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Abstract. In this paper, we present and solve a
discrete-time G[x]/D/1 — S queueing system with
a finite queue size, and batch arrivals with a
general batch-size distribution. The motivation
for this model arises from performance modeling
of a statistical multiplexer with synchronous
transmission of fixed-size data-units in synchro-
nous time slots. The arrival process to the multi-
plexer, for example, may originate from a
number of independent sources with packets of
variable lengths. Hence, a packet arrival corre-
sponds to an arrival of a batch of data-units. Dif-
ferent performance measures such as percentage
of packet loss and data-unit loss are considered
under two different admission policies of packets
into the queue. ‘

1. Introduction and Problem Statement

The overall performance of a packet-
switching network depends heavily on the per-
formance of its communication links, their associ-
ated statistical multiplexers or buffers, and
packet switches. Proper sizing of the buffers and
loading of the links for a specific performance
are of major concern in the design of any pack-
et-switched network. The purpose of this paper
is to present the analysis and applications of the
discrete-time G[X]/D/1 — S queueing system.
The notation used indicates a single-server finite
queue (S) with batch arrivals of general inter-
arrival times (G) and batch-size (X) distribution,
and a constant service time (D).

The motivation for the discrete-time
G[X]/D/1—S queueing model presented here
arises from some practical applications in pack-
et-switching systems where the frequency of
packet loss is an important performance
measure. We deliberately use a discrete-time
model, because in many practical applications,
systems actually operate in clocked cycles and
transfer fixed-length data blocks from buffers.
This model is very well suited for a statistical

multiplexer with a synchronous output trans-
mission link. Synchronization means that the
system clock is maintained, and a single data-
unit is transmitted at equally spaced time slots.
This data-unit may be considered as a character,
a byte, or a fixed-size block of data (minipacket).
The arrival instants to the queue are also
assumed to occur at discrete-time slots. The total
number of data-units arriving during a time slot
is modeled as a batch with batch inter-arrival
times (in units of slots) having general distri-
bution. The generality of our model is such that
the batch size and the batch inter-arrival time
distribution can be modeled to represent dif-
ferent classes of input sources. There are several
applications for this model in which the arrival
process to the multiplexer has non-Poissonian
statistics. For example, as shown in Fig. 1a), this
model may represent a statistical multiplexer fed
by a number of independent sources [1-4] which
oscillate between “on” and “off” states and emit
data-units at some fixed rate during an “on”
state, or a switch fabric [Fig. 1b)] which operates
in a packet-switched mode and has buffers at
each output [5]. Other examples of the latter case
are a crossbar switch with output FIFOs [6], or
the output stage of the Knockout switch [7].
Another example is a statistical multiplexer, like
in [8-10], with arrivals comprising user packets of
variable length composed of many data-units. In
this respect, the arrival of a user packet can be
considered as arrival of a batch of data-units to
the queue. In queueing terminology, the data-
units are equivalent to customers and user
packets are batches of customers.

Because of the limited queue size, overflow
can occur. Two performance measures are con-
sidered: 1) the probability of batch or packet
loss, and 2) the probability of data-unit loss.
Depending on the application, each of the loss
probabilities has a different merit. For example,
when the batches are equivalent to user packets
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Fig. 1. Modeling examples.

of variable length, then the probability of packet
loss is of interest. When batches are comprised
of several data-units emanating from many
sources, then the probability of data-unit loss is
important. It should be noted that in practical
applications, the buffer size is usually repre-
sented in data-units and not in user packets,
because user packets typically have a variable
length.

To complete the modeling, two different
admission policies are considered when an
arriving batch is larger in size than the number

of unoccupied storage places in the queue. They
are:

1) Blocking policy 1 (BP1)
An arriving batch of data-units larger in size than
the number of available free spaces in the queue
fills the free positions and the remaining data-
units of the batch are lost.

