of the
waiting time and the inter-departure interval. We should refer to studies appearing in
the literature dealing with the calculation of the waiting time distribution function of the
GI/GI/1 queue [1, 22, 23, 24, 25, 31, 32]. Most of these methods are related to solutions of
the Lindley integral equation [25], which is a special form of Wiener-Hopf equations. Most
of studies consider methods operating in Laplace domain. They are based on techniques
like spectral factorization, numerical estimation of poles and roots of the system function,
determination of quadratic factor of polynomials, as well as separation of functions ha-
ving convolutions in frequency domain. Ackroyd [1] presented an efficient algorithm for the
calculation of the waiting time distribution of the discrete-time GI/GI/1 queue, where dis-
crete transform techniques (e.g. the Cepstrum concept [27], phase unwrapping technique
etc.) and fast convolution algorithms are used. Using the same approach, a discrete-time
analysis of the idle time and the inter-departure process is given by Tran-Gia in [32, 35].

As mentioned above, the random variables (RVs) are of discrete-time nature, i.e. the
time axis is divided into intervals of unit length A¢. As a consequence, samples of those
random variables are integer multiples of At; the time discretization is equidistant. We
further assume that the discrete distributions have finite lengths. For a discrete-time
random variable X, we use the notation z(k) = Pr{X = k},—o0 < k < +o0, for the
distribution (probability mass function) of X, X (k) = Yf__. z(i), —00 < k < 00, for
the distribution function of X, EX for the mean and cx for the coefficient of variation of
X.

The basic relationship for the analysis of the discrete-time GI/GI/1 queue is equivalent
to the well-known Lindley integral equation for the continuous-time system [22, 25, 31].
It will be outlined in the following.
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Figure 1: Unfinished work process in GI/GI/1 model

We observe a test customer (number n) which joins the system and sees upon its arri-
val an amount U, of unfinished work in the system (cf. Fig. 1). The service time of the
test customer is denoted by the RV B, and the interarrival time, i.e. the interval until



the (n + 1)-st arrival, by A,. The corresponding distributions a,(k) and b,(k) exist for
k=0,..,Ngs—1and k =0,..., Ng — 1, respectively. The unfinished work U, indicates the
amount of time units the server has to work out before being able to serve the test custo-
mer. Assuming the FIFO service discipline, its waiting time W,, with the corresponding
distribution

wn (k) = Pr{W,, = k time units of length At} (1)

are identical with U, and its distribution u, (k), respectively. The following recursive
relationship between the waiting time distributions of two successive customers can be
found [1, 24, 32|:

Up1(K) = To(uy, (k) * an(—k) x bn(K)) = mo(u,, (k) % ca(k)), (2)

or

Wnt1(k) = mo(wn(K) x ca(K)) (3)

where the term c,(k) = a,(—k) *b,(k) is often called the system function of the GI/GI/1
system. The symbol ”x“ denotes the discrete convolution operation:

+o0

as(k) = ar(k) * az(k) = 3 ai(k - j) - aa(j) (4)

j=—o0

and mo(.) the following operator:

z(k) k>0
mo(z(k)) = .22_300 z(7) k=0. (5)
0 k<0

Considering the service and arrival processes to be recurrent and the observed state process
of the discrete-time GI/GI/1 model to be in statistical equilibrium, the index n of the test
customer can be suppressed. We arrive at the stationary state equation for the analysis
of the waiting time distribution of the GI/GI/1 system:

w(k) = mo(w(k) * c(k)). (6)

Eqns. (3) and (6) represent discrete forms of the Lindley integral equation [25], which is
well-known in the context of GI/GI/1 analysis. According to this equation the waiting time
distribution of the (n + 1)-st customer can be expressed as a function of the waiting time
distribution of the n-th customer and the system function. Using this relationship (cf. [1,
32]) the equilibrium waiting time distribution can be iterativly calculated as schematically
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Figure 2: Computational diagram of the algorithm in time domain

depicted in Fig. 2. The iteration procedure may start e.g. by assuming the first customer
finding an empty system.

