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Discrete-Time Analysis for the Interdeparture Distribution of GI/G/1 Queues
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The class of GI/G/1 queues with discrete-time distributions of
arrival and service processes is considered. This type of mod-
els arises out of measurements 1in the form of histograms or in
modelling approaches of time-slotted systems, packet switching
systems, etc.. Using known discrete-time algorithms for the
calculation of the waiting time distribution function, a new
numerical analysis method for the idle period and the output
process is presented in this paper, whereby the distribution of
the interdeparture time 1is obtained. The method described is
based on the evaluation of discrete convolution operations
using fast convolution algorithms, e.g.,the Fast Fourier Trans-
form, in conjunction with the concept of virtual unfinished
work. In order to illustrate the use of the method, numerical
examples are given for different types of input and service
processes.

1. INTRODUCTION

In performance analysis of computer communication systems, the parameterization
of model components is often based on measured data, which are given in the form
of histograms. The discrete-time model elements can be, e.g., arrival or service
processes. This leads to the class of discrete-time models. Models with time-
discretized components are also obtained in performance iunvestigations of packet
switching systems, time-slotted systems etc..

Since most of performance evaluation methods are given in continuous—time do-
main, exact and approximate analytical investigations for discrete-time models
are usually based on equivalent continuous—time models, e.g., the discrete-time
arrival and service processes are approximately described by means of random
variables with well-known time-continuous types of distribution functions.

There are a number of studies [1,2,8,16,17,18,20,30,31], which deal with analy-
sis approaches for discrete-time models. Queueing networks with time—discretized
processes are the subjects of the investigations given by Bharath-Kumar [2] and
Pujolle et al. [31]. 1In [1,17,18,30], methods for the analysis of discrete-time
queueing systems are discussed, whereby in Kobayashi [17] and Kobayashi and
Konheim [18] surveys are given. Konheim [20] provided a solution of discrete-
time GI/G/1l queues employing polynomial factorization, whereby the assumption of
non-zero interarrival time was made. A number of papers investigated bounds and
mean values of waiting time in GI/G/l queues [11,14,15,21]. Numerical results of
standard continuous-time queueing systems, including GI/G/l queues, can be found
in [22,34]. Effective algorithms for the calculation of the waiting time distri-
bution function of the discrete-time GI/G/l queue are presented by Ackroyd [1l],
where methods used 1in signal processing theory - 1in both, time and frequency
domains - and fast convolution algorithms are employed.
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In this paper, the class of GI/G/1 queues with discrete-time arrival and service
processes is taken into account. In section 2, basic equations are derived and
an outline of the method 1is given, which is used for the calculation of the
waiting time distribution, whereby algorithms for the numerical evaluation using
signal processing methods (DFT, FFT, Cepstrum,..) are briefly discussed. Based
on the waiting time analysis, algorithms for the calculation of the idle period
and interdeparture distribution functions are presented in section 3. Finally,
numerical examples are given 1in section 4 for GI/G/1 queues with arbitrary
chosen discrete-time processes and for systems with negative binomially distri-
buted arrival and service times.

2, WAITING TIME DISTRIBUTION FUNCTION

Since the analysis of the idle period and the output process is based on the
waiting time distribution function, a short description of the algorithm for the
calculation of the waiting time distribution function used in section 3 is given
in this section. Attentions are devoted to the discrete-time version of the
Lindley integral equation [24] for the GI/G/1 queue [1,16]. While the waiting
time distribution is derived assuming queues with first-come, first-served serv-
ice discipline, the idle period and interdeparture time distributions derived in
the next section are also valid for service in random order or last-come, first-
served discipline.

2.1 General

In the literature, a number of analysis approaches in accordance with the calcu-
lation of the waiting time distribution function of the GI/G/1 queue can be
found [6,8,10,19,20,28,30,36,38]. Most of these methods are related to solutions
of the Wiener-Hopf equation in Laplace domain,which are based on techniques like
spectral factorization, numerical poles and zeros allocation of the system func-
tion, determination of quadratic factor of polynomials [30], as well as separa-
tion of functions having convolutions in frequency domain. Schassberger [33]
considered queues with interarrival and service times of "almost phase type".
Ackroyd [1] presented an effective algorithm for the calculation of the waiting
time distribution of the discrete-time GI/G/1 queue, where concepts of signal
processing theory (e.g., the cepstrum concept [27], phase unwrapping technique
[37], etc..) and fast convolution algorithms are used.

Although the derivation of the basic Lindley integral equation can be found in a
large number of publications on queueing theory, we will outline a derivation
for the special case of discrete-time processes, whereby random variables are
introduced and some basic functional relationships between them are derived,
which will be used for the idle period and output process analysis in the next
section.

2.2 The Lindley Integral Equation in Discrete Time Domain

Fig. 1 shows a sample path of the unfinished work in a GI/G/1 queue. The follow-
ing discrete time random variables (r.v.) are defined:

A r.v. for the interarrival time between the n-th and the
n
(n+l)-st arrival

A r.v. for the equilibrium interarrival time

Bn r.v. for the service time of the n—-th arrival (n-th customer)

B r.v. for the equilibrium service time

U; r.v. for the amount of unfinished work immediately before the arrival

instant of the n-th customer
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Fig.l A sample path of unfinished work in GI/G/1 queues:
definition of parameters and random variables

wn = Un r.v. for the waiting time of the n-th customer

+

Un r.v. for the amount of unfinished work immediately after the arrival
instant of the n—th customer

M

ntl TV for the virtual unfinished work in the system immediately

before the arrival instant of the (n+l)-st customer, i.e. the amount
of unfinished work in the case, in which the server would continuously
serve even if the system is empty so that the unfinished work could
take negative values.

We consider the random variables to be of discrete-time nature, i.e., the time
axis is divided into intervals of length At. Thus, samples of the random varia-
bles are integer multiples of At, i.e., we have an equidistant time discretiza-
tion. The discretization intervals can be thought of as in packet switching sys-
tems where At is the transmission time of a bit, byte or a whole packet, or the
slot length in time-slotted communication systems. In the case of data used for
the modelling approach are delivered from measurements, At may stand for the
time resolution of the measurement monitoring system.

Further, we use the following notations for functions belonging to a r.v. X

x(k) = Pr {X = k} -®o{ k <t~  distribution of X
k

X(k) = 2 x(i) -l k (tow distribution function of X
i=— [e}

EX mean of X

c coefficient of variation of X.

X

For a given distribution x(k) the Z-Transform is denoted by

+® -«
xZT(z) = X x(k) z (2.1)

k== .

For a finite distribution of a positive, discrete random variable with {x(k),
k=0,...,N-1}, the Z-Transform can be determined via the Discrete Fourier Trans-
form (DFT) using the sampling theory [5,13,27] :

i.2ﬂ;k/N)

xppp(K) = X (e , k=0,1,...,N-1 (2.2a)
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or
N-1
xDFT(k) = Z  x(n). e

n=0

-i.2m.kn/N , k=0,1,--¢,N—1' (2.2b)

The Discrete Fourier Transform can effectively be evaluated using algorithms
like the Fast Fourier Transform (FFT), by means of which discrete convolution
operations within the algorithms described in this paper are calculated.

Considering the amounts of unfinished work just before and after the arrival
instant of the n—th customer we obtain

U = U + B (2.3a)

or

[}

+ -
Wi (k) = u (k) * b (k) (2.3b)

Mgt

where the symbol denotes the discrete convolution operation.

Taking into account the virtual unfinished work (c.f. Fig.l), which continuously
decreases during an interarrival interval, the following equations can be found

v _ +
Un+1 B Un An (2.4a)
or
v _ t _
un+l(k) = un(k) * an( k) . (2.4Db)

Finally, we take into consideration the fact that the amount of unfinished work
remains zero when the system is empty (e.g., during an idle period) to find the
relationship between the virtual and the real unfinished works

_ v
Un+l = max(0, Un+l) (2.5a)

or

- _ v

) = TGl ) (2.5b)
where [l denotes the operator which '"sweeps the probability in the negative line
up to the origin" (c.f. [1,16]) :

x(k) k>0
m(x(k)) = . (2.6)
0
L x(i) k=0
i==

Taking together eqns.(2.3), (2.4), (2.5) and taking into account the associative
and commutative properties of the discrete convolution operation, we obtain

Untl

(k) M (k) * a (k) * b (k) )

MCu_(k) * c(k) ) . (2.7a)
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It should be noted here that the function
= -k) *
c(k) = a (k) *b_(k) (2.7b)
is often thought of as the system function of the GI/G/1 queue.

Eqn. (2.7a) represents a generalized discrete form of the Lindley integral equa-
tion, where customers may have individual interarrival and service time distri-
bution functions. Since the waiting time distribution can successively be calcu-
lated, transient behaviour of the waiting time can also be investigated. In the
following, we restrict ourself to the case of independently identically distri-
buted r.v. A and B as well as to the calculation of the equilibrium waiting time
distribution function

w(k) = lim u;(k) . (2.8)

n-> o

With eqns.(2.7a,b)
w(k) = I (w(k) * a(-k) * b(k)) = I (w(k) * c(k)). (2.9)

Eqn. (2.7a,b) for the transient case or eqn.(2.9) for the equilibrium system can
be used as the basic relations for an algorithm to calculate the waiting time
distribution and the corresponding waiting time distribution function.

2.3 Calculation Algorithm in Probability Domain

According to eqn.(2.7a) the waiting time distribution of the (n+l)-st customer
can be calculated from the waiting time distribution of the n—-th customer and
the system function. Using this fact (c.f. [1,16]) the equilibrium waiting time
distribution can be iteratively determined, as schematically depicted in Fig. 2.
The iteration procedure can start, e.g., with the first customer finding an
empty system, i.e., his waiting time distribution is of the form

_ 1 k=0
wl(k) = ul(k) = (2.10)
0 otherwise .

For large vector sizes of the arrival and service distributions, the discrete
convolution operation can effectively be implemented using standard algorithms,
e.g., the Fast Fourier Transform (based on the Discrete Fourier Transform) [1,53,

ap (k) bp (k)
apl-k)
cplk)
wn (k) N ~ wry41(k)
&) D

Fig. 2 Algorithm for the waiting time distribution
of GI/G/1 queues in probability domain
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13,27]. However, the number of iteration cycles required and in accordance with
it, the computing efforts, depend strongly on system parameters. A more effec-
tive algorithm [1], which operates in frequency domain and uses a separation
technique based on the cepstrum concept [27,37], can be applied in order to
optimize the computing effectiveness.

In comparison with algorithms in transform domain, e.g.,
= the spectral factorization in Laplace- or Z-domain, which requires
rational transform functions or
~ the separation of maximum— and minimum-phase systems using the cepstrum
concept [1,27], which fails in the case of system functions c(k) having
equidistant zeros,
the algorithm in probability domain (or time domain) is very robust with respect
to the type of interarrival and service processes. Furthermore, the algorithm in
time domain illustrated in Fig. 2 1is applicable to GI/G/1 systems with time- or
state-dependent interarrival and service time distributions, e.g., systems with
workload-oriented overload control or GI/G/l queues with alternating input pro-
cesses. Since the probability a(0) is allowed to exist, the analysis of systems
with group arrival processes and geometrically distributed group size is implic-
itly included. By means of appropriate modification of the service time distri-
bution b(k), more general group size distributions can also be dealt with.

3. OUTPUT PROCESS : INTERDEPARTURE DISTRIBUTION FUNCTION

Using the waiting time distribution according to eqn.(2.9), the equilibrium dis-
tributions of the idle period I and the interdeparture time D will be derived
in this section.

3.1 General

In most of queueing systems, the output process is non-renewal and difficult to
describe. There are few cases, where the output process is explicitly analyzed,
i.e., both the interdeparture distribution function and the interdependence
between successive ianterevent times, are taken into account. Burke [3,4] showed
that the output process of a M/M/n queue is Poissonian. A proof of this property,
using the reversibility of the Markovian stationary process, is given by Reich
[32]. In Pack [29] the output process of the M/D/1 queue is extensively analyzed.
Heffes [12] investigated the output of queueing stations of type GI/M/n with
Interrupted Poisson Input. With exceptions of the M/M/n queue and the special
cases mentioned, most of investigations are restricted to the determination of
the distribution function of the interdeparture time. Marshall [26] derived ex-
pressions for the first two moments of the interdeparture distribution function.
In Makino [25], moments of the output distribution function are given for sys-
tems of types M/G/1, Ek/M/l and Ez/Ez/l. A survey on output processes can be
found in Daley [7].

The general case of discrete-time GI/G/l queues will be investigated in the fol-
lowing.

3.2 1Idle Period Analysis

We consider again a sample path of the unfinished work in the GI/G/l queue and
the corresponding process development of the virtual unfinished work U , as de-
picted in Fig. 3. Since the service time and the amount of unfinished work are
principally interchangable, the length of an existing idle period is exactly the
amount of virtual unfinished work with negative values. Thus, the idle period
distribution can be derived by means of the equilibrium distribution of the vir-
tual unfinished work given by

(k) = w(k) * a(-k) . (3.1)
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We obtain
i(k) = Pr{I =k} = Pr{u'= -k}
= K u'(-k) (3.2)
whereby the normalization constant K can be calculated as
(oo}
-1
K- =  Z -3 . (3.3)
j=1

It should be noted here that eqn.(3.3) implies the definition of the idle period
I to be a non-zero r.v. Finally, we arrive at the distribution :

1) =u'¢k) [ 2 WVEPITY L k> o, (3.4)
j=1

3.3 Algorithm for the Interdeparture Distribution

Fig. 4 illustrates a sample path of the long-term observation of the unfinished
work in a GI/G/1 queue, which consists of an alternating chain of idle period
(I) and busy period (S). Considering two consecutive departure instants n and
(n+l), the interdeparture interval D is (c.f., Makino [25])

= the sum of an idle period and a service time, if the n-th departure
instant is at the end of a busy period and

= just a service time, if the n-th departure instant is not at the end of
a busy period.

S [ S I
R

-D -

S

I
[
XEEK

Departures

Fig. 4 Analysis of interdeparture distribution : a
sample path of unfinished work
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The probability Py for a departure to leave an empty system is (c.f. [16])

EA - EB
Pp = T . (3.5)

Thus, the interdeparture distribution can be given as follows

d(k) = pE(i(k) * b(k)) + (1 - pp) b(k), k=0,1,... (3.6)

or in Z-Transform notation

dZT(Z) = bZT(Z) 1 - Pt Py i,0(2)) . (3.7)

Again, eqn. (3.6) or eqn.(3.7) can effectively be evaluated using algorithms for
the Discrete Fourier Transform, as discussed in section 2.
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4, NUMERICAL EXAMPLES

In this section, numerical examples will be presented to illustrate the calcula-
tion of the waiting time distribution and the interdeparture distribution of
GI/G/1 queues. In 4.1, we consider systems with some examplary discrete-time
interarrival and service time distributions. Subsection 4.2 deals with GI/G/1
queues with negative binomially distributed interarrival and service times. The
normalized traffic intensity is denoted by pP=EB/EA and the time is standardized
by At = 1.

4,1 GI/G/1 Queues with arbitrary chosen Discrete Distributions
To illustrate the use of the method in the case of parameters arising out of

measurements in the form of histograms, the following interarrival distribution
a(k) and service time distribution b(k) are chosen :

a(2) = 25/72, a(5) = 22/72, a(8) = 25/72, a(k)

]

0 otherwise,

b(l) = 1/2, b(2) = 1/3, b(8) = 1/6, b(k) = 0 otherwise,
with

EA =5 EB = 2,5 p = 0.5

cy = 0.5 cg = 1.

Fig. 5 shows the distribution functions of the interarrival and the service
times as well as the complementary distribution functions of the equilibrium
waiting time (for waiting customers), the idle period and the interdeparture
time.

4,2 GI/G/1 Queues with Negative Binomial Distribution for Interarrival
and Service Processes

We consider in this subsection GI/G/1 queues with interarrival and service times
having distributions given by their two parameters, e.g., the mean and the coef-
ficient of variation, whereby the negative binomial distribution is employed :

x(k) = (y+t—1 ) py (l-p)k , 0 <p=sl,y real. (4.1)
The mean and the coefficient of variation are given by :
-y (-p) 2 _ 1
EX = L — =< = — 4,2
P ’ > SRR CTY (4.2)
or
1 EX
P= ——— s y = T/ (4.3)
EX.cx EX.cX -1
where
EX.c2 > 1 . (4u4)

Results for GI/G/l1 queues with negative binomially distributed interarrival and
service time will be discussed in the following. The queueing system is denoted
by NEGBIN/NEGBIN/l. Fig. 6 shows the complementary waiting time distribution
function of a NEGBIN/D/1 queue, i.e., a GI/G/l queue with negative binomially
distributed interarrival time and deterministic service time. The interarrival
time coefficients of variation are chosen to be equivalent to the Erlangian of
4-th order (cA=O.5), the Markovian (cA=1), and the hyperexponential (cA=l.5)
distributions.
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The mean length of idle periods is depicted in Figs. 7 and 8 as functions of the
interarrival time coefficient of variation, for different service time distribu-
tions and traffic intensities. In the case of ¢, =1, where the queue can be
thought of as of GI/M/1 type, it can clearly be seen that the limiting curve
for heavy traffic conditions (p+1) approaches the mean interarrival forward
recurrence time, as derived by Halfin [11].

The complementary interdeparture distribution function is depicted in Fig. 9 for
different values of the interarrival time coefficient of variation, which are
again chosen to be equivalent to the deterministic (cA=0), the Erlangian of 4-th
order (c,=0.5), the Markovian (cA=1), and the hyperexponential (cA=1.5) distri-
butions.

The interdeparture time coefficient of variation is drawn in Fig. 10 as function
of the service time coefficient of variation, for different interarrival process
types and traffic intensities. In the special case of ¢, = cg = 1, which is
equivalent to the continuous-time M/M/1 queue, we obtaineé a Markov-equivalent
output process with cp= 1, as expected.