2) Blocking policy 2 (BP2)

An arriving batch of data-units larger in size than
the available free positions in the queue is com-
pletely rejected.

i

It should be emphasized that from an imple-
mentation point of view, the two blocking policies
have different overhead and trade-offs which are
application dependent. For example, in the case
of blocking policy 2 and user packets of multi-
data-units, a mechanism is needed to sense the
available space in the queue, before admitting a
packet into the FIFO queue. On the other hand,
in the case of blocking policy 1 and user packets
of multi-data-units, this mechanism is not neces-
sary. However, a different mechanism is needed
to disregard the partially admitted packet in the
queue. For the multiplexer in which several
sources may simultaneously generate fixed-
length user packets (i.e., a user packet is equiv-
alent to a data-unit), policy 2 does not make
sense.

Several models have been proposed which
study the behavior of a statistical multiplexer. In
[8,9], a transmission buffer has been modeled as
a finite queue with batch Poisson arrivals,
geometric batch-size distribution, and a constant
synchronous output. In [10], an infinite capacity
buffer was used to approximate a finite capacity
buffer with a very small packet-loss probability.
An infinite queueing model with batch arrival was
also used to study the behavior of a common-
control switching system [11]. A number of the-
oretical studies for both infinite [12-14] and finite
[15] queues with batch arrival has appeared with.
different degrees of complexity. However, it is
not easily seen how the results in [15] may be
used in practical applications to assess the buf--
fer-size requirements. In another paper [16], a
queue with a finite capacity storage with expo-
nential service time for individual data-units was
analyzed. Although the data-units were all of
fixed size, justification for the exponential service
time assumption was explained by including
other factors such as retransmission time arising
from errors on the line in the service time of the
data-units. An algorithmic technique was also
proposed in [4], which analyzes a discrete-time
D/D/1 queue with both infinite and finite queue
size with multiple arrivals per unit time (slot) by
using a bivariate Markov chain which describes
the whole system.

The major contribution of our paper is: 1) to
extend the finite queueing model presented in
[4,9,13] by incorporating general inter-arrival
times and batch-size distributions, and 2) to
present an efficient, simple and systematic com-
putational method in discrete-time domain based
on fast convolution algorithms. It should be
emphasized that the model presented here can
be formulated theoretically by standard tech-
niques such as state equations and the gener-



ating function method. However, solution of the
state equations, either directly (by matrix inver-
sion) or indirectly (by inversion of the moment
generating function) is in general very complex if
not impossible.

The paper is organized as follows: In Section
2, we present the basic description of the
G[’(J/D/1 — S queueing system and the analysis.
In Section 3, we then show, by numerical exam-
ples, the effect of various system parameters on
the probability of packet and data-unit loss. In
addition, in Section 4, we illustrate the applica-
tion of this model via two examples. Finally, the
conclusion is given in Section 5.

2. Analysis of GIXJ/D/1 —S in Discrete-Time
Domain

Before proceeding to the analysis, we point
out some aspects concerning the methods used.
In principle, the queueing system presented can
be solved using standard methods operating in
continuous time domain. In this case, additional
simplifying assumptions have to be made, since
we have several non-memoryless processes, for
which a Markov chain cannot be imbedded [4].
In contrast to this, by observing and analyzing
the system in discrete time, we are able to
develop algorithms built by a small humber of
operations. Examples ‘for these operations are
the convolution and pi-operations as discussed
later in this section. In turn, these operations
can be enumerated efficiently using powerful
algorithms developed in signal-processing theory
[e.g., use of Fast Fourier Transform (FFT) based
on the Discrete Fourier Transform (DFT) to
process the convolution operation]. Apart from
the case of finite-state space (limited by S+1,
where S is the maximum queue size) assumed in
the following, the convolution can be segmented,
since the convolution operations required have
just to be enumerated within the finite-state
space (0 < k < S + 1). For small values of S (e.g.,
$<100), this can be done directly; for larger S,
more efficient algorithms like FFT can be
employed. Furthermore, it should be noted that
the algorithms in the discrete-time domain devel-
oped here are stable for a wide range of system
parameters.

2.1 Random Variables and Notation

As mentioned above, we use methods oper-
ating in the discrete-time domain to analyze the
general class of queueing systems GIXl/D/1 —S.
In this analysis, we consider the random vari-
ables to be of discrete-time nature, i.e., the time
axis is conceived to be divided into intervals of

unit length At, which is the service or trans-
mission time of a single data-unit. As a conse-
quence, samples of these random variables are
integer multiples of At.

We use the following notation for functions
and measures belonging to a discrete-time
random variable (r.v.) R:

nk) = PR = k), —o00 <K<+ o0
distribution  (probability
mass function) of R
k
R(k)=.2 (i), —o0o< k< + o0
=T distribution function of R
ER, cg mean and coefficient of

variation of R
Further, the following notation is employed:
S queue capacity in data-units.

A, random variable for the generalized inter-ar-
rival time of the batch input process, which
describes the time interval between the
arrival epochs of the n-th and the (n+1)-th
batch. Since a,(0) can have a non-zero
value, batch-arrival processes with geomet-
rically distributed batch size can also be
dealt with (cf. [17]).

X, random variable for the size of the n-th
batch.

The random variables A, and X, can be parame-
terized individually for each arriving batch so
that the analysis derived below can also be
applied to investigate the non-stationary behavior
of the system.

2.2 State Analysis

A sample Qath of the state process develop-
ment in the GIX]/D/1 — S system is shown in Fig.
2. Let U be the amount of unfinished work in the
system, which is the number of data-units to be
processed, we define the following random vari-
ables (cf. Fig. 2):

U, random variable for the number of data-
units in the systems immediately prior to
the arrival instant of the n-th batch.



U} random variable for the number of data-
units in the system immediately after the
arrival instant of the n-th batch.

Depending on the two blocking policies defined
above, we derive relationships between these
random variables and their respective distri-
butions. We then present algorithms to deter-
mine the state probabilities and consecutively the
blocking probabilities of batches and data-units.
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Fig. 2. Snapshot of the state process.

2.2.1 Blocking policy 1 (BP1)

Based on the definition of BP1, when an
arriving batch of size i finds the system with j<i
available buffer positions, the buffer will be filled
up with (i -j) data-units, and the remainder of the
batch will be rejected, i.e., j data-units are
accepted and (i -j) data-units are blocked.

Observing the system state prior to and
immediately after the arrival epochs of the n-th
and (n+1)-th batch (cf. Fig. 2), for blocking policy
1, we obtain

+
U, =

min(U, +X, ,S+1) (1)

Upyt = max(Ut — A, ,0).

)]

From egs. (1) and (2), their respective distri-
butions are given by

uh() = 75 (U () * xp(K), (3)

Unt(K) = mo(uh(k) * ap(—K), )

where 7 S+1(.) and 7 (.) are operators on proba-
bility distributions defined by

i+

(k) k<m
)= >i)  k=m &)
0_ k>m
0 k<m
m
7 m (k) = D) k=m (6)
i=—o00
(k) k>m

and the *-symbol denotes the discrete convo-
lution operation

+oo

ra®)=ri() * ra(= > ryk=)+ ry(Q). (@)

j==c0

Equations (3) and (4) represent a recursive
relation between the system states seen upon
arrival by two consecutive batches n and (n+1).
Using these equations, an algorithm for both sta-
tionary and non-stationary cases can be devel-
oped to calculate the system-state probability
prior to the batch-arrival epochs. The corre-
sponding computational diagram is depicted in
Fig. 3.

up (k)

Fig. 3. Computational diagram of state
probabilities. Blocking policy 1.

For the case of identical, independent inter-
arrival intervals with random variable A, and
batch sizes with random variable X, which are
now assumed to be time-independent, eqs. (3)
and (4) deliver an iterative algorithm to deter-
mine the equilibrium state probabilities

uk) = lim

N — oo

up (k). )

2.2.2 Blocking policy 2 (BP2)

Based on the definition of BP2, an arriving
batch of size i which finds the system with j<i
available buffer positions will be entirely
rejected. We obtain the following equations for
the system-state random variables:



ot { Uy + X, U+ X, <S+1 ©)
n U, Up+X,>S+1
Uy = max(UT, —A,.,0). (10)

Distributions of these random variables are given
as

k

WhK) = DUk =) + (k) »
" (1)
Xp(i), k=0,1,.,S+1
j=S+1—k+1
Unp1 (k) = 7o (Uh () * ay(—K)), (12)
k=0,1,.S+ 1.

Since the functional relationship between U, ,
and U} is the same for both blocking policies as
given in egs. (2) and (10), eqgs. (4) and (12) are
also identical.

Similar to the case of BP1, a recursive
relation between the system-state probabilities
seen by two consecutively arriving batches is
given by eqs. (11) and (12). Further steps are
analogous to the case of BP1.

2.3 Blocking Probabilities

Using the equilibrium-state probabilities
{u(k), k=0,...,S+ 1}, the blocking probabilities for
batches and data-units can be derived for both
blocking policies.

2.3.1 Batch blocking probability
We first consider the conditional blocking
probability for batches defined by

Pg(k) = probability for a batch to be rejected,
conditioned on the system state U=k
seen upon arrival.

It is obvious that

OO

Pg(k) = Z xQ), k=01,..5+1. (13)
j=S+2—k

By eliminating the condition, we arrive at the
blocking probability for an arbitrary batch:

S+1

k) Y X0
k=:o j=S+2—k (14)
Z (u(k) % x(k)).

k=S+2

o
@
I

2.3.2 Data-unit blocking probability

In contrast to the batch blocking probability,
which can be derived for both blocking policies
in the same way, the data-unit blocking proba-
bility must be derived separately.

1) Blocking policy 1 (BP1)

Observing a test data-unit contained in an
arriving batch, we first determine the conditional
blocking probability for data-units defined by

Ppu(k) = probability for the test data-unit in an
arriving batch to be rejected, condi-
tioned on the state U=k observed
upon arrival.

The probability for the test data-unit to be in a
batch of size i is i ¢ x(i)/EX. For a batch of size i,
blocking will occur for i+k > S+1, where a
fraction of k+i-(S+1) data-units will be rejected.
Accordingly, the probability of the test data-unit
being in the fraction rejected is (k + i — (S + 1))/i.
Thus, the conditional data-unit blocking proba-
bility is given by

i k+i—s—1 _ 1°x)
i EX

Ppu(k) =
i=S—k42
&, (15)
- E1x' | Y (k+i—S—1)+ x()
i=S—k+2

k=0,.,S+ 1.

By eliminating the condition U=k, the data-unit
blocking probability is

S+1
Pou = D u(k)Ppy(k)
= S+1 ) (16)
= E‘—X Yu) Y (k+i=S—1) . x() .
k=0 i=S+2—-k

2) Blocking policy 2 (BP2)

Again, we observe a test data-unit which arrives
in a batch of size i and finds the system in the
state U=Kk. The probability for the test data-unit
to be in an arriving batch of size i is i ¢ x(i)/EX.



Blocking will occur for i+k > S+1, where the
entire batch, i.e., all data-units will be rejected.
Hence, the conditional data-unit blocking proba-
bility is now

P = . 1. L0
i=S—k+2 (17)
- E'—x | Y iex@) k=0,.5+1.
i=S—k+2

The data-unit blocking probability of a system
with blocking policy 2 is given as

S+1

Pou = o DUk D i xi). (18)
k=0  i=S+2—k

3. Numerical Results

In this section, we present numerical results
for various classes of input processes and
batch-size distributions. It should be noted that
the results discussed below will focus on the
influence of the variations of the input process
and the batch sizes, which are the essential com-
ponents of the model considered in this study.

For this purpose,' with the exception of the
deterministic case, we use the negative binomial
-distribution to obtain a parametric representation
of various classes of random processes. We do
this by matching the inter-arrival and batch-size
distributions given by their two parameters,
namely, the mean and the coefficient of variation.
The negative binomial random variable R with
mean ER and coefficient of variation cg, has the
distribution

o= (Y5~ - e

0<p<1, yreal,

(19)

where
= 1 - — ER
ER « c& ER o c371
ER . c% > 1.

Since the service time is chosen to be At = 1,
the offered traffic intensity is just

EX

p = EA - (20)

For the numerical results given here, the coeffi-
cients of variation of the appearing discrete-time
processes are chosen to include a wide range of
variations.

Figures 4 and 5 show the blocking probabili-
ties (for both batches and data-units) as a func-
tion of the buffer size (in data-units) for blocking
policies 1 and 2, respectively. These figures
include a family of curves for different values of
the coefficient of variation of the batch size. The
constant parameters for these curves are:
p =05cp =15 and EX = 4. There are
several interesting observations. As can be seen
in Fig. 4, under blocking policy 1, the blocking
probability of a data-unit is smaller than the
blocking probability of a batch when the batch
size is constant (cx = 0). This is not surprising
because when an arriving batch is blocked under
policy 1, a fraction of that batch is admitted to
the queue, hence the percentage of data-units
lost is smaller. As the coefficient of variation of
batch size is increased, the blocking probability
of a data-unit becomes larger than that of a
batch. This is because when the batch-size vari-
ation is large, the data-units blocked are more
likely to emerge from a large batch than from a
small one. For blocking policy 2 (Fig. 5), the
batch and data-unit blocking probabilities are the
same when batches are all of fixed length
(cx = 0). This is obvious, since in this case the
whole batch is rejected and as a result, the per-
centage of loss for batches and data-units must
be the same. When cy > 0, the data-unit blocking
probability is greater than the batch blocking
probability.

Another interesting point is the crossover of
the batch blocking-probability curves for both
policies when the buffer size is relatively small
(as compared to the variance of a batch size), the
reason being that when the batch-size variation
is large, some small size batches can still enter
the queue when the occupancy of the queue is
near to its maximum capacity. For example, if
the maximum queue size is ten data-units and
the batch size is fixed and equal to four data-
units, then any arriving batch will be rejected
when the queue contains more than six data-
units. Now, if the batch size is uniformly distrib-
uted from one to seven data-units (with the same
mean = 4), some batches can still enter the
queue up to when the queue is absolutely full.

Figures 6 and 7 depict the batch and data-
unit blocking probabilities, respectively, as a
function of the batch-size coefficient of variation.
These curves are shown for different values of
the inter-arrival coefficient of variation. The other
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parameters are the same as before, and the
buffer size is fixed at 32. As expected, the batch
blocking probability in policy 1 is always greater
than in policy 2 (Fig. 6), because according to
policy 1, the available space in the queue is
occupied by the partial admission of a blocked
batch. In the case of policy 2, since the available
queueing space is not occupied by a fraction of a
blocked batch, some small-size batches can still
enter the queue, hence causing less overall
blocking. For the same reason, as shown in Fig.
7, the data-unit blocking probability is greater in
policy 2 than in policy 1.

Figures 8 and 9 show the blocking probabili-
ties for policy 1 and policy 2, respectively, as a
function of the inter-arrival coefficient of variation
for different values of the batch-size coefficient of
variation. These curves are given for the same
parameters as before.

Finally, in Fig. 10, we show the batch blocking
probability as a function of the offered traffic for
different values of the batch-size coefficient of
variation. The crossing effects of the curves are
again apparent here. As the offered load is
increased, the batch blocking probability for
batches with large variation in size is less than
for batches with small variations.
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4. Applications of the Model to Some Practical
Problems

In this section, we briefly discuss how this
model can be applied to solve some related
problems in packet switching. In particular, we
look at two examples from the literature in which
models have been considered to analyze the per-
formance of a FIFO buffer in the context of a sta-
tistical multiplexer and a packet switch,
respectively. The purpose of giving these two
examples is to show the power of our model
especially with respect to the arrival process and
the batch-size distribution. The intent is to show
how our model can be used to solve these two
cases, by selecting the inter-arrival and batch-
size distributions appropriately.

The first example is from the paper by Morris
[4], which models a packet-switch node con-
sisting of N independent binary sources feeding
a single-server queue or multiplexer [like in Fig.
1a)]. Each source is in either an “off” state,
during which it is not transmitting packets, or in
an “on” state, during which it transmits packets
(data-units) at a constant rate of one packet per
unit time. Since more than one source can be in
the “on” state, multiple packets can arrive at the
queue per service time. Therefore, the arrival
process can be modeled as a batch arrival with
constant inter-arrival time. Using the same
assumptions and notations as in [4], each of the
N sources is represented by a two-state dis-
crete-time Markov chain, with transition probabil-
ities tgy (transition “off” to “on” state) and tyq
(transition from “on” to “off”), the batch-size dis-
tribution is given by a binomial distribution

x0 =)okt -, 1)

where

.
to1 +tyo

In this view, the behavior of the packets gener-
ated by the N independent sources is repre-
sented by eq. (21). The remaining solution is to
solve the system behavior based on the method
presented in this paper. This way all the results
in [4] can easily be obtained. In the Morris
model, the system state is presented by a bivar-
iate discrete-time Markov chain for which the
system of state equations has been solved for the
queue with finite waiting places. It should be
noted that for this application, only the blocking
probability of data-units under policy 1 is appro-
priate.

The second example is taken from the paper
by Karol et al. [6], in which they model a
crossbar NxN space division switch with output
FIFOs [like the one shown in Fig. 1b)]. Their
assumption is that the crossbar switch operates
N times faster than the input and output links so
there is no contention within the space switch.
Time is slotted and each input generates a fixed-
size packet per unit time according to a Bernoulli
process with probability p. Each packet has equal
probability 1/N of being destined to one of the
outputs. From the view of a particular output
queue, we can observe that at every time slot,
the arrival process is again a batch process with
binomial distribution exactly as in eq. (21), with
Q = p/N. Using our model, one can easily
obtain the probability of packet loss for this
system. It should be noted that the authors in [6]
model the buffer state as a discrete-time Markov
chain, and propose a recursive algorithm which
numerically provides the steady-state probabili-
ties. Because of the specific assumptions made
for this problem (i.e., constant inter-arrival time,
fixed-length packets, and a single-packet depar-
ture during an inter-arrival time), it is possible to
solve the steady-state probabilities numerically
by a recursive algorithm directly from the
balance equations. However, if any of these
assumptions is relaxed, it is not in general pos-
sible to solve for the state probabilities recur-
sively other than by either matrix inversion or by
numerical inversion of z-transform. Both of these
methods are computationally very complex. The
method proposed in our paper can appropriately
model this switch under variable-length packets
and a general inter-arrival time distribution.
Once the arrival process has been correctly
modeled, the system performance can be ana-
lyzed in a straightforward manner.

5. Conclusion

In this paper, we have presented and ana-
lyzed a discrete-time GIX}/D/1 —S queueing
system with a finite queue size and batch arrivals
with general batch-size distribution. By means of
numerical examples, we have shown how system
performance, namely, the blocking probabilities,
depends on the batch-size statistics of the arrival
process, not only the mean but the variance of
the batch size. We have also shown how batch
acceptance policy affects system performance.
We used discrete-time analysis for two reasons:
1) many practical systems actually operate in a
clocked cycle mode, therefore discrete-time rep-
resentation is the natural way to capture the
behavior of the system, and 2) the discrete-time
approach provides a very robust and simple
computational method based on fast convolution



algorithms. The queueing model presented here
is general enough for it to be effectively applied
to a wide range of practical problems in packet-
switching environments. We have given two
examples, modeling of a statistical multiplexer,
and modeling of a space-division packet switch
with output FIFOs.
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