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The class of polling systems, i.e., muitiqueue systems with cyclic service,
plays an-important role in the performance evaluation of various computer
and communication systems, e.g., switching systems with distributed control
and token-passing local-area networks. Although the behavior of users and
the corresponding incoming traffic characteristics in such systems are
increasingly complex, most analytical performance studies in the literature
are based on the assumption of Poissonian input processes. In this paper,
an approximate discrete-time analysis of polling systems with finite
capacity of waiting places and nonexhaustive service is presented,
considering general renewal input traffic. The analysis method is based on
the evaluation of discrete convolution operations using fast convolution
algorithms, c.g., the Fast Fourier Transform (FFT). To illustrate the
accuracy of the approximation and its dependency on system parameters,
numerical results are given.

I. INTRODUCTION

In modeling and performance evaluations of a broad spectrum of computer and
communication systems, e.g., investigations of communication structures in switching
systems with distributed control and token-passing local-area networks, etc. the class
of polling models, i.e., multiqueue systems with cyclic service is often employed.
Owing to the architecture of such systems and the respective new services, the traffic
mix of subscribers and users on communication networks and user behavior are of
high complexity. There is an increasing tendency for the need of more complex
processes to describe traffic streams in such environments.

To include more realistic modeling elements in the class of polling systems, two main
objectives are taken into account in this paper: i) the consideration of general renewal
processes as inputs, and ii) the modeling component in respect of finitc waiting
capacity of devices or stations in polling systems. From the analytic viewpoint, this
study takes advantage of discrete-time analysis methods, where effective convolution -
and transformation algorithms [e.g., the Fast Fourier Transform (FFT)] can be
employed.

Polling systems have been the subject of numerous studies in the literature [2 -8,
12—-14, 16—19, 21, 22]. A survey on the analysis of polling systems can be found
in Takagi and Kleinrock [21]. Various polling mechanisms, like cyclic or priority
order (cf. [16]), and several service disciplines, e.g., exhaustive, nonexhaustive or

*The major part of this work was performed while the author was with the Institute
of Communications Switching and Data Technics, University of Stuttgart, FRG.
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gating, have been considered. Some of these studics take into account the switchover
time, i.e., the time interval spent by the server in switching over from one queue to
the succeeding one. In most of these studies, input processes are assumed to be
Poisson, and the queues of the polling system to have infinite capacity.

An approximation of polling systems under symmetrica! load conditions, constant
switchover time and gating service is given by Leibowitz [14]. Cooper and Murray
have considered a system with gating or exhaustive service and zero switchover time
[5]. Their approach has been generalized by Eisenberg [6] and Hashida [7] to
nonzero switchover time. The case of two qucues with nonzero switchover time was
taken into account by Boxma [2] where an exact solution has been derived. An
approximate analysis technique for polling systems with nonexhaustive service and
general switchover time has been developed by Kuehn [12, 13]. Approximate
formulas for some general classes of polling systems can be found in Boxma and
Meister [3] and Bux and Truong [4]. Morris and Wang [17] and Raith [18] have
provided analytical approaches to deal with polling systems with multiple servers,
while Raith and Tran-Gia [19] considered the influence of the backward-locking
phenomenon caused by the receiving part of a polling system in a more general
context. Polling systems with finite capacity of waiting places and Poisson input
traffic have been analyzed approximately in Tran-Gia and Raith [22].

One of the main features of this study is the use of analysis mecthods operating in
the discrete-time domain. The discrete-time approach is justified by the fact that the
parameterization of model components is often based on data mecasured in terms of
histograms. The discrete-time nature of model components can be registered in a
number of modeling processes, e.g., in performance investigations of packet switching
systems, time-slotted systems, etc.

There is a number of studies [1, 10, 11, 23, 24] which deal with the analysis of
discrete-time models. In Kobayashi [10] a survey has becn presented. Examples for
the use of discrete-time analysis methods can be seen in the case of G/G/1 qucues,
where numerical solutions are given [I, 11, 23] based on the discrete-time form of
the Lindley’s relation [15, 20]. An interesting algorithm for calculation of the
waiting-time distribution function of the GI/G/lI qucue has been presented by
Ackroyd [1], where methods used in signal processing thcory (in both time and
frequency domains) and fast convolution algorithms are cmployed. In [23],
calculation algorithms can be found for the idle time and interdeparture distributions
of the class of GI/G/1 queues with discrete-time arrival and service processes. A
solution for this class of systems with general cyclic input processes was given in
Tran-Gia and Rathgeb [24], considering models of semidynamic scheduling and
routing mechanisms.

