
Information Diffusion in eDonkey Filesharing
Networks

Tobias Hoßfeld∗, Kenji Leibnitz†, Rastin Pries∗, Kurt Tutschku∗, Phuoc Tran-Gia∗, and Krzysztof Pawlikowski‡
∗Deptartment of Distributed Systems, University of Würzburg, Germany
Email: {hossfeld|pries|trangia|tutschku}@informatik.uni-wuerzburg.de

†Graduate School of Information Science and Technology, Osaka University, Japan
Email: leibnitz@ist.osaka-u.ac.jp

‡Department of Computer Science and Software Engineering, University of Canterbury, New Zealand
Email: K.Pawlikowski@ieee.org

Abstract— Peer-to-Peer (P2P) applications have become highly
popular in today’s Internet due to the spread of file sharing
platforms such as KaZaa, eDonkey, and BitTorrent. In this paper
we investigate the diffusion behavior of a file shared by multiple
sources in an eDonkey-like peer-to-peer (P2P) environment. We
provide two simulation models, one which captures the chunk
transfer in a detailed way and a simplified model, where the up-
load bandwidth is equally split among all chunks of the file. The
simulation of a single chunk transmission is sufficient to obtain
accurate results, which leads to a much shorter simulation time.
We further investigate the non-stationary process of file diffusion
in a statistically reliable way. Depending on the popularity of
the file, we consider flash crowd arrivals and constant arrivals.
We derive simple analytical expressions showing the relationship
between the propagation of the file, i.e. the number of peers
sharing the chunk, and the main influencing factors: e.g. sharing
probability, access probability, or arrival rate.

Index Terms— P2P, file-sharing, user modeling, simulation

I. I NTRODUCTION

Recently,peer-to-peer(P2P) applications have caused an
enormous increase of traffic volume provided over the Internet.
The P2P technology has been introduced as a new approach
in providing an application-specific overlay network structure
between the participatingpeersabove the Internet topology.
In contrast to conventional Internet applications, e.g. WWW
or FTP, which have a strict distinction between clients and
servers, the peers in P2P act simultaneously as both.

Currently, the most widespread application of P2P isfile-
sharing, e.g. Gnutella, KaZaa, BitTorrent, or eDonkey [1].
Unlike WWW documents that usually consist only of several
kilobytes of data, the files shared in a P2P network are
usually audio or video files that can range in size from several
megabytes up to gigabytes. Numerous studies can be found
in the literature that deal with P2P networks. Whereas, many
researchers deal with improving the P2P architectural issues,
e.g. [2], [3], [4], [5], there are also several publicationsdealing
with measurement and characterization of data from existing
file-sharing networks, see [6], [7], [8], [9], [10].

In [6], a measurement based traffic profile of the eDonkey is
provided and reveals that there is a strong distinction between
download flows and non-download streams. Similar studies
for the Gnutella network [7] and BitTorrent [10] exist as well.

The authors in [8] and [9] compare measurements made for
P2P traffic and show that the popularity of objects deviates
substantially from that of Web traffic and does not follow
Zipf ’s law. Zipf’s law states that the popularity of theith-
most popular object is proportional toi−α, whereα is the
Zipf coefficient. Furthermore, in [9] it is shown that the file
popularity in a KaZaa network depends on the time that the
object is introduced to the network and in general tends to be
short-lived.

In this paper we investigate the diffusion behavior of a
file shared by multiple source download in an eDonkey-like
environment. Our aim is to study the impact of the main
parameters influencing the spreading of a file: the request
arrival rate, the sharing probability, and the access speed. The
popularity of a specific file depends greatly on the age of the
information the file contains. New files are of special interest
and this is reflected in the arrivals of requests for this file,
whereas older files have a much less popularity and thus,
the request rates for these files show a reduced burstiness.
Another key parameter which is of interest in this study is the
probability of sharing a file after it has been downloaded. In
a system with many “selfish” users, who immediately remove
their downloaded file from sharing, the file does not circulate
so well as when everyone keeps sharing it after downloading.

The paper is organized as follows. In Section II we describe
the basic mechanisms of the existing eDonkey P2P architec-
ture. This is followed in Section III by the model and the ap-
proximations we used in our simulation study. As this in some
cases not fully corresponds to the actual eDonkey mechanisms,
we refer to it as an eDonkey-like network. In Section IV we
discuss further aspects on the employed simulation strategies.
Numerical results with analytical approximations are given in
Section V and Section VI gives a conclusion and outlook on
future work.