For large vector sizes of the arrival and service time distributions, the discrete convolu-
tion operation can efficiently be implemented using discrete transforms and convolution
algorithms, e.g. the fast Fourier transform (FFT) (based on the discrete Fourier trans-
form (DFT)) [16, 27]. For the analysis of a GI/GI/1 system under stationary conditions,
the number of iteration cycles needed and in accordance with it, the computing efforts
depend strongly on the parameters of the system to be investigated. In comparison with
algorithms in transform domain, e.g. the spectral factorization in Laplace- or Z-domain or
the separation of maximum and minimum phase systems using the cepstrum concept (see
next subsection), the algorithm in probability domain (or time domain) is very robust
with respect to the type of interarrival and service processes. Furthermore, the algorithm
in time domain as illustrated in Fig. 2 is also applicable to more general G/G/1 systems
with time- or state-dependent interarrival and service time distributions, e.g. systems
with workload-oriented overload control [33] or with alternating input processes [37]. The
algorithm can also be modified to deal with GI/GI/1 queueing systems with bounded
delay.

1.2.2 Algorithm for the GI/Gl/1 queue in transform domain

From eqn. (6), which was given for the waiting time distribution, an analogous form of
the waiting time distribution function defined by W (k) = Y% ___ w(i) can be obtained:

W= (k) + W (k) = c(k) x W (k), (7)

where W~ (k) consists of components of the convolution c(k)x W (k) lying on the negative
time axis. In Z-transform domain, we obtain the following fundamental equation:

Wil o = IS ®



where the transfer function of the GI/GI/1 system in Z-domain is contained:

Spp(z) = =l 9)

1—271
It can be shown (cf. [1, 35]) that for distributions a(k) and b(k) with finite length, the
function W;(z) stands for the Z-transform of a maximal phase system (cf. [27]). Further-
more, the term wzi ®) corresponds to the Z-transform of a minimal phase system. This
knowledge leads to solutions of eqn. (8) using pole and root allocation schemes [24] or in

conjunction with the use of the Cepstrum concept [1]. The application of the Cepstrum
to the waiting time analysis of GI/GI/1 queueing model will be discussed below.
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Figure 3: The Cepstrum algorithm for GI/GI/1 analysis

In the same way as in signal processing techniques, the Cepstrum concept is employed
here to separate maximal and minimal phase systems [27]. Thus, the term wzi(z) or
consecutively, the waiting time distribution w(k) in time domain, can be filtered out
of the transfer function Szr(z) after transforming it into the Cepstrum domain. The

algorithm is illustrated in Fig. 3 containing the following major steps (cf. Ackroyd [1]):

1. Calculation of the transfer function Szr(z) out of the system function
c(k) = a(—k) xb(k). Since c(k) is of finite length, Sz7(2) can be equivalently repre-
sented by the DFT Sppr(n).

2. Calculation of the complex Cepstrum

SCEP(k) = DFT_l{ln[SDFT(n)]}. (10)



3. Separation of Stp(k), which consists of non-negative components of Scgp(k) . The
function Sggp(k) is the Cepstrum of the unnormalized waiting time distribution

wl(k).

4. Inverse transformation of Sgyp(k) to get w; (k) and normalization of w; (k) to obtain
finally the waiting time distribution w(k) of the GI/GI/1 system.

Out of the waiting time distribution, further performance measures of interest, like the
idle time of the server and the interdeparture distribution can be derived [32].

1.3 The GI/Gl/1 queue with bounded delay

We consider in this subsection the case of the GI/GI/1 system with bounded delay, i.e.
the waiting time of customers is limited to a maximum value of L. Customers who arrive
and would have to wait longer than a threshold value, say L — 1, are rejected.

This modification of the basic GI/GI/1 system has been used in modelling of overload
control strategies in switching systems [34] and in backpressure mechanisms in reservation-
based access mechanisms [36]. In this paper, this model will be used for performance
evaluation of UPC functions in ATM systems like the spacing device and the peak cell-
rate monitoring algorithm.

n-1 n+1 blocked
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Figure 4: Sample path of GI/GI/1 queue with bounded delay

Following the derivation in [34] the analysis of the GI/GI/1 queue will be outlined. We
denote by A, the RV for the interarrival time between the n-th and the (n+1)-st customer,
B,, the RV for the service time of the n-th customer and again, U,, the RV for the unfinished
work in the system immediately prior to the n-th customer arrival.