1E0
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Fig. 9 Complementary interdeparture distribution
function of GI/G/1 queues with negative
binomially distributed interarrival and
service times
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The influence of the traffic intensities on the output process 1is illustrated
in Fig. 11, where the interdeparture coefficient of variation is depicted as a
function of the interarrival coefficient of variation. At lower traffic intensi-
ty level,cD approaches the value of c,, as expected. At higher traffic intensity
level, the length of idle period approaches zero, and the interdeparture process
approaches the service process (cD=cB).

In order to demonstrate the accuracy of the algorithm for the interdeparture
distribution, comparisons of the interdeparture time coefficients of variation
are given in Tables 1 and 2. Table 1 compares the values obtained using the
discrete-~time algorithm for the NEGBIN/NEGBIN/1 queue (with c —1) to results for
the equivalent M/G/1 queue according to Makino [25] :

2
cy =1 - o(l-cB) , (4.5)
while Table 2 takes into account results given by Marshall [26] for the GI/G/1
queue, using the mean waiting time EW obtained in section 2 :

2 2

2 - + 20%c; - 20(1 - p)a-, (4.6)

2
D

TABLE 1 Comparison of the Interdeparture Time Coefficient
of Variation of the NEGBIN/NEGBIN/1 Queue with
M/G/1 Queue (c.f. Makino [25]).

Parameters of NEGBIN/NEGBIN/1 Queue : cA=l, EA=100.
cp System cB=0.5 cB=1.O cB=l.5
P =0.3 NEGBIN/NEGBIN/1 0.96495 0.99943 1.05431

M/G/1 (MAKINO) 0.96566 1.0 1.05475
P = 0.5 NEGBIN/NEGBIN/1 0.90061 0.99943 1.14526
M/G/1 (MAKINO) 0.90139 1.0 1.14564
p=0.7 NEGBIN/NEGBIN/1 0.79463 0.99959 1.26955
M/G/1 (MAKINO) 0.79530 1.0 1.26984

TABLE 2 Comparison of the Interdeparture Time Coefficient
of Variation of the NEGBIN/NEGBIN/1 Queue with
the results obtained according to Marshall [26].
Parameters of NEGBIN/NEGBIN/1 Queue : P=0.5, EA=100.

cp System cB=0.5 cB=1.0 cB=l.5

cy = 0.5 NEGBIN/NEGBIN/1 0.5565010 0.7305068 0.§343127
(MARSHALL) 0.5565011 0,7305071 0.9343137

cy = 1.0 NEGBIN/NEGBIN/1 0.9006082 0.9994338 1.145259
(MARSHALL) 0.9006088 0.9994346 1.145261

cy = 1.5 NEGBIN/NEGBIN/1 1.259669 1.324368 1.429765

(MARSHALL) 1.259670  1.324369  1.429768
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5. CONCLUSION AND OUTLOOK

In this paper, an analysis method for the idle period and the interdeparture
time distribution function for the class of GI/G/1 queues with discrete-time
arrival and service processes is presented, whereby systems with group arrival
processes can also be dealt with. This class of models can often be found in
performance analysis of computer communication systems, e.g., packet switching
systems, time-slotted systems etc..

Starting with an outline of the algorithm for the calculation of the waiting
time distribution function, the analysis of the idle period distribution func-
tion and the interdeparture distribution function is derived. The numerical
method is based on discrete convolution algorithms using the Discrete Fourier
Transform (DFT), which is evaluated by means of the Fast Fourier Transform (FFT).
Finally, numerical examples are given for GI/G/1 queues with arbitrary chosen
discrete-time processes as well as for systems with negative binomially distri-
buted arrival and service times.

Using the interdeparture distribution function of the GI/G/1 output processes,
approximate analysis for general queueing networks consisting of GI/G/l nodes
can be done. The input-output relationship of GI/G/1 nodes forms the basic
requirements for such a queueing network analysis, where decomposition arguments
and renewal assumptions are taken into account (c.f.[4,9,23,32,35,39,40]). While
this approach can easily and accurately be implemented 1in the case of feed-
forward networks, the application to feedback- and closed queueing networks will
additionally need iteration algorithms ; the results depend however strongly on
the system parameters,e.g., the population of customers in the network. Further-
more, the algorithm for the GI/G/l queue discussed in this paper can be modified
to analyse overload control performance in switching systems, e.g., in the case
of overload control strategies where the amount of unfinished work 1is used as
overload indicator, controlling the threshold for call acceptance.
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