Mecthods of discrete-time analysis will be applied in this paper to obtain an
approximation algorithm for the class of polling systems with rcnewal inputs. In
Section 2, the model and its parameters will be described, while Sections 3 and 4
give an outline of the analysis and calculation of performance measures, respectively.
Numerical results are shown in Section 5 to illustrate thc accuracy of the calculation
method and its dependency on system parameters.

2. MODEL DESCRIPTION

The basic structure and related parameters of the polling model considered here arc
illustrated in Figure 1. The model consists of g finite capacity qucues, scrved
nonexhaustively (or more preciscly, limited service of one message per service) in a
cyclic order by a single server with a gencrally distributed scrvice time. After the
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FIGURE 1
Polling system with general inputs and finite capacity.

service of a queue, the server will move to the succeeding queue. This switchover
time, which models all overheads spent and procedures performed by the server to
move to and scan the succeeding queue, is assumed to have a general distribution
function. At the scanning epoch, i.e., at the end of the corresponding switchover
time, the server will process one message in the queuve, if there is at least one
message waiting for service. If the queue is empty, the interscan period observed will
consist of just the switchover time.

As previously mentioned, one of the main contributions of this study is the
consideration of general input processes and their influence on the behavior of the
polling system. Thus, the arrival processes are assumed to be genceral.

In principle, the analysis method presented in this paper can be applied to
nonsymmetrical polling systems with queue-individual interarrival, service and
switchover-time distribution functions. Also, individual sizes of the queue capacitics
can be chosen. However, to simplify the description of the analysis algorithm, and to
focus our attention on the main objectives of the study, we shall restrict ourselves in
the following to the case of symmetrical systems.

3. APPROXIMATE ANALYSIS IN THE DISCRETE-TIME DOMAIN
3.1. Discrete-Time Random Variables and Notation

In the context of this analysis, we consider the random variables to be of
discrete-time nature, i.e., the time axis is conceived to be divided into intervals of
unit length At. As a consequence, samples of these random variables are integer
multiples of At; the time discretization is equidistant. In real systems, At is often
given in discrete-time form, e.g., as transmission time of a bit, byte or packet. The
corresponding distributions can be obtained by mcans of measurements, and arranged
in the form of histograms.

The following notation is used for functions belonging to a discrete-time random
variable (r.v.) X:
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X(k)=Pr(X =Kk), —oco <k <+ o0 distribution of X

X(k)= i X(i), —oo <k < + 00 distribution function of X
Xz{(2) =Xt:§wx(k) zk Z-transform of x(k)

EX - mean of X

Cx coefficient of variation of X.

As indicated in Figure 1, we use the following notation:

g number of queues in the polling System
queue capacity

A r.v. for the interarrival time of the input process at a queue, distribution
a(k). Since a(0) can have a nonzero value, batch arrival processes with
geometrically distributed batch size can also be dealt with (cf. [23]).

B r.v. for the service time, distribution b(k)
(o] r.v. for the switchover time, distribution o(k).

A samplec path of the state process development in a queue chosen arbitrarily, say j,
of the polling system is shown in Figure 2. We observe the cycle time seen from
queuc j, i.e., the time interval between two consecutive scanning instances at queue j.
Similar to the approach provided in [12], two types of conditional cycle times can be
distinguished, denoted by the following random variables:

C, r.v. for the cycle time, conditioned on an empty qucue at the previous
scanning instance (i.e., without service of queue j during the cycle
considered)

C, r.v. for the cycle time, conditioned on a nonempty queue at the previous

scanning instance (i.e., with service of queue j).

During a conditional cycle time, a number of messages may arrive according to the
arrival process. Dcpending on the type of conditional cycle, we dcnote the arrival
group as follows:

G, r.v. for the number of messages arriving during a cycle of type j (C),
j=0,1.

Since the process development is observed in the discrete-time domain, several events
(c.g., arrival or end of service phase of messages, scanning events) can occur
simultancously. In those cases, a convention is made for cvents to be processed in the
following order: i) end of service; ii) scanning, and iii) arrival.
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FIGURE 2
A sample path of the state process.