A snapshot of the state process development in the system is shown in Fig. 4. Observing
the n-th customer in the system and the condition for customer acceptance upon arrival
instant, the following conditional random variables for the workload seen by an arriving
customer are introduced:

Uno =Upn|Up < L, Uni =Un|U, > L, (11a)



Un+1,0 = Un+1|Un <L, Un+1,1 = Un+l|Un > L. (llb)

The distributions of these random variables, adjusted by normalization, are:

o un(k)] _ P un(k)
o) = b, <1y Lg n(3) e
sty — elm(B)]_ orfua(E) 121)

Pt 2} £ )
i=L

where 0™(.) and o0,,(.) are operators which truncate parts of a probability distribution
function. The results of these operations are unnormalized distributions defined by:

o™[z(k)] = {g(k) ZEZ (13a)
omla®) = { 0gy  ESm (131)

Observing the development of the process (cf. Fig. 4) together with the maximum delay
L — 1, the following relationships between the RVs and their distributions are obtained:

1. U, < L: customer acceptance

Un+l,0 = Un,O + Bn - An (143’)
Unt10(k) = Toltno(k) *bn(k) * an(—Fk)]. (14b)

2. U, > L: customer rejection

Un+1,1 = Un,l_An (15&)
tnsin(k) = Toluns(k) % an(—k)]. (15b)

The distribution of the workload seen by the (n + 1)-st customer is:
Uny1(k) = Pr{U, < L} - uny1,0(k) + Pr{U, > L} - up41,1(k). (16)

From eqns. (14b), (15b) and (16), we finally arrive at a recursive relation to calculate the
workload at arrival epochs of customers:

Uns1(k) = mo[0" ™ [un (k)] * bn(K) * an(—k)] + To[ow [un (k)] * an(—F)] (17)
= mol(0" " [un(k)] * bu(K) + op[tn(K)]) * an(—F)]



Using this equation an algorithm to calculate the the workload prior to customer arrivals
can be found. The algorithm can be used for both stationary and nonstationary traffic
conditions. Under stationary conditions the index n and (n + 1) in this equation can be
suppressed. The computational diagram is depicted in Fig. 5.
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Figure 5: Computational diagram for GI/GI/1 queue with bounded delay

un+1 (k)

Finally, the customer rejection probability in statistical equilibrium is:
oo
B = u(3). (18)
=L

This performance measure will be used e.g. to compute the probability for a cell to be
compliant due to the generic cell rate algorithm as discussed in the next section.

2. Discrete-time analysis of usage parameter control functions

2.1 User-network interface and usage parameter control

In the current standardization process of ATM networks the design issues concerning
the user-network interface (UNI) in accordance with the usage parameter control (UPC)
are crucial points. The main functions of the UPC/UNI illustrated in Fig. 6 are under
discussion in standardization bodies (cf. CCITT recommendation [9]). We will briefly
describe major UNI/UPC functions in the following with focus to modelling aspects.

Fig. 6 shows a number of virtual channel connections (VCC) multiplexed at the network
edge. The multiplexed cell stream has to pass physical layer functions and is multiplexed
further with operation and maintenance (OAM) cell traffic before entering the ATM
network. Due to the connection admission control (CAC) a VCC is accepted or rejected.
In the case of being accepted by the network, the VCC is thought of to have a contract
with the network: the VCC user agrees to keep the negotiated traffic characteristics during
the connection holding time, the network guarantees a predefined quality of service (QoS).
Once a connection is established, policing is provided to guarantee the desired QoS for all
connections according to their traffic contracts.
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Figure 6: Reference configuration from CCITT Draft Rec. 1.371

In the first phase of ATM system implementation and testing the most important connec-
tion parameter is the peak cell rate; this parameter is already standardized by various
standardization bodies. The peak cell rate R; of the VCC ¢ is defined as the inverse of
the minimum time 7T; between the emissions of two cells from this connection. Currently
there are discussions about the introduction of a sustainable cell rate in the standards.
A preliminary definition of this measure can be found e.g. in Draft Rec. 1.371 of CCITT

(8, 9]).