II. T HE EDONKEY P2P FILE-SHARING APPLICATION

The eDonkey file-sharing application [1] belongs to the class
of hybrid P2P architectures and comprises two applications:
the eDonkey client(or peer) and theeDonkey server. The
eDonkey client shares and downloads files. The eDonkey

N
O

T
IC

E
:

T
h

is
is

th
e

a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.C
h

a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
in

g
ed

it
in

g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er

q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n
m

a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u

b
li
ca

ti
o
n

in
A

T
N

A
C

2
0
0
4
,

2
0
0
4
.

T
h

e
fi

n
a
l

p
u

b
li
ca

ti
o
n

is

a
v
a
il
a
b

le
a
t

S
p

ri
n

g
er

.

server operates as an index server for file locations and
distributes addresses of other servers to clients.

A. Searching and Sharing of Files

Before an eDonkey client can download a file, it first gathers
a list of all potential file providers. To accomplish this, the
client connects to one of the eDonkey servers. Each server
keeps a list of all files shared by the clients connected to
it. When a client searches for a file, it sends the query to
its main server which may return a list of matching files and
their locations. If none or an insufficient number of matchesis
returned, the client may resubmit the query to another server.

B. Downloading of Files

A main feature of P2P file sharing applications like Kazaa
and eDonkey is themultiple source downloadmode, i.e. peers
can issue two or more download requests for the same file to
multiple providing clients in parallel and the providing clients
can serve the requesting peer simultaneously.

In eDonkey, the multiple source download is enabled by
dividing files into fixed size pieces, denoted aschunks. A
chunk has a size of approximately 10 MBytes. The consuming
client can reassemble the file using the chunks or parts of
chunks. A client can share a file as soon as it has received a
complete chunk.

When an eDonkey client decides to download a file, it asks
the providing peers for an upload slot. Upon reception of a
download request, the providing client places the request in
its upload queue. A download request is served as soon as it
obtains an upload slot. The clients in eDonkey may restrict
their total upload bandwidth to a given limit.

The upload management of a peer maintains an upload
queue which consists of two lists, thewaiting list and the
uploading list. The uploading list holds the requests which
are currently served. A download request is served as soon
as it obtains an upload slot, i.e. it moves from the waiting
list to the uploading list. Typically, each served request gets
an equal shareof the upload capacity. However, different
modifications (mods) exist, which may change this behavior
[11]. The complexscoring mechanismof eDonkey decides
which request is served next. One important factor of the
scoring system is the “high ID/low ID” mechanism to ensure
fairness among all peers. A high ID increases the score,
whereas a low ID reduces it. A peer gets a low ID if the
server cannot establish a new connection to the peer, e.g. the
peer is located behind a firewall or a NAT. The blocking of
incoming connections or an invalid IP address would hinder
to contact this peer and is unfair since these peers would not
answer to file requests.

Further details on the eDonkey architecture, performance,
and the download mechanisms can be found in [6], [12], [13].

III. S IMULATION MODEL

In this section we describe the underlying model used for
the simulation studies in this paper. We elaborate on the
downloading mechanism in the eDonkey network and discuss
the approximative assumptions in our model.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index Server sorted by Number of Users

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 F

ile
s

50% of the total number of eDonkey files are
connected to the 7 largest index servers

Fig. 1. Number of users connected to different index servers

A. Modeling the Index Server Population

As described in Section II, all peers are connected to an
index server and send a list of files they share to this index
server. When a search request is issued, the index server
notifies the file requesting peer about all clients which share
chunks of this file. For our investigation, we measured typical
values of the population size of public eDonkey servers found
in the Internet [14]. The list in [14] revealed that the largest
index servers can host up to 500,000 peers, whereas about
half of the servers have less than 1,000 connected peers.
Fig. 1 shows the cumulative percentage of peers connected
to different index servers. On the abscissa, we listed the index
servers sorted decreasingly by the number of connected peers.
We can see that 50% of the total number of eDonkey users
are connected to the seven largest index servers. Thus, it is
reasonable to assume population sizes between 50,000 and
500,000. Since the connected number of peers at these index
servers is so large, it is justified to assume a Poisson process
for the generation of file requests. However, as the popularity
of the requested file varies over time, we assume a time-
dependent arrival rateλ(t), which is non-stationary during one
day and periodic on a daily basis.