3.2. Markov-Chain State Probabilities

The state process of an observed queue is affected by two random processes: the
arrival process of messages and the scanning process of the server, as depicted in
Figure 2. Under the assumption that these two processes are not correlated, c.g., the
scanning process sees the arrival process in the same way as an arbitrary outside
observer, an approximation can be made to analyze the state process. We consider
the regeneration points of a Markov chain embedded immcdiately prior to the
scanning instants of a queue. The following random variables are used:

Xa r.v. for the state of the queue observed (i.e., the number of messages in
the queue) immediately prior to the n-th scanning cpoch

X} r.v. for the state of thc queue observed immediately after thc n-th
scanning epoch.

Analogous to the definition of conditional cycle times, we define the following
conditional r.v. for the statc of the queue observed, depcnding on the previous value
of X,

Xto = XLIX, =0, - Xh o= XhIX, >0, _ (3.1)
Xn+l,0 = xn+llxn =0, Xn+l.l = Xn+,|Xn > (. (3.2)

Thus, the rclationships between these random variables and their distributions can be
obtained:

i) X,=0

Xho =0 (3.3)

Xha(k) = 8(k) (3.4)
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Xnsro = min(Xjo + G, S) = min(Gy, ) (3.5)
Xne10(k) = 15(xho(k) * go(k)) (3.6)
where
1 k=m
- = 3.7
o(k — m) {0 otherwise 3.7)
with the operator n™ defined as
x(k) k<m
R ) =< Yxi)  k=m (3.82)
i=m
0 k>m

and the *-symbol denoting the discrete convolution operation:

+o0

az(k)y=a;(k) * a,(k)= Zal(k—i)-az(i)- (3.8b)

j=—o0
i) X, >0
+
Xn,l = Xn =1 (3.9)
X k+1) Xk +1)
= k=0,,..S—1
x5 (k)= < Pr(X, > 0) 1 — x,(0) (3.10)
0 otherwise

X = min(Xh; +Gp,S) (3.11)

X1 (k) = 75(x%; (k) * g(K)) . (3.12)
By eliminating the condition based on X, we arrive at

Xor1 (K) = x,(0) x4 10(K) + (I = x,(0) e X pyy (k) , k=0,1,....S. (3.13)

With Egs. (3.4), (3.6), (3.10) and (3.12), a set of state equations describing the
transition behavior of the Markov chain between two consecutive scanning epochs
can be written as follows:

k+1
Xar1 (k) = x,(0)-go (k) + an(i)-gn(k—H 1, k=0,.,S—1
‘=S‘ B (3.14)

X1 (8) = X,(0)) go() + D xa)e ) g1(m), k=S.
i=S

i=1 m=S—i+]
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Under stationary conditions, i.e.,
X = lim X, , (3.15)
n— oo

the equilibrium state equations of the Markov chain can be derived from Eq. (3.14):

k+1
x(k) = x0)-go(k) + Y x(@)-gi(k—i+1), k=0..8—1

5 S _ | (3.16)
X(S) = x0)) gol)) + Y X@)- ). gi(m), k=S.
i=S i=1 m=S—i+1

To evaluate the equation system given in Eq. (3.16), it remains to calculate the group
size distributions of G;, j=0.1. Keeping in mind the assumption of no correlation
between the scanning and arrival processes at a queue, we observe a cycle of type j
and the arrival group G, of messages arriving in this cycle. The time F® between the
previous scanning® epoch and the arrival epoch of the k-th message in this group is
distributed according to

f® i) = a*() * a(i) * .. % a(i) (3.17a)

(k-1)-times

where a*(i) denotes the recurrence time distribution of the interarrival process in the
discrete-time domain

a*(i) = Tz%(’ - Za(n)) . i=00,. . (3.17b)

n=0

Assuming a cycle C; of length m, the conditional arrival-group size distribution can
be given as follows:

gj(kim) = Pr(group size is k | cycle C; is of length m)
= PrF® <m< F**) = p(F® <m) — PF**! <m)
or
g;(ki0) = (k)
= (k k+1 (3.13)
gikim) = > (fY0)-t*N@) , m=12,. .

i=0

Finally, the distribution of an arrival group G; during a cycle C;
(distribution ¢(m), m > 0) can be obtained:

gj(k) = ¢;(0)- (k)