We observe now the cell stream of a connection crossing the multiplexer to enter the ATM
network, as shown in Fig. 7. The traffic process I generated in higher protocol layers has
to pass a spacing device, which ensures that the peak cell rate R; of the VCC ¢ is not
exceeded. This results in the cell process marked by II in Fig. 7. In [7, 32, 36] a cell
spacer was suggested as traffic shaper. Another approach using a spacing policer was
presented in [9]. Different virtual channel connections with different peak cell rates may
be multiplexed. It should be noted that the arising spacer delay can affect the end-to-end
performance drastically. This phenomenon will be the major subject of the performance
model in section 2.2.

observed TRAFFIC Generic
virtual SHAPING MULTIPLEXING cell rate
channel O — . algorithm
connection ! ;
| spacer, Ty |~
vee (D! !
— spacer, T, | +————
back- ; : @
ground CORAMm)
traffic E ;
— spacer, Ty |—+—————

Figure 7: Cell traffic spacing and cell delay variation
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According to the multiplexing function and to additional superposition of OAM cell traffic,
a cell stream, which has been already spaced, can be again perturbed. At point III, the
minimum distance T between cells which belong to a connection 7 can be smaller than T;
and thus the peak cell rate R} at point III can momentarily be higher than R;. This effect
is often refered to as the cell delay variation (CDV), which can be observed in cell process
modifying phenomena like cell clumping or cell dispersion, which strongly influence the
cell process characteristics and the short-term rate of a VCC through the ATM network
and thus, its quality of service provided by the ATM system [4]. Cell clumping can lead to
short-term network congestions. Cell dispersion causes the necessity for larger buffer at the
receiving site of the ATM network if the customer equipment has tight delay constraints
(e.g. play-out buffer for voice/video). In a more general context, CDV can be introduced
by different factors, e.g. i) multiplexing cells from different ATM connections, ii) UPC
and network parameter control (NPC), iii) segmentation and reassembly functions in the
ATM adaptation layer (AAL) and iv) other network and protocol functionalities.

To control the cell delay variation, the generic cell rate algorithm (GCRA) is introduced.
By applying the GCRA to control the peak cell rate, it is also called the virtual scheduling
algorithm (VSA). It can be shown that this algorithm is equivalent to a continuous-state
leaky bucket algorithm (cf. [8]). The main function of the GCRA is to limit the CDV by
controlling the cell stream and to declare accordingly cells during a heavy-traffic phase to
be compliant or non-compliant. This is done connection-wise using two parameters: the
minimal inter-cell interval T; and the CDV tolerance 7;. Thus, the algorithm is denoted by
GCRA(T;,r;). Details of the algorithm will be described in Section 2.3.1, where an analysis
to calcutate the probability for a cell to be non-compliant is presented. The analysis also
delivers the distribution function of the inter-cell process at point IV (cf. Fig. 7).

It should be noted that the location and the order of the three basic function blocks i)
the spacer, ii) the multiplexer and iii) the GCRA as shown in Fig. 7 represent only one
of various architectural possibilities, which are organized in accordance with the ATM
switching system design. The GCRA can be performed e.g. at the same time with the
multiplexing function.

Details about the operation of the cell spacer and the generic cell rate algorithm will be
discussed later in this section.

2.2 Analysis of a cell spacer

The aim of the performance study in this section is an analytical treatment of a spacing
device used for cell shaping functions. The cell process spacer is often discussed in recent
literature [6, 7, 13, 15, 38]. The analysis is based on a discrete-time GI/D/1 queueing
system with bounded delay. The cell arrival process which is subject to spacing can arbi-
trarily be chosen. The algorithm aims at the calculation of the spacer output process in
term of the cell inter-departure time distribution, which gives insights to understand the
traffic stream forming properties of the spacing mechanism. It should be noted that the
spacer output process is in general non-renewal; its description using distributions will be
done in a cumulative sense.
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2.2.1 Traffic shaping using a spacer

As discussed above the peak cell rate R; of a virtual channel connection in ATM is defined
as the inverse of the minimum cell inter-arrival time T;. This parameter is part of the traffic
contract between the VCC and the network. The basic function of a cell spacer is to keep
the cells generated by a VCC to be at least T; apart. This is illustrated in Fig. 8.

vCcC Spacer
@ input cell stream Spacer output cell stream @
T Tmax
A;,ay(k) A2y (k)

Figure 8: Basic spacer model

The time axis is discretized by the cell duration At¢. The cell process of the VCC is
described by the arbitrary distributed random variable A; (cf. the mark I in Fig. 7 and
Fig. 8) for the cell interarrival time. The spacer output process is represented by the
discrete-time RV Aj; for the inter-departure time. The minimum inter-cell interval for
the observed VCC is T. We consider further a maximum spacer delay 7,,q.; cells which
would have to wait in the spacer for longer than 7,,,, are rejected.