B. Shared Files in eDonkey

The general structure of an arbitrary filef that is shared
in the eDonkey network is depicted in Fig. 2. The file has a
size of fsize kB and comprises a number ofcmax = ⌈ fsize

csize
⌉

chunks, each with a constant size ofcsize = 9500 kB with

Chunk 1 Chunk 2 … Chunk cmax

Segment 1 Segment 2 … Segment smax

bsize = 180 kB

Block 1 Block 2 … Block bmax

ssize depends on ICH

csize = 9500 kB

Fig. 2. Structure of a file on eDonkey application layer

download time
per chunk

D1

Di

Dc

file request
interarrival time

file is shared with prob.
pshare for time B

file is not
shared

number of peers
sharing chunk 1

N1(t)

number of peers
sharing chunk i

Ni(t)

number of peers
sharing chunk c

Nc(t)

time

time

time

time

Fig. 3. Arrival process of peers sharing chunks of a file

exception of the final chunkcmax which may be smaller in
size. The operator⌈x⌉ returns the next largest integer value
of x. Whenever a chunk is shared, it is transmitted in units of
blocks with sizebsize = 180 kB. In our studies we consider
two different file sizes. One corresponds to an mp3-audio file
with a data size of 5 MB, thus occupying only a single chunk.
The other considered file type is a complete mp3 album archive
of 76 MB and consists of several chunks.

The number of peers sharing a certain chunki at time
instant t is denoted asNi(t). After a peer has successfully
downloaded all blocks of chunki, he immediately acts as
a sharing peer for this chunk and the numberNi(t) is
incremented by one. Thus, being a P2P application, all users
in an eDonkey network act simultaneously as sharing peers
and downloading peers. Although, the user cannot influence
that each chunk is shared during downloading, he can show a
different behavior after the file has been entirely downloaded.
We take this into account in our model by introducingpshare
as the probability that a user shares filef for an exponentially
distributed periodB. All users in the system use the identical
values ofpshare andB. Hence,pshare = 0 indicates a system
consisting entirely ofleechers, i.e. users who only share the file
during the download and immediately stop sharing it once the
download is completed. The sharing process in our eDonkey
model is illustrated in Fig. 3.

C. Error Detection and Recovery

In the original version of eDonkey, error detection is done
after all blocks of a chunk have been received and the complete
chunk is discarded in case of an error. However, in more
recent versions of eDonkey clients, e.g. eMule, theIntelligent
Corruption Handling(ICH) mechanism is implemented that
performs the error detection on smaller data units than chunks
and which we define in the following assegments, see Fig. 2.
Instead of discarding the complete chunk when at least one
corrupted block is received, only all blocks of the damaged
segment need to be re-requested. The size of a segment
depends on the ICH mechanism and we assume in our study

that a chunk consists of two segments, i.e.smax = 2.

D. Upload Queue Management

Let us consider an arbitrary peerx wishing to download
file f . The peer issues a request for the file to the index
server and receives a list of all known peers that share the
complete file or chunks of it. Note that in the existing version
of eDonkey additional methods are used to obtain further
sharing peers. The eDonkey protocol implements asource
exchangemechanism between peers which also permits to
access files from peers that are connected to other index
servers. This feature becomes mainly effective during long
connection durations. For the sake of simplicity, we only
consider a single index server in our model and approximate
source exchange by using a sufficiently large population of
connected peers.

l blocks consecutively
downloaded

transfer of file
completed or no

more required blocks

block
requests

waiting
list

upload
list

sharing peer

Fig. 4. Upload queue model

The peer requests individual blocks from other peers shar-
ing the chunk containing the desired block. All requests
are appended to the waiting list of the sharing peer and a
weighting mechanism handles the scheduling of the upload
queue requests for transmission. The detailed procedure of
the queue management takes several features into account that
depend on the individual settings of the sharing peer like
upload bandwidth and number of simultaneous uploads. In
our model, an approximative assumption simplifies the upload
queue management behavior. If a peer downloads a block from
another peer, additional blocks might be of interest, if the
latter is not already sharing the complete file. The weighting
mechanism takes this into account by giving higher priorityto
peers from which blocks have been previously downloaded.
We include this interaction by considering that not individual
blocks but rather a series ofℓ blocks is downloaded at a time
after moving from the waiting list to the uploading list. The
waiting list is modeled as a FIFO (first-in-first-out) queue and
the valueℓ is estimated from measurements [6] that yield the
average data volume downloaded per sharing peer. After the
ℓ blocks have been transmitted, the user may issue another
request for further blocks, cf. Fig. 4.