©Q m—1
+ ch(m)Z(f""(i) — %), k=0,1,., =0,
m=1|

i=0

(3.19)
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3.3. Cycle-Time Analysis
Define Cg to be the r.v. for the cycle-time segment (cf. [22]), i.e., the time interval
between the scanning instants of two consecutive queues. In a symmetrical polling
system under stationary conditions with the state probabilities obtained from
Eq. (3.16), we obtain

cs(k) = x(0)-o(k) + (1 — x(0)).(o(k) * b(k)) (3.20)
or in Z-transform domain:

cszr(@) = 07r(@)-(X(0) + (1 = x(0))-bzy(2) . (3:21)

Under the assumption of independency between cycle-time segments, the
Z-transforms of the conditional cycle times can be given as

—1
Cozr(z) = OZT(Z)'C;ZT(Z) (3.22)
—1
¢1z1(@) = 071(2)-b (@) cg (@) (3.23)
Finally, we obtain the Z-transform of the cycle-time distribution:

czr(2) = c:,z.r(z)

3.24
X(0)-cqzr@) + (1 = x(0) ¢, zr(2) (-24)

Equations (3.22) —(3.24) can be effectively evaluated using algorithms belonging to
the Fast Fourier Transform (FFT) (based on the Discrete Fourier Transform (DFT),
cf. [9, 23, 24]).

3.4. Discrete-Time Calculation Algorithm

The logical interrelation of the analysis steps in Subsections 3.2 and 3.3 is as follows.
Assuming that the conditional cycle-time distributions are known, the Markov-chain
statc probabilities can be calculated according to Eqgs. (3.16) and (3.17). To calculate
the conditional cycle times, as formulated in Egs. (3.20), (3.22) and (3.23), we need
to know component x(0) of the Markov-chain state probability vector. This fact leads
to a numerical calculation algorithm based on an alternating evaluation of the
cycle-time distributions and the state probability vector. This approximation
algorithm is similar to the continuous-time algorithm presented in [22]. However, by
taking advantage of fast convolution algorithms and the effcctive evaluation of
Z-transform using FFT algorithms, the analysis in the discrcte-time domain allows
the calculation of the entire distributions (e.g., those of cycle times). This is in
contrast, e.g., to using a number of moments (e.g., the two-moment matching
method) to describe distribution functions.

The main steps of the algorithm are:

i) Initialize the Markov-chain state probability vector and the conditional
cycle-time distributions.

i) Calculate the conditional cycle-time distributions according to Egs.
(3.20), (3.22) and (3.23).
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iii) " Calculate the arrival-group size distributions according to Eq. (3.17).

iv) Calculate the Markov-chain state probability vector according to Eq.
(3.16).

V) Repeat steps ii), iii) and iv) until a convergence critcrion is fulfilled. In

the analysis here, the difference between two consecutive means of the
state probability vector is used as convergence criterion.

4. SYSTEM CHARACTERISTICS

Using the equilibrium Markov-chain state probabilities obtained by the algorithm
presented above, a number of performance measurements of interest can be derived.
This will be discussed in this section.

4.1. Message Blocking Probability

Again, the assumption is made that the scanning and arrival processes are
uncorrelated. We first consider the following conditional blocking probability defined
by

B(k) = Pr(message is blocked | X =K)
Probability for a message in an arrival group to be rejected, conditioned
on a number X =k of messages waiting in the queue observed at the
previous scanning epoch.

Two cases have to be distinguished, X = 0 and X > 0. Derivation of the
conditional blocking probability for case X > 0 will be described in detail.

For X > 0, i.e., the current cycle time is of type G,, we observe an arbitrarily
choscn test message in the group arriving during the cycle. The probability for the
test message to be in an arrival group of size i is i-g,(i)/EG,. Assuming further the
group size i, blocking will occur for k—1+i > S, where a fraction of k~1+i—S of
messages will be rejected. Accordingly, the probability of the test message being in
the rejected fraction is (k—1+i—S)/i. Finally, for case X > 0 we obtain the
following conditional blocking probability of messages:

o0

_ k—14+i—-S i-gi)
B(k) = Z : ' ~EG;

i=S—k+2 (4.1)

I . L
G, . (k—1+i=S8)-g(i) k=1..5.
i=S—k+2

The case of an empty queue at the previous scanning instant (X =0) can be analyzed
analogously:

XN g—s degl) o D™ :
B(0) = Z = = > (= 5)- ol (4.2)

i=5+1 i=5+1

By climinating the condition, we arrive at thc blocking probability for messages
arriving at a queue of the polling system
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S
By = ) x(K)-B(K)
k=0 ~ . ~ (4.3)
- = x(O)i;l(i—S)-go(i> + —E‘T]kzlx(k) i=SZk,+2(1<— L+ =) (i)

4.2. Arbitrary-Time State Probabilities

From the Markov-chain state probability vector, which describes thc state process at
regeneration points chosen prior to the scanning epochs, the state process scen by an
arbitrary outside observer, which will be characterized by means of an arbitrary-time
state probability vector, can be derived. Using this probability vector, further system
characteristics, e.g., the mean waiting time for messages, can be obtained.

The state process will now be observed at an instant t* chosen arbitrarily. Since we
are operating in the discrete-time domain, t* is conceived to be immediately prior to
a discrete-time epoch (cf. Figure 3). The probability P} (j=0,1) that the observation
instant t* lies in a conditional cycle of type C; can be given as follows, using results
of semi-Markov processes:

. EC

Py = x0) & (4.4)
* * EC

Pf=1-"Py=(l —x(O))—EC1 ) (4.5)

We further consider the distribution of the recurrence cycle time with r.v. C#, which
represents the discrete-time interval from the previous scanning instant upto the
observation point t*:

k
ci(k) = —E'C— L= Y], k=00, j=0,L (4.6)
1 i=0
f‘
|
1~
; |
: i
1 |
——-%v p— Y v ./I ﬁ v
Iyt *
X=0 'XO )(0 . :
— |
|
re Co ‘II

FIGURE 3
State process observation at an arbitrary instance.
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Denoting G} (j=0,1) to be the r.v. of the group of messages arriving during a
recurrence cycle time of type C;, we obtain a similar expression for the group size
distribution as in Eq. (3.19):

g}(k) = c}(0)-8(k)

SEER k+1) 4.7)
+ D3 Y (@ - (@), k=01, j=0,L.
m=1 i=0

As shown in Figure 3, the following r.v. for the state process in the queue being
observed are introduced: ‘

X* r.v. for the state of the queue being observed at t*

X, X+ rv. for the state of the queue observed immediately prior to and
after the previous scanning epoch, respectively,

and, similar to the Markov-chain analysis [cf. Egs. (3.1) and (3.2)], the random
variables conditioned on the state prior to the previous scanning instant:

Xh =Xx'IX=0, XY = X*IX > 0, (4.8)
Xy =X1X=0, X7 = XX > 0. (4.9)

To calculate the probability vector for X*, the following set of equations describing
the interrelations between state random variables and corresponding distributions is
required:

) X, =0
Xh =0 (4.10)
xh(k) = (k) (4.11)
X% = min(X} + Gg,S) = min(Gy , S) (4.12)
xp(k) = 7°(x5(k) * go(k)) , (4.13)
i) X, >0
X =X -1 (4.14)
x* (k) = pxr((];(+>lg) - |x (5+x(lo)) k=01...5~1 (4.15)
0 otherwisc

X* = min(X{ +Gy,S) (4.16)
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x1(k) = 7°(x7 (k) * gl (k) - (4.17)
Hence, the arbitrary-time state probabilities can be given as
x*k) = P -x5(k) + P} -x1(k), k=0,,.8S. (4.18)

Using Eqgs. (4.4)—(4.6) and (4.10)—(4.17), we obtain the final set of equations to
determine the arbitrary-time state probabilities:

k+1

EC EC
x*(k) = EC?X(O).gB(k) + ECI Zx(i).g*l(k~i+1), k=0,.,S— I
= (4.19)
N ECq N o EC, ) D,
S) = 0 — . k=Ss.
x*S) = );go(l) + 50 m_qz_mgl(m),

4.3. Waiting Time of Accepted Messages

Having the state probabilities of a queue seen by an arbitrary outside observer, we
can use Little’s theorem to calculate the mean waiting time of accepted messages:

*
EW, = _Ell‘:'—gﬁ‘— . (4.20)
A

5. RESULTS AND APPROXIMATION ACCURACY

By means of the example of a symmetrical polling system with g=5 queues having
finite capacities S =35, numerical results will be presented in this section to discuss the
application of the calculation algorithm and the approximation accuracy. The
switchover time is assumed to be deterministic equal to 0.5 EB, and the discrete-time
axis is scaled to At= 1. Time variables are normalized to the mecan service time
EB = 10.At. The offered traffic intensity is denoted by p = EB/EA.

To validate the approximate analysis, computer simulations arc provided. The
simulation results will be depicted with their 95 percent confidence intervals,
calculated using the Student-t test technique.

To obtain a parametric representation of random process types, we consider here the
intcrarrival and service times having distributions given by their two parameters, e.g., .
the mecan and the coefficient of variation, whercby the negative binomial distribution
is cmployed. Thus; for an r.v. X with mean EX and coefficient of variation cy,

x(k)=(Y+§_ l)py(l —-pK, O0<p<l1, yreal (5.1
where
p l y= EX EX.cx > I.

T EXecx EX.cy — 1 °
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In Figures 4 and 5, the mean and the coefficient of variation of the cycle time are
depicted as functions of the offered traffic intensity p for different types of
intcrarrival and service processes. The choice of parameters in thesc figures is based
on detailed studies showing that EC is mainly affected by the type of arrival
processes, and cc by the type of service processes. It should be noted here that the
coefficients of variation of these discrete-time processes are chosen to be equivalent to
the deterministic (c,,cp = 0), the Erlangian of fourth order (c,,cy = 0.5), the
Markovian (c,,c; = 1), and the hyper-exponential (c,,c; = 1.5) distributions. With
respect to the traffic level, the two lower and upper bounds of the mean cycle time
can be observed (cf. Figure 4): i) the empty cycle at disappearing traffic intensities
(sum of just switchover times), and ii) the maximal cycle at very high traffic levels
(scrvice at cach queue during the polling cycle). For arrival processes with higher
cocfficients of variation, the blocking cffect will become noticeable, which leads to
smaller cycle lengths. As depicted in Figure 5, the cycle-time coefficient of variation
has a maximum value which increases with increasing service-time coefficicnt of
variation.

The mcan waiting time and the blocking probability of mecssages arc depicted in
Figurcs 6 and 7, where attention is again devoted to the influence of the arrival
process. The mean waiting time is drawn (Figurc 6) for accepted messages. Hence, a
crossover phenomenon can be recognized, which can be verified on considering the
higher blocking probability, i.c., smaller number of accepted messages, for larger
values of ¢, (cf. Figure 7). For the case of disappcaring traffic intensities, the waiting
time of messages consists of just the recurrence time of empty cycles.
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As mentioned above, the entire distributions of the random variables of interest can
be obtained, using discrete-time analysis methods. An example is given in Figure 8,
where the complementary cycle-time distribution function is depicted for different
values of the service-time coefficient of variation. Two main effccts can clearly be
seen here: i) the step-wise functions, and ii) the geometric caudal characteristics of
the discrete-time distribution functions obtained.

Compl. cycle time distr. fct.

107 v L
0 10 20 3

Time t/EB

FIGURE 8
Complementary cycle-time distribution function.
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As seen in the diagrams, with the exception of blocking probabilities at higher c,
values, the overall approximation accuracy for the system parameters given (g=35,
S=5, EO = 0.5 EB) is good. However, two main restriction factors for the use of
the approximation should be mentioned here: i) the accuracy of the approximate
analysis is of decreasing tendency for smaller values of switchover time, and higher
values of c,,cp and ii) the computing efforts increase hyper-proportionally with the
values of g and S, according to the lengths of probability vectors involved in
convolution operations. .

6. CONCLUSIONS

In this paper, an approximate algorithm for polling systems with finite capacity of
waiting places and nonexhaustive service (or more precisely, limited service of one
message per service) is presented. The analysis is done in the discrete-time domain,
based on the evaluation of discrete convolution operations taking advantage of fast
- convolution algorithms, e.g., the Fast Fourier Transform. Attention is devoted to two
cssential modeling aspects: i) the consideration of general rencwal input traffic, and
ii) the assumption of finite capacity of waiting places in the system. Numerical
examples are shown to illustrate the approximation accuracy of the analysis.
Validation of the approximation is done by means of computer simulations. The class
of polling models considered here can be applied in the performance analysis of a
broad spectrum of models in computer and communication systems.
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