2.2.2 Spacer modelling with bounded delay GI/D/1

We introduce the random variable U(t) for the time-dependent spacer state, which stands
for the amount of unfinished work in the spacer at time ¢. According to the spacing scheme
a cell which arrives at time t, and sees the spacer in the state U(tp) = k has to wait k&
time units in the spacer before being issued.

u(t)

Spacer i i i i i ' I departure
1 2 3 4 5 7 8 processes

GI/DA | | | | ' |

with bounded 1 2 3 4 5 7

delay

Figure 9: Spacer state process and output stream
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A sample path of U(t) is depicted in Fig. 9, where the spacer input process, the spacer
output process and — for comparison purposes — the output process of a GI/D/1 queue
with bounded delay are shown. Cells 1 and 2 find the spacer empty and pass it without
delay. Cells 3, 4 and 5 arrive at the spacer and see a positive spacer state U(t); they have
to be spaced according to the value of U(t) upon their arrivals. Cell number 6 would have
to wait longer than 7,,,, and is thus rejected, since it is a non-compliant cell. It can be
seen that an accepted cell increases U(t) by an amount of T, which is thought of as the
virtual service time of the spacing process.

As can be observed in Fig. 9, the output process of the spacer is similar to the output of an
equivalent GI/D/1 queue, where a delay of T is the only difference. This fact is also used
in [38]. A spacer analysis using a GIX]/D/1 queue, which is similar to the discrete-time
analysis described here, can be found in Hiibner et al. [18].

The analysis used to deliver the results in this section is summarized as follows. For the
case of a spacer with unlimited delay (7naz — 00) the equivalent model is a GI/D/1
queue, for which the analysis in both time and transform domains as discussed in the first
section, can be used. Given the case of a spacer with bounded delay, the state analysis
as presented in the previous section can be employed. It should be noted that for the
calculation of the output process the use of the equivalent queue of type GI (x] /D/1 is
more advantagous.

2.2.3 Spacer dimensioning issues

To illustrate the influence of the spacer on the cell process we consider a spacer, which
enforces the peak cell rate of a VCC with a minimum inter-cell interval of T' = 15. The
input process Ay is assumed to be negative-binomially distributed.

Fig. 10 depicts how the spacer affects and forms the cell process for the case of E[A;] = 20
and c4, = 0.5, where the distribution functions of the input and the output process of
the spacer are shown. This is done for different values of maximum spacer delay Tpaz-
The shape of the inter-departure distribution function indicates the truncation function
performed by the spacer.

Fig. 11 illustrates the main function of the spacer, i.e. to smooth a bursty, high-variance
input cell stream. To illustrate the smoothing effect quantitatively, we take the case of
E[A;] = 6 and draw the coefficient of variation cy4, of the inter-departure process as
a function of the coefficient of variation of the input cell stream. As expected, cga,, is
smaller than c,, due to the cell spacing function. This effect is observed for all values of
the maximum spacer delay.

13
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2.3 Cell Delay Variation modelling

The aim of the performance study in this section is a discrete-time analysis of the generic
cell rate algorithm, which is used to monitor the peak cell rate of a VCC in ATM envi-
ronments. The analysis is again based on a discrete-time GI/D/1 queueing system with
bounded delay. The cell arrival process to be controlled by the GCRA can be arbitrarily
chosen. The purpose is the calculation of the probability B for a cell to be non-compliant.
Subsequently, dimensioning aspects of the cell delay variation tolerance in the UPC are
studied.

2.3.1 The Generic Cell Rate Algorithm

As discussed above, CDV can be introduced by various factors like the multiplexing
function, the UPC, the NPC or the segmentation and reassembly functions. To prevent
the cell clumping and dispersion to cause network congestion, the GCRA is recommended
[8], which has been first applied to monitor the peak cell rate.

The GCRA, as depicted in Fig. 7, monitors each VCC individually. We take into account
the virtual channel connection 7 and suppress the index 7 in the notation GCRA(T;,T;).
Thus the parameters of the GCRA(T,7) for the VCC i are the target minimum inter-cell
interval 7' and the CDV tolerance 7. The main problem is to scale 7 for a VCC in such
a way that the probability for a cell to be non-compliant (and rejected or tagged) is low
while the CDV is reduced. At the same time, 7 must be dimensioned to prevent overload
caused by non-conforming VCC'’s.

