FUNCTIONAL TESTING AND TESTING UNDER LOAD CONDITIONS OF REAL-TIME SOFTWARE IN SPC SWITCHING

SYSTEMS VIA A UNIVERSAL ENVIRONMENT SIMULATOR

W. Daniell’, H. Friedel!’, R. Lehnert!’, W. Lemppenau?’, P. Tran-Gia2’

1)Philips Kommunikations Industrie AG, Nuremberg, F.R.G. 2)University of Stuttgart, F.R.G.

1 INTRODUCTION

The software development for private communi-
cation systems is often characterized by the
use of an enhanced version of the CCITT's SDL
method (1). The software specification at
Philips Kommunikations Industrie is done in a
coarse SDL, followed by stepwise refinement
and further transformations., By this method,
the control layer and the data manipulation
layer are strictly separated. The code of

the control layer is generated automatically
from the refined formal specification using a
set of tools; the data manipulation layer is
modularized using the principle of informa-
tion hiding and is written in a high level
language.

Errors in the control layer are mainly due to
special cases not considered in the specifi-
cation or in the refinement process. Further-
more, the debugging and the evolutionary
development of the software may cause new
errors,

To validate the control layer, it is necess-
ary to make exhaustive tests. These tests
have to be done automatically as far as pos-
sible and must be reproducible. The test
sequences have to cover concurrent activities
of several and different ports,

In the literature a number of environment
simulators have been presented, most of them
are designed for specific systems to be
tested (3-5). Thus, they are system-dependent
and can therefore only be applied to dedi-
cated systems. Other approaches deal with
more system-independent concepts; they are
designed for the use in simulations of a re-
latively small number of subscribers. Most of
the known environment simulators do not take
into account the dependency of the subscri-
bers’ behaviour on system reactions (feedback
effects, e.g. repeated attempts, subscriber
impatience, etc.) as well as subscriber -
system interactions. They handle call-indivi-
dual electrical test for a small number of
subscribers.,

2 Objectives

The aim is to have an universal test machine
for the black-box testing of switching
systems for voice, data and integrated ser-
vices. The machine shall consist of a part
common to all applications and a dedicated
part serving the standardized interfaces of
the target system.

Accommodation to the target system has to be
done by installing the appropriate test soft-
ware and adding the specific hardware inter-
faces.

Users of the test machine will be the devel-
opment, the manufacturing, and the mainte-

nance departments.
All of them have similar overall goals:

o automatic test,

o test repeatability and regression
test,

o extensive test coverage,

o fast execution of complex test
programs,

o dgeneration of test documents.

They concentrate on different aspects. The
development departments want to test primari-
ly conflicting and boundary situations, while
the manufacturing departments are more inter-
ested in testing all extensions and the fea-
tures these are authorized to use,

Including the maintenance staff in the speci-
fication of the test software and in the
system tests with the environment simulator
enables them to influence the diagnostic and
maintenance concept of the system under deve-
lopment,

For the test under load conditions the user
of an environment simulator should be able to
test the the process interference in the
software of a SPC switching systenm,

It should be able to generate realistic
system loads, which model stationary as well
as nonstationary overload conditions. In
order to to characterize and to simulate
overload traffic streams, e.g. for the inve-
stigation of a specific overload control
mechanism, we should be able to realize the
offered traffic by means of short-term non-
stationary load patterns, whereby realistic
effects like repeated attempt phenomena can
be taken into account.

3 _SYSTEM DESCRIPTION

The environment simulator is embedded in our
set of test tools, see fig. 1. It simulates
real environments and is optimized for the
SDL method mentioned above.

It communicates with the target system via
an interface named ADAPTER, see fig.

3,1 UNES

The functional/hardware structure of the uni-
versal environment simulator UNES is shown in
fig. 3. The simulator consists of five func-

tional modules

- system control module SCM
- subscriber behaviour module SBM
- random number generator RNG
- timer handler THD
- target gystem interface TSI

The simulator modules are implemented by
means of M68000 microprocessor based control
units backed by the VME-bus.

The SCM supervises the whole activities of
the simulator in terms of hardware control
lines and messages via the system bus.

The SCM is based on a readily available CPU
board equipped with 256 kByte dual-ported RAM
a terminal and a floppy disc interface.

At present two 5.25" floppy disc drives with
720 kByte capacity each and a control VDU are
connected to the SCM,

The hardware of SCM is expanded by two 8"
floppy disc drives with 1.2 MByte capacity
each, a hard disc with 24 Mbyte capacity an
additional terminal port for the interconnec-
tion with a host computer and a parallel
printer port. There is also a 1 MByte RAM
board connected to the VME-bus.

The operating system of SCM is CP/M 68K™,
which enables the user to access a variety of
standard software, e.g. a screen-oriented
editor, compilers for C and Pascal, an as-
sembler and additional support software.

The interconnection of UNES and a host com-
puter is controlled by a support software in
which UNES emulates a DEC VT100 (VT220) ter-
minal. The data transfer runs error-protected
under the control of UNES without any addi-
tional interactions between the user and the
host computer.

The SBM is based on an available CPU board
with 128 kByte dual-ported RAM. When perform-
ing a functional test the real-time operating
system MTOS™ and a layered software is used.
In the case of testing under load conditions,
the main function of the software used in SBM
is to model the designed number of subscri-
bers and trunks connected to the target
system and to supervise the messaging between
SBM, TSI and SCM.

The THD and the TSI are based on CPU boards
with 16 kByte dual-ported RAM and 192 kByte
local memory for code and data. The programme
code for these modules can be stored resi-
dently or it can be loaded during a configu-
ration phase from mass storage.

In the case of testing under load conditions,
a software timer, controlled by the THD, is
allocated to each simulated subscriber pro-
cess. The message passing between THD and SBM
then is done via two message buffers alloca-
ted in the dual-ported RAM area of THD. The
special functions of THD for controlling the
software timers, are supported by five local
16 bit counters in hardware. The simulation
clock is provided by THD and can be accessed
simultaneously by the SBM without any inter-
ference to the local of the THD's control
unit.

The TSI is able to support two 16 bit paral-
lel data links for connecting the simulator
to the target system via ADAPTER. Basically
it manages the flow control between SBM and
ADAPTER, using an intermediate message buf-
fer.

In order to enable more accurate measurements
of message delay and system reaction times,
TSI is able to report the time instants when
transmitting and receiving a message to SCM
and SBM. The message passing between TSI and
SBM is done via two message buffers located
in the dual-ported RAM area of TSI. Based on
the implemented uniform message format bet-
ween SBM and ADAPTER, TSI transports messages
transparently in both modes.

The RNG provides random numbers based on ar-
bitrary distribution functions to the SBM.
It is implemented by means of a multiplica-
tive congruential random number generator
producing uniformly distributed random vari-
ates in the interval (0,1] in conjunction

with a table-driven distribution function
decoder DFD.

3,2 ADAPTER

ADAPTER is the link between the universal
part of the testing system UNES and the
target system, see fig. 3.

To ease the use of UNES with different
target systems, ADAPTER has to interface

to standardized external ports of the target
system,

Usually, slightly modified peripheral boards
of the target system can be used.

The structure of ADAPTER depends on the used
peripheral boards:

o A small number of VME-bus compatible pe-
ripherals with sufficient on-board pro-
cessing power may be connected to the
system bus of UNES,.

We consider this alternative for the adap-
tation to a small text and data switching
system.

o Other boards have to be connected to UNES
by means of the above mentioned parallel
interface.

This architecture was chosen for the adap-
tation to a digital PABX. Our further ex-
planations are based on this realisation.

UNES and ADAPTER have to perform functional
testing as well as load testing. Therefore

the structure of ADAPTER has been optimized
with respect to small delay times.

ADAPTER is composed of two main parts:

o a central part,
o a peripheral part.

The central part is a multi microprocessor
system based on the iAPX 86 microprocessor
family., The processors communicate via the
standardized MultibusT®,

The UNES-ADAPTER interface (UAI) is the
counterpart of and communicates with the TSI
in UNES.

The central unit (CU) performs the transla-
tion of the message codes used by UNES to the
message codes used by the peripheral part and
vice versa. It also transforms the logical
process numbers used in UNES into board
addresses.,

The bus interface (BI) connects the central
part of ADAPTER to the peripheral part. It
polls the peripheral boards and supplies them
with messages received from the CU.

The communication memory (CM) is merely a
buffer for the information exchange between
the processors of the central part.

All peripheral boards are equipped with one-
chip microcontrollers (i8741A)., Their task

is to debounce the boards’ detectors and to
generate messages to the central part of
ADAPTER,

In the reverse direction, they transform com-
mands into actions on the physical level,
e.g. switching relays, tone and ring cir-
cuits, At present, the peripheral part con-
tains boards of the following types:

o Analogue subscriber.

The hardware is the original analogue
trunk line board of a PABX.

o Analogue trunk line, subscriber signal-
ling.
This is an original analogue subscriber
line board.

o Analogue trunk line, direct dialling in
(DDI).
This is a newly developed board, based on
the DDI trunk line board of a PABX.

o A signal generator board supplies the
above mentioned boards with clocks and
tones.

We intend to add boards with digital inter-
faces relating to CCITT's Sy interface as
soon as these interfaces are requested by our
target system.

The digital interface boards will interface
directly to the Multibus of the central

part of ADAPTER.

4 SOFTWARE STRUCTURE

4,1 Test Setup Procedure

The man-machine interface offers the func-
tions of an intelligent PC with softkey and
menue technique.

UNES has four operational modes:
- installation and configuration,
- test administration,
- test,
- maintenance mode.

Normally the complete test evaluation is done
on a host computer after the test run. This
evaluation is supported by a tool. The data
base for the evaluation is the UNES log-file
and, if available, the trace file of the
target system.

During the installation and configuration
phase, UNES can be accessed and programmed

by the user at the man-machine interface. The
operation control units of SBM, THD and TSI
are deactivated, thus enabling the SCM’'s
operating system to load the dual-ported RAM
areas of SBM, THD and TSI. On the other hand,
test and simulation results, which are stored
on mass memory, can be accessed and printed.
Based on the system support, the user is able
to produce new software for SBM or other
modules. The initalization data required for
the different modules for several test and
simulation runs is stored on mass memory. The
input of this data by the user is assisted by
a user-oriented support software, which
allows the comfortable generation or modifi-
cation of files.

4.2 Lavered Software For Functional Testing

The software for functional testing consists
of a basic part and the test software.

The basic part includes a standard multi-
tasking real-time operating and the test
manager,

The test software has a layered design
oriented at the 0SI layer structure but also
fitted to the software structure of a voice-
PABX, see fig. 5.

The terminal and the mass storage handler is

running on a separate processor-board and
under CP/M 68K.

4,2,1 Elementary Operations. The lowest
layer, named elementary operations, receives
and generates the signals of the used signal-
ling systems, It provides the next higher
layer with the logical equivalents of the
signals,

Therefore, this layer has to be port orient-
ed. Different kinds of peripheral interfaces
are supported by dedicated process types.
Every port corresponds to an incarnation of
the appropriate process type.

As the elementary operations layer communi-
cates with the next upper layer by means of
elements of the used signalling system, with
our architecture it is not intended to test
the correct behaviour of the signalling link.
This layer executes all time-critical tasks
originating from the used signalling systenm.
For that reason, the upper layers only have
to consider the delay times of the appli-
cation software of the target system.

The elementary operations layer is implemen-
ted in ADAPTER. Its main functions are per-
formed by the peripheral boards.

4,2,1,1 Software in the peripheral part. The
analogue subscriber has to perform all

possible operations of a simple telephone
set, such as
o closing and opening the loop
o dialling
o operating a relay to simulate the earth
key.
Furthermore, the peripheral boards have to
o distinguish different tone and ring se-
quences,
o test the speech channel by transmitting
a test tone.
In conjunction with a board bearing multiple
DTMF transmitters, we may as well do sole
DTMF signalling as well as mixed rotary dial-
ling and DTMF dialling.

The analogue trunk line board with subscriber
signalling behaves similar to an analogue
subscriber line board.

That is

o switching ringing signals and dial tones,
o observing the loop state to detect on-

hook, off-hook and outgoing digits.

DTMF dialling on trunk lines is possible with
additional DTMF registers as used in PABXs,
but not yet supported.

The analogue trunk line board with direct
dialling in requires the most complex soft-
ware of the peripheral boards. The software
has to deal with several voltage level detec-
tors and reversly to switch different line
terminations.

4,2,1,2 Software in the central part. The
physical interface between UNES and ADAPTER
is a high speed, full duplex, 16 bit parallel
interface. For the sake of speed, the soft-
ware is written in assembly language.

The UAI writes data received from UNES to a
queue in CM, from were it also reads the data
to be transmitted to UNES. The link between
TSI of UNES and UAI of ADAPTER is transpar-
ent.

The BI interconnects the central and the
peripheral part. It runs a handshake proto-
col to the peripheral boards’ microcontrol-
lers., It communicates with the CU by means of

queues, located in CM.

The CU translates the message codes used by
UNES to message codes usable by the peri-
pheral part and vice versa.
These conversions hide the specific hardware
structure of ADAPTER from the upper layers of
the software. Further features of the CU are
o trace facility to record the message con-
version
o error logging
o interface to an auxiliary terminal for
test purposes, providing
- a concurrent monitor to substitute an
emulator in some cases
- selective enable/disable of the trace
facility
- procedures to test and configqure the
peripheral hardware of ADAPTER as well
as to check and change the translation
tables.
Especially the trace and the error log are
very useful during development and test of
ADAPTER.

4,2,2 Primitives. The next layer, the so-
called primitives, is also port-oriented.

To provide a first evaluation of the target
system’s reactions the incoming signals are
analyzed with respect to the context of the
signalling procedure.

The implementation is done using SDL for the
control layer and C for the data manipulation
layer.

4,2,2,1 Voice PABX. Here signalling proce-
dures are split into distinct signals, which
are sent to the elementary operation layer.
In the reverse direction one or more signals
are assembled to signalling procedures.

4,2,2,2 Text Switch. Here the standardized
services of level 2 and level 3 of the
specific interfaces are offered (e.g. HDLC
and connection supervision in case of Tele-
tex).

4,2,3 Complex Operations. This layer is link
oriented and controls the

complete lifetime of a connection. The physi-
cal and logical states of the connections and
the related events are controlled with re-
spect to the actually activated features.
Moreover this requires the sampling and ad-
gizistration of configuration and connection
ata.

The implementation is done in the C language.

4,2,3.1 Voice PABX. Standard switching proce-
dures like off-hook including waiting for
dialling, dialling, internal call, etc. are
the basic building blocks (software proce-
dures using all the services provided by the
lower levels) with which the test manager can
run complex switching procedures.

4,2,3,2 Text Switch. The basic building block
of the complex switching procedures are the
standardized services of levels 4, 5, 6 of
the specific interfaces, e.g. transport,
session and document layer.

In addition to these interface-relevant pro-
cedures there exists a set of feature-rele-
vant procedures simulating the features of
the target system, e.g. retrieval or
operation and maintenance functions.

4,2.4 Test Manager. The uppermost layer, the
test manager, represents level 7, the appli-
cation layer. It is in control of the whole

test procedure. It activates complex proce-
dures, awaits their completion and evaluates

the target system’s reaction by means of its
configuration and the context of the test
procedure, including exception handling.

The results of the tests are written onto a
log file and may be analysed later on.
Because the control level software in most of
our target systems is written in the SDL lan-
guage in the interpreter mode, it is also
possible to produce a real-time trace from
the target system.

The test manager is driven by test files de-
dicated to the target system. These test
files are written in a specific pseudocode
language., A tool translates the test files
into data files of the programming language
C. Another tool generates test flow documents
from these history files.

To circumvent the limited mass storage capa-
city of UNES especially in the case of auto-
matic long-time test runs, an on-line link
between UNES and a host computer, e.g. VAX

is available.

4,3 Testing Under Load Conditions

The aim of testing under load conditions is
to evaluate the performance of the target
system under a given subscriber load and a
given subscriber behaviour. Moreover, the
influence of the system’s reaction to the
subscribers’ behaviour can be determined

by the user.

The software structure of the simulator for
testing under load conditions is depicted in
fig. 5, where also the embedding of the
modules into a hierarchical structure is
shown, as already described in sect. 3.
Starting a simulation run by the user at the
man machine interface, the operating system
deactivates its overall system control and
activates the measurement and statistics
software inside the SCM, After an internal
initialization phase, this task transfers the
control via the system and messaging pro-
cesses to SBM, thus activating the control
units of THD and TSI. In the following, the
interlevel communication is executed via
message interchanging. This message inter-
changing is done by a dispatcher inside SBM.

The tasks of SCM during a simulation run are
to monitor the whole system activities and to
gather messages from SBM for measurement and
statistics purposes. These messages can be
stored in a trace buffer and saved simult-
aneously in the mass storage and the host

computer,

The main function of the SBM is to model the
designed number of subscribers and trunks
connected to UNES via ADAPTER. It generates
telephonic events, (e.g. off-hook, on-hook,
digits, trunk seizure, trunk release, etc.)
for the simulated subscribers or trunk groups
according to the the subscriber or trunk be-
haviour models and the reactions of the
target system. The subscriber or trunk pro-
cesses which define the behaviour of sub-
scribers or trunk groups, are described by
means of finite state machines (FSM).

In order to model a subscriber (trunk) in
conjunction with its individual behavioural
timing properties (impatience interval, wait
for reattempt event, interdigit intervals,
etc.), a software timer is allocated to each
simulated subscriber (trunk) process. This
timer is controlled by THD.

Messages generated by a simulated subscriber
or trunk are transmitted to TSI, and messages

received from TSI are routed to the addressed
subscriber, that is the appriate FSM. Inside
the FSM each subscriber is represented by an
individual random number driven process.,

The actual state of a process is located is
located in the individual data area of the
simulated subscriber or trunk associated to
this process, where references to the speci-
fic data for this type of subscriber (e.q.
behaviour-oriented time periods, probabili-
ties for actions/reactions, facilities, etc.)
are stored.

The behaviour of subscribers is modelled by a
SDL diagram. An example is given in fig. 6,
which shows the modelling anf specification
of the subscriber’s behaviour.

SBM reports all activities of its FSMs to SCM
which in turn describe all activities between
UNES and the target system.

This enables the user to observe in detail
the target system’s reactions under a given
traffic load or to do performance evaluations
for specific time intervals or events.

Based on the hardware configuration currently
used, run time measurements of the software
executed in the modules of UNES and perform-
ance investigations of the message transport
delays between SBM and the interface to
ADAPTER resulted in acceptable delay figures
for up to 1000 simulated subscribers (2).

S _APPLICATION

UNES is used at first with a digital PABX,

which is currently under development.

To gain experience, we realized a prototype
of the functional test software, including

only some of the usual telephony features.

This prototype was tested with an existing

analogue PABX as target system.

6 CONCLUSIONS

The specification of the target system should
be done in a formalized way rather than in a

kind of prosaic description, and alterations

should be communicated to the team developing
the test software in parallel to the system’s
development.

Although using a formal method specifying and
implementing the logical behaviour (control
layer) of the target system it is not pos-
sible to derive from this the control layer
of a test machine because of two reasons :

1. A formal translation method deriving the

control layer of the test machine from the
control layer of the target system would re-
sult, if possible, in testing erroneous soft-
ware by a test software which contains the
same errors.,

2., The logical layer of the target system’s
software contains no information on the

test strategy necessary to get a sufficient

coverage of all possible test situations.

Already in the early design phase, we need a
specification of the intended scope of the
testing to be done.

This depends mainly on the ‘customer’ of the
test software. Although the requirements of
these different departments are rather
different, it was possible to satisfy our
‘customers’ with a software differing only in

the highest, the test manager level.

The handling of the layered test software
requires the support by tools to keep the
software system consistent and to generate
different versions. This implies the use of a
powerful support computer.

The use of an automatic test equipment re-
sulted in some major improvements. We now can
repeat a test exactly as we did it before.
This enables us to check whether changes in
the software have any unwanted side effects.
Secondly, we are now forced to set up de-
tailed test scenarios, making "wild", unco-
ordinated testing impossible. Furthermore, we
are able to do more complex testing than
without an automatic tester. This concerns
the number of affected lines as well as
interdependencies between features,

It has been shown, that by involving the
maintenance and manufacturing staff in the
test activities the total development time
can be reduced.

The simulator also provides a universal per-
formance evaluation tool for switching
systems, where realistic phenomena, which
strongly affect the switching performance,
like subscriber impatience or repeated call
attempts can be considered and investigated.
The environment simulator allows us to in-
vestigate the process interference inside the
software of a SPC Switching System under
designed load and overload conditions.
Furthermore, it can be applied to evaluate
the effectivity of overload control strate-
gies in switching systems, whereby detailed
modelling of subscriber behaviour including
considerations of the system feedback is
arbitrarily programmable and adaptable. The
concept can be extended to model subscribers
and networks operating with new services,
which will be provided in current and future
system software developments, e.g., in ISDN-
featured systems (ISDN: integrated services
digital network).

REFERENCES

1. Gaissmaier, B., Schirmeier, H.: An inte-
grated software developrent method for
switching systems based on CCITT’s SDL.
Fifth International Conference on SETSS,
Lund, Sweden, 1983

2. Lemppenau, W., Tran-Gia, P.: A universal
environment simulator for SPC switching
system testing.
11th Intern. Teletraffic Congress, Kyoto,
Japan, 4.-11, Sept. 1985, Paper 5.1B-3

3. Metzger, R.M., Staber.E.: Anrufsimulator
UCS fur die Prufung von Fernleitungsaus-
rustungen.

Elektrisches Nachrichtenwesen 55, 1980,
210-216)

4. Dael, G., Amarger, D., Marrois, C.:
AROMAT telephone call monitoring and re-
cording equipment.
Communication and Transmission 1983, 39-52

5. Gruszecki, M.: ENTRASIM: Real time
traffic environment simulator for SPC
switching systems.

Proc. 8th ITC, Melbourne, Nov., 1976

l-'.]

Message Bus

Message
Bus

Message Bus

- ‘-f——-.—--—.__#-i-——

i.

l A% 1 XXX
| advanced
§

Sl we e il Sl it Y-

! “ayeicgment |
}
l

INES

imer Handler

- - - F

"'-.4.----- . --—.-—-—-—«I PES——————

Subscriber 3anaviour

Target System :ateriace

Qevice Handler

Stgnatling

Call Cantrol

dessage Handler

-

Soiftware Machines

Soltware Machines

S —

_——
[

a

,."
b

=
s

nctienal 1nterworking
arget 3ystem

of

(1}

Man Mac=. 2 ptariil? !
»

Tasl Manager s umul Lok

Lag-F e Jeneraiar’ 1.l

WH_HTL

[Tl i B

v, |
o |
x>
]
i
o
| &
;J-";
mar M3y~te

Tubscriser oriente
\ Saftwire Tmers
|

jarget System
[Tagt - SPC)
i3 Adapter

Fignure 3 Systam 3structure of UNES

! iUI 9'1:‘11{21’ ‘.:_ 1""":;: el 0t e o= '_ e

- - e e —
A T e g ;
| |
I" - | .

Y Tem.-.ml Lo

1
. . 3
]

} o’

¥

: v
i ':.‘-*;i-.ul.“-.lf;e:" r———_‘—_“ LJ'fEf /
l W, !

unerpected
Man Mazhine intsrfzco | - event

Operating Sysiem : .
. . Stdd statistic
Measurement Statistics . " o o0

Subscriber Jehgvrgur 404.ls '

Timer Handler Target le3'am 0Lt

Interface istrid. Funcrion Cecadaer

Simulation iimer
Randam AumpBer Sens-iinr

R BEAS IRt
7 r3Ngt 3N

- - -~ - . - ' . wd = ¢ @ -t - b o Bad . - v g R IR T -
~13ure » Zotteace 3t hare t o mal { .= N g L O L RO R A i N I
: b b N owm - - ”~ '.'\ | "
“‘4 ‘ﬂq’_’l " W#.J l Lﬁﬁ' T. p —_) : - 7 » O -*ﬁfl l'.-;':'
i i — ! h -

