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ABSTRACT

In performance investigations of token ring local area networks, switching
systems with distributed control etc., the class of polling models, i.e.
multiqueue systems with cyclic service is often employed. In this paper,
an approximate analysis method for this class of models will be presented,
whereby realistic modelling assumptions 1like the finiteness of queue ca-
pacities and nonsymmetrical load conditions are taken into account. The
method of imbedded Markov chain is used for the analysis, whereby the spe-
cial case of Markovian as well as the case of general service time are
successively considered. The latter case is analyzed in conjunction with a
moment matching approach for the cycle time. The approximation accuracy 1is
validated by means of computer simulations. Numerical results are shown in
order to illustrate the accuracy of the calculation method and its depend-
ency on system parameters.

l. INTRODUCTION

Polling models are often used in performance investigations of communication and
computer systems, e.g. switching systems with distributed control structures or local
area networks with token passing protocols. Most of investigations with varying
degree of model complexity consider queues having infinite capacities, where several
aproximation techniques for the system analysis are proposed.

In the literature, multiqueue systems served by a single server have been the subject
of numerous studies [l1-11]. A number of modelling approaches considering various
polling mechanisms 1like cyclic or priority order and several service disciplines,
e.g., exhaustive, nonexhaustive or gating are considered. Some of these studies take
into account the switchover time, i.e. the time interval spent by the server to
switch over from one queue to the succeeding one. In most of the investigations the

queues are assumed to have infinite capacity and the analysis is often derived using
the imbedded Markov chain technique [1,2,3,4,5,8].

Multiqueues systems with cyclic polling strategy, symmetrical load conditions,
constant switchover time and gating service were approximately analysed by Leibowitz
[7]. In [1,2] Cooper and Murray have considered a cyclic polling system with gating
or exhaustive service and zero switchover time. The case of two queues with general
switchover time was taken into account by Eisenberg [3]. The approach of Cooper and
Murray in [1] has been generalized by Eisenberg [4] and Hashida [5] to non-zero
switchover time. An approximation technique for cyclic queues with nonexhaustive
service and general switchover time has been developed by Kuehn [8]. Morris and Wang
(12] and Raith [13] provided analytical approaches to deal with polling systems with
multiple servers. An exact solution for a system with two queues and nonzero switch-
aver time was presented by Boxma [10]. A survey on polling system analysis, where
various system classes are considered, was provided by Takagi and Kleinrock [11].
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In all practical systems, nonsymmetrical load conditions are often observed and all
buffers are of finite capacity. In order to obtain a realistic model of a nonsymmet-
rically loaded or partly overloaded system, in which blocking of incoming messages
may occur, the finite capacity of some overloaded queues must be taken into account.
For the investigation of such finite capacity systems, established analysis methods
for infinite multiqueue systems, which