The working mode of the GCRA(T,r) is as follows. The algorithm determines whether
a cell is generated too close to the last cell, indicating that the connection generates
cells with a higher rate than the negotiated rate, or not. Distinction is made between
the theoretical arrival time T AT and the actual arrival time t; of a cell j. According to
the characteristic of the cell process of the VCC ¢ (marked by III in Fig. 7), cells can be
marked as compliant or non-compliant. The way to treat the next cell (number (5 + 1))
is as follows:

1. Estimate the theoretical arrival time T'ATj; of cell j +1

a) TATj ;. =t;+T if t; > TAT;:
cell 7 is generated after its expected arrival. It should be noted that the late
generation of this cell does not allow for an earlier generation of the next cell.

b) TAT;4, =TAT; +T if t; <TAT; and cell j is compliant:
cell j is generated prior to its expected arrival but is still within the CDV
tolerance. The TAT of the next cell is set as if cell j had been generated at its
TAT and not earlier.

c) TAT;41 =TAT; if t; <TATj and cell j is non-compliant:
cell 7 is generated prior to its expected arrival and lies outside the tolerance.
Cells which are identified as non-compliant can optionally be tagged or rejected
(cf. [8]). It is assumed here that non-compliant cells are discarded. The TAT
for the next cell is not modified in this case.
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2. The next cell j + 1 arrives at ¢;;;. It will be considered as

a) compliant if ¢;4; > TATj4 — 7
b) non-compliant if ¢, < TATj4q — 7.

The algorithm guarantees that cells from a VCC enter the ATM network at the T
reference point (cf. Fig. 6) with a long term rate of at most 1/7T". It should be noted that
the tolerance 7 could be chosen to be larger than the target minimum inter-cell time 7.
Furthermore, due to the CDV tolerance 7, the smallest inter-cell interval of the cell process
at point IV in Fig. 7 is tolerated by the GCRA to be shorter than the (theoretical) target
minimum inter-cell interval T'. The peak cell rate 1/T could momentarily be exceeded and
deliberately violated.

2.3.2 Discrete-time model for the Generic Cell Rate Algorithm

The discrete-time random variable U(t) for the time-dependent GCRA state is introduced,
which represents the remaining time to the next theoretical arrival time. The value of U(t)
can be thought of as the virtual unfinished work according to the GCRA function. A cell
which arrives at time ¢y and sees the GCRA in the state U(tp) = k will be considered as
non-compliant for £ > 7 and compliant for k¥ < 7.

u(t)

TAT, TAT, TAT, TAT,s TAT;

gt et gt e S
proceSS
TAT,- 1 TAT;-© TAT, 51 TATe- 1

Figure 12: Generic Cell Rate Algorithm state process

A sample path of U(t) is depicted in Fig. 12, where the theoretical arrival time T AT},
the actual arrival time ¢; and the tolerated early arrival time (control measure) TAT; — 7
are shown. Cells 1 and 2 arrive after their TAT and are compliant. The actual arrival
time of cell 3 lies before its TAT but is still within the tolerance (i.e. after TAT; — 7);
cell 3 is therefore compliant. Cell 4 arrives at the GCRA before the tolerance interval
(t4 < TAT, — 7) and is non-compliant.
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As can be observed in Fig. 12, the state process of the virtual unfinished work of the
GCRA is identical to the unfinished work process of a GI/D/1 queue with bounded delay.
A compliant (and accepted) cell increases U(t) by an amount of T'.

The modelling approach here was first presented by Hiibner [17]. The assumptions made
are quite general. The cell process of the VCC entering the GCRA function is described
by the arbitrarily distributed random variable Ar;; (cf. the mark III in Fig. 7) for the
cell interarrival time. The GCRA output process is represented by the discrete-time RV
Ajy for the interdeparture time. In general, this process is non-renewal. Its distribution
function given in this analysis is a cumulative one. To compute the probability for a cell
to be non-compliant the blocking probability given in eqn. (18) can be taken.

2.3.3 Dimensioning issues of Generic Cell Rate Algorithm

In the following we take results from [17] to illustrate the use of the analysis. The traffic
scenario depicted in Fig. 7 is considered, where the GCRA is used to monitor the cell
process generated by a constant bit rate (CBR) source. The background traffic is cha-
racterized by a negative-binomially distributed inter-cell interval X. A hybride approach
using both simulation and analysis is employed in [17], where the inter-cell distribution of
the process Ajr; for the CBR source after being multiplexed with the background traffic
is obtained using simulation.

Unless noticed otherwise, CBR source traffic is assumed to have higher priority by the
multiplexer as background traffic. In the numerical results the inter-cell time of the ob-
served CBR source is chosen at T* = 24. If the CBR source fulfills the traffic contract, its
cell rejection probability B should be below a defined quality of service, say 10~°, when
the monitor parameters T and 7 are chosen appropriately. For this range of blocking pro-
babilities, analytical methods are advantagous. Normally, without an elastic tolerance,
the parameter T in the GCRA(T, ) is the same as T*. In [6] is was stated that in some
cases T' must be chosen significantly smaller than 7* to be able to meet the performance
requirements. In Table 1, taken from [17], minimum values of 7 are listed for different
choices of T to keep B below 10~°.

T=1|23 12221120
ElX|=4,cx=1,7>| 8 51311
ElX|=4,cx=2,7>| 37 | 29|26 |23
EX|=2,cx=1,7>| 18 |14 11| 9
E[X|=2,¢cx=2,7>|107 | 65| 50 | 42

Table 1: Dependency of minimum 7 on T (for B < 10~°)

It can be clearly seen that 7 depends not only on the background traffic intensity, as
already observed in [15], but is also strongly influenced by the coefficient of variation cx.
This has to be incorporated in the dimensioning of the CDV tolerance as illustrated in
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Fig. 13, where the influence of varying 7 and cx on the probability B for CBR cells to be
non-compliant, with 7% = 24, E[X] = 2, and T = 20, is shown.

m
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3 E-2 . ) —*
8 — _—"
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.S E-3 / ./
8 Ea )
O s
E-5 | . .
1=5
E-6 /
E-7 1 .
E-8 - =20
E-9 T . .
0.5 1.0 1.5 2.0 2.5

Figure 13: Dimensioning of CDV tolerance

It can be observed in Fig. 13 that the cell blocking probability can be remarkably reduced
by increasing the tolerance value 7. However, a choice of larger 7 would also enlarge the
burst length with higher cell rate than the target peak cell rate in the VCC contract.

If the amount of non-compliant cells is too large although the traffic contract is fulfilled
by the VCC user (e.g. due to high CDV caused by multiplexing stages), there are dif-
ferent possibilities to scale the parameters of the GCRA function to monitor the agreed
cell blocking probability B. The first possibility is to dimension 7" < 7™, which means
the introduction of an additional elastic tolerance. This does not seem to be able to be
incorporated in the standards. The second possibility is to increase the CDV tolerance 7.
This must be done in a careful way. If 7 is too large, the number of back-to-back cells
which are still recognized as compliant cells increases. As a consequence, the cell clumping
effect arises, which can lead to network congestion. Furthermore, for a large 7, cells from
a traffic source which violates the traffic contract can not be appropriately controlled.

3. Conclusion and outlook

The purpose of this paper is to present methods of discrete-time modelling and analysis,
which gain importance due to the development of modern computer networks and com-
munication systems operating with fixed-size packets like cells in ATM systems or slots
in DQDB subnetworks.
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The analysis technique and related algorithms have been presented by means of the treat-
ment of the discrete-time GI/GI/1 queue and GI/GI/1 queue with bounded delay, where
algorithms dealing directly with probability distributions in time domain and analysis
techniques in transform domain have been outlined.

Subsequently, discrete-time performance analyses of usage parameter control functions in
ATM systems have been presented. Submodels for the traffic shaping function using cell
process spacer and for the dimensioning of cell delay variation tolerance in conjunction
with the generic cell rate algorithm used in the user-network interface of ATM networks
have been discussed.

It has been shown that discrete-time models are well-suited for this class of models. In
particular, the discrete-time analysis technique delivers not only mean values but also the
entire distribution functions of the cell traffic processes. Furthermore, in modelling cases
where very small blocking probabilities are subjects of the performance investigation,
discrete-time analysis is advantagous compared to simulations.
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