If we include all these eDonkey mechanisms in detail, the
simulation is very close to reality. However, it would take a
whole day to simulate 12 days with the detailed model. In
order to study the general behavior of the diffusion of a file
f in the eDonkey network, we need to make some additional
assumptions at this point to reduce the computation time.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

time [h]

nu
m

be
r

of
 s

ha
rin

g
pe

er
s

chunk 1
chunk 2
chunk 3
...

Fig. 5. Detailed simulation of the eDonkey specific mechanisms

The available bandwidth of a downloading peer consists
of the sum of bandwidths of all connections to the sharing
peers. Therefore, we assume that the available bandwidthR(t)
is split equally among the numbercmax of chunks which
corresponds to the simultaneous download of chunks from
multiple sources. The calculation of the bandwidth is described
in the following section.

As all blocks are downloaded in parallel, they will be
finished at the same time and there is no need to simulate
individual chunks. Thus, the number of sharing peers is equal
for each chunk. This assumption is reasonable because the
probability to choose chunki for downloading the nextℓ
blocks is equal for all chunks which offer not yet downloaded
blocks. Fig. 5 shows the number of sharing peers for each
chunk for the detailed simulation. We see that the number of
sharing peers changes similarly for all chunks. If we perform
several simulation runs and compute the mean values and the
corresponding confidence intervals, the curves for the chunks
are identical, which justifies our assumption. This is quite
obvious, as the probabilities for choosing each chunk for
downloading the next blocks are equal.

E. Max-Min Fair Share Bandwidth

All users can access the Internet with different technologies,
like modems, ISDN, or DSL. This and the individual settings
of each user have a great influence on the downloading speed
of a block. An important parameter that each peer can set in
eDonkey is the number of concurrent uploads, which imposes
an upper limit on the upload list size.

In our model, we use an unlimited length of the upload
list and split the upload bandwidth among all requesting
peers. The total available upload bandwidthU is distributed
according to themax-min fair shareprinciple, cf. [15].U is the
sum of the upload bandwidthCup

a of each providing peer and
each access class. Let us assume thatCdown

a is the downlink
access speed for traffic classa ∈ A in ascending order andKa

is the number of users downloading at this speed. We initialize
the remaining traffic̃U with the whole upload bandwidth and
the remaining number of users̃K as the sum over allKa. As

long as there is bandwidth left, we iterate over the following
steps. If the remaining bandwidth̃U can accommodate all̃K
users, we assign the bandwidthCdown

a to each user of the
classa. Then we reduce the remaining bandwidth and the
remaining number of users by those who are downloading
at this speed. In the case thatŨ cannot support all users at
the maximum speedCdown

a (of the slowest remaining access
class), we simply sharẽU among all remaining users. The
algorithm for max-min fair share is summarized in Table I.

TABLE I

THE MAX -M IN FAIR SHARE ALGORITHM

Input:
U total upload bandwidth of all sharing peers
Cdown

a access speed for traffic classa in downlink direction
Ka downloading peers using traffic classa
Ũ remaining upload bandwidth
K̃ remaining number of users
Output:
downloading bandwidthRa for each access classa
Algorithm:
initialize Ũ = U and K̃ =

∑
a∈A Ka

for all access classesa in ascending order ofCdown
a

if all users can be accommodated at the bandwidthCdown
a

i.e. Cdown
a ×K ≤ Ũ

then
reduceŨ by Cdown

a ×Ka and reduceK̃ by Ka

assign all users of classa the speedRa = Cdown
a

else
assign all remaining users the speedRa = Ũ/K̃

endif
endfor

IV. SIMULATION STRATEGY

In this section, we give a short overview of how the
event-driven simulation is implemented. We focus on the file
request arrival process and the statistical evaluation of the
simulation results. The corresponding numerical results which
deal with both topics are found in Section V-A and Section V-
B, respectively.

One important parameter of a simulation scenario is the
file request arrival rateλ(t) which reflects the popularity of
a file. The more popular a file is, the higher is its rate. The
corresponding arrival process is modeled by a nonstationary
Poisson process, sinceλ(t) depends on daytime, but is kept
constant over each day. The reason is that we measured the
number of requests for different files at an eDonkey peer
connected to the currently largest index server. We detected
two noticeable patterns which occurred for several files:

• flash crowd arrivalswith a large leap ofλ for one specific
day followed by a smooth decrease, and

• constant arrivalswith no significant differences from one
day to another.

The first type can be interpreted as the reaction of the peers
to a temporarily popular file. We observed this behavior for
audio files requested in the eDonkey network one day after
they were presented in a popular German TV show. This
means that the popularity of this file differs from day to day.
The constant arrivals may be typical for “classics”.

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

time [day]

fil
e

re
qu

es
t a

rr
iv

al
 r

at
e

[r
eq

ue
st

s/
da

y]

measured: low
constant: low
measured: high
constant: high

Fig. 6. File request arrival rates of the nonstationary Poisson process

A problem of the measurements is related with the fact
that we did not measure the file request rates in eDonkey,
but the number of requests which is always increased by one
if a user (re-)enters the upload list, cf. Section II. Thus, the
measured values are higher than the real file request rates and
we adapted the absolute values according to [10]. There, a
single file in the BitTorrent P2P network is considered. The
resultingλhigh(t) is referred to ashigh measured rateand
illustrated in Fig. 6. In order to compare the two different file
request patterns, we compute the corresponding constant, time-
independent rateλhigh to generate the same number of file
requests likeλhigh(t) within the observation period of 23 days:
λhigh =

∫ 23

0
λhigh(t)

23 dt. The low measured and constant rates
are chosen to be half of the high ones.

Since there is a large peak for the measured rates, the
common thinning-method is not practical, because too many
random numbers are generated which are rejected. Therefore,
we use a modified version of the proposed method in [16]
which is based on the inverse-transform method. The random
streamrndStreamis initialized by generating a Poisson arrival
time at rate 1.

Another important aspect of evaluating simulation runs is
the statistical reliability of the results. We consider a simula-
tion scenario which is replicatedr times. In each simulation
run, a setX of investigated measures, like the number of shar-
ing peers, the number of downloading peers, or the assigned
bandwidth per access class, is returned for each time instant
when one of these measures changes due to an event-driven
simulation. We discretize the time into intervals of length∆t
and get the mean valueXi for each measureX ∈ X during
the intervali∆t. Since the simulation is replicatedr times,
the confidence intervalsCγ [Xi] at a confidence levelγ and
the mean valueE[Xi] for the measureX during time interval
i∆t can be computed.

The relative errorεγ is the maximum width of confidence
intervals normalized by the corresponding mean value for all
measures over all time intervals. The smaller the relative error
is, the more reliable are the statistical results. Results for the
required number of replications are given in Section V-A.

TABLE II

ACCESS SPEEDS OF THE DOWNLOADING AND PROVIDING PEERS

accessA upload download P (A = a)
modem 28 kbps 28 kbps 5%
ISDN 64 kbps 64 kbps 5%

ADSL 1Mbit 1024 kbps 128 kbps 60%
ADSL 2Mbit 2048 kbps 192 kbps 10%
ADSL 3Mbit 3072 kbps 384 kbps 20%

V. PROBLEM ANALYSIS AND NUMERICAL RESULTS

In this section, we show the numerical results for simula-
tions of the abstract model defined in Section III. The file
requests are generated according to Section IV with time-
dependent arrival rates plotted in Fig. 6. In the considered
scenarios, we assume the following setA of different access
types with which the peers are connected to the eDonkey
network: A = {modem, ISDN, ADSL1, ADSL2, ADSL3}.
We suppose that these access types cover the most relevant and
common ones for eDonkey users. The access speeds in uplink
and downlink direction are given in Table II. We assume that
the users do not limit the upload and download bandwidth in
eDonkey. Thus, the upload/download eDonkey bandwidth of a
peer is equal to its uplink/downlink access speed and we do not
differ between both. The impact of the probabilityP (A = a)
that a user has access typea ∈ A is investigated in Section V-
C. There, we derive the relationship between the numberN
of sharing peers andP (A = a) analytically. This means that
the choice ofP (A = a) is arbitrary. In our simulations we
use the values given in Table II.

Other parameters are the probabilitypshare to share a file
after downloading it and the initial number of sharing peers
N0. The influence of these parameters are shown in Section V-
D and Section V-F. We consider two different file types,
an mp3-audio file and a complete audio album as a single,
compressed file. Both content types are predominantly found
in the current eDonkey network. Due to the fact that the files
are already in a compressed format, the compression of data
packets of eDonkey on application layer has no further effect.
This means that the only difference between both content
types is the file size, the resulting download time, and the
time to share the file after downloading it. Table III shows
the parameters for the simulation. These values and the low
measured file request arrival rate are our default parameters if
not stated otherwise.

The typical behavior for sharing files is based on the
following assumptions. We assume that a user requesting an
mp3-audio file shares it with a low probability of 10%, as the
download takes only several minutes. Thus, the user is more
likely to observe when the download is successful and may
then move the file into another directory, but if the user wants
to share the file, he shares it for a longer period of time,
e.g. 1 day. On the other hand, the download of a complete
audio album requires much more time than for a single file
because of the increased data volume. When a user initiates the
download of an album, he does not know the exact moment

when it will be completed and will share it with a higher
probability of 40%.

TABLE III

DIFFERENT KINDS OF INVESTIGATED FILES IN THE SIMULATION

content size chunks pshare mean sharing time
mp3-audio 5 MB 0.5 10% 24 hours

album 76 MB 8 40% 5 hours

We further measured the file size of mp3s and retrieved
a mean value of 5 MB. A complete audio album consists
of 15 single files and has a file size of about 76 MB. In
order to assure that the time for downloading a chunk is
equally distributed for each chunk of a file, cf. Section III-
D, the file size is chosen to be a multiple of the chunk size.
Since we did not determine any qualitative differences in the
results between both file types, we only present the results
for the mp3-file. However, the influence of the file size is
significantly perceivable with respect to the utilized bandwidth
∆, cf. Section V-E, and the number of initially sharing peers
N0, cf. Section V-F.

A. Replications for Falling Below an Error Level

In Section IV, we introduced the relative errorεγ to describe
the statistical reliability of our results forr replications of a
simulation scenario. We consider the most varying scenario
with the high measured arrival rate. Fig. 7 shows the relative
error εγ for different confidence levelsγ depending on the
numberr of replications. In order not to exceed a relative error
of 5%, at leastr ≥ 700, 1000, 2000 replications are needed for
given confidence levels ofγ = 0.90, 0.95, 0.99. We consider
1000 replications to be sufficient, i.e. the relative error is below
5% and 7.5% forγ = 0.95 andγ = 0.99, respectively.

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of replications

re
la

tiv
e

er
ro

r

γ = 0.99

γ = 0.95
γ = 0.90

Fig. 7. Relative error in dependence of the number of replications

Fig. 8 shows the total number of sharing peers. We see
that the confidence intervals are small enough for error to
fall below 5% and will therefore no longer plot confidence
intervals in the figures.

0 5 10 15 20
0

50

100

150

200

250

time [day]

to
ta

l n
um

be
r

of
 s

ha
rin

g
pe

er
s

measured: high

measured: low

Fig. 8. Number of sharing peers for measured arrival rates

B. Flash Crowd Arrivals vs. Constant Requests Rates

The file request arrival rates reflect the popularity of a file.
A constant file rate may be typical for an older song and the
flash crowd arrivals for files which are very popular for a short
time and are then less requested. We are able to determine
the steady-state numberN∗ of sharing peers for the scenario
with a constant rateλ when the system has passed the initial
transient phase and reaches the steady state.

N∗ = λ · pshare · E[B]. (1)

With the mean sharing timeE[B] = 1 day, we obtainN∗ =
30.8468, see Fig. 9, but we cannot predict analytically the
time instant, when the system reaches this state. Therefore,
the simulation is needed and looking at Fig. 9 we see that the
scenario reaches the steady state at day five. The reason is that
the download time depends on the current number of users in
the system due to the max-min fair share of the available total
upload bandwidthU . For the flash crowd arrivals with a time-
dependent file request arrival rate, we even cannot analytically
determine the maximum peak which occurs after 5 days.

0 5 10 15 20
0

20

40

60

80

100

120

time [day]

nu
m

be
r

of
 s

ha
rin

g
pe

er
s flash crowd

constant

Fig. 9. Number of sharing peers for flash crowd and constant behavior

C. Influence of the Access Type

The probabilityP (A = a) determines the access types for
a new requesting peer according to Table II. Fig. 10 shows the
numberNa of sharing peers separated by their access types
a ∈ A. Obviously, the largerP (A = a) is, the larger is also
Na. Indeed, we find the following relationship between the
total numberN of sharing peers and the numberNa of sharing
peers with access typea for each arbitrary time instant.

Na = P (A = a) ·N = P (A = a) ·
∑

a∈A

Na (2)

This means that the numberNa is directly proportional toN
with factorP (A = a). If we choose another set of access types
and corresponding probabilities, we obtain the same results.

0 5 10 15 20
0

10

20

30

40

50

60

nu
m

be
r

of
 s

ha
rin

g
pe

er
s

time [day]

ADSL 1Mbit

ADSL 3Mbit

ADSL 2Mbit

modem

ISDN

Fig. 10. Number of sharing peers in dependence of the access bandwidth

D. Impact of the Sharing Probability

Fig. 11 illustrates the influence of the sharing probability
pshare on the numberN(pshare) of sharing peers. Like in
Section V-C, we see a linear relationship. If we plot the
numberN(pshare) normalized by the sharing probability, we
retrieve exactly the curve forN(100%). Analytically, this
behavior is described for each time instant by

N(pshare) = N(1) · pshare. (3)

Although Equation (1) shows the linear influence ofpshare,
the Equation (3) is not obvious because the system is not in
steady state.

E. Utilized Bandwidth

The utilized bandwidth∆ is the total available upload
bandwidthU minus the maximum bandwidthD with which
each user could potentially download. For each time instant,
it holds that

U =
∑

a∈A

Na · Cup
a (4)

D =
∑

a∈A

Ka · Cdown
a (5)

∆ = U −D (6)

0 5 10 15 20 25
0

200

400

600

800

1000

1200

time [day]

nu
m

be
r

of
 s

ha
rin

g
pe

er
s

p
share

 = 0%

p
share

 = 10%

p
share

 = 25%

p
share

 = 50%

p
share

 = 75%

p
share

 = 100%

Fig. 11. Number of sharing peers depending on the file sharingprobability

This means that if∆ > 0, there is wasted upload capacity
which cannot be utilized by the downloading peers because
of their limited download bandwidthCdown

a . On the other
hand, if∆ < 0, the peers cannot download with their possible
physical bandwidthCdown

a . In this case, the max-min fair share
algorithm is applied.

0 5 10 15 20
−60

−50

−40

−30

−20

−10

0

10

20

30

time [day]

ut
ili

ze
d

ba
nd

w
id

th
 ∆

 [M
bp

s]

mp3

album

Fig. 12. Utilized bandwidth for an mp3-audio file and an entire album

Fig. 12 shows the utilized bandwidth over time for two
single simulation runs: download of an mp3-audio file and of
an entire album. For the latter, the peers require much more
time to download it. Thus, there are more peers which share
the total available upload capacityU than for downloading the
mp3-audio file, i.e.∆ < 0 occurs more frequently.

We now consider the download of the entire album for
the low constant file request rates scenario. In Fig. 13, the
used download bandwidthδa of the different access types is
plotted over time. It is defined as the ratio between the assigned
bandwidthRa due to the max-min fair share algorithm and the
maximum download bandwidthCdown

a , i.e. δa = Ra

Cdown
a

. The
higher the download bandwidth, the worse it can be utilized.

F. Initial Number of Sharing Peers

In our simulation model, we assume that the total upload
bandwidth is divided fairly among the requesting peers ac-

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

us
ed

 d
ow

nl
oa

d
ac

ce
ss

time [day]

modem

ADSL 1Mbit

ADS2L 2Mbit

ADSL 3Mbit

ISDN

Fig. 13. Used download bandwidth over time

cording to the max-min fair share algorithm. Furthermore, we
assume that all chunks are downloaded after the same time.
This is correct when we consider files consisting of a single
chunk. However, in the case of albums, these assumptions
can lead to wrong results, since in real eDonkey networks
the number of accepted downloading connections per peer
is limited. Therefore, a minimal download time exists for a
chunk and after downloading the chunk, the user shares it
immediately. Thus, the file diffuses in the network.

0 5 10 15 20
−5

0

5

10

15

20

25

30

35

40

45

50

time [day]

nu
m

be
r

of
 s

ha
rin

g
pe

er
s

N
0
 = 10

N
0
 = 5

N
0
 = 1

N
0
 = 20

Fig. 14. Influence of the number of initially sharing peers

Fig. 14 shows the number of sharing peers (for single
simulation runs with low constant request rates) in dependence
of the initial number of sharing peers. ForN0 = 1, no file
request succeeds during the first 23 days in our simulation
model. The reason is that the total upload capacity is divided
by all requesting peers according to the max-min fair share
algorithm. But this problem can be coped easily by skipping
the initial period of the file diffusion. We start investigating the
system, when there are alreadyN0 = 5 peers available in the
eDonkey network. Then, we see in Fig. 14 that our simulation
model is valid again.

VI. CONCLUSIONS ANDOUTLOOK

In this paper we discussed models for the diffusion of a file
via multiple source download in an eDonkey-like file-sharing

environment. Our focus was on how a file is propagated in
the network under different conditions, e.g. initial number of
sharing peers, sharing probability, access speed, or file size.
We provided two simulation models, one which captured the
chunk transfer in a detailed way and a simplified model, where
the upload bandwidth was equally split among all chunks of
the file. The simulation of a single chunk transmission is
sufficient to obtain accurate results, which leads to a much
shorter simulation time.

We investigated the non-stationary process of file diffusion
in a statistically reliable way. Depending on the popularity
of the file, we considered flash crowd arrivals and constant
arrivals. We found simple analytical expressions showing the
relationship between the propagation of the file, i.e. the number
of peers sharing the chunk, and the main influencing factors:
e.g. sharing probability, access probability, or arrival rate.

The simplified model showed good results when considering
mp3 audio files or audio archives. However, the simplified
model fails when we consider very large file sizes, like the
sharing of complete CD data with 700 MB or entire DVDs
with 4 GB. The extension of the abstract model to very large
file sizes and the enhancement of the analytical equations are
subject of further work.

REFERENCES

[1] “eDonkey2000 Home Page,”http://www.eDonkey2000.com/.
[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of ACM SIGCOMM01, San Diego, CA, Aug. 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to- peer systems,” in Proc. of
the 18th IFIP/ACM Int. Conf. on Distr. Systems Platforms (Middleware
2001), Heidelberg, Germany, Nov. 2001.

[4] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and
J. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications, vol.
22, no. 1, Jan. 2004.

[5] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, “Scalable and
continuous media streaming on peer-to-peer networks,” in3rd Intern.
Conf. on Peer-to-Peer Computing (P2P2003), Linkoping, Sweden, 2003.

[6] K. Tutschku, “A measurement-based traffic profile of the eDonkey
filesharing service,” in5th Passive and Active Measurement Workshop
(PAM2004), Antibes Juan-les-Pins, France, Apr. 2004.

[7] K. Tutschku and H. deMeer, “A measurement study on signaling on
gnutella overlay networks,” inKommunikation in Verteilten Systemen
(KiVS) 2003, Leipzig, Germany, Feb. 2003.

[8] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large
networks,” IEEE/ACM Trans. on Networking, vol. 12, no. 2, Apr. 2004.

[9] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload,” inProc. of ACM SOSP03, Bolton Landing, New
York, USA., Oct. 2003.

[10] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra,
and L. Garc es Erice, “Dissecting BitTorrent: Five months ina torrent’s
lifetime,” in 5th Passive and Active Measurement Workshop (PAM2004),
Antibes Juan-les-Pins, France, Apr. 2004.

[11] “eMule Forum,”http://www.emuleforum.net/.
[12] “eMule Project Team,”http://www.emule-project.net.
[13] F. Lohoff, “Lowlevel documentation of the eDonkey protocol,”

http://silicon-verl.de/home/flo/software/donkey.
[14] “eDonkey Network Server List,”http://ocbmaurice.dyndns.

org/pl/slist.pl.
[15] D.P. Bertsekas and R. Gallagher,Data Networks, Prentice-Hall, 1992.
[16] A.M. Law and W.D. Kelton, Simulation Modeling and Analysis,

McGraw-Hill, 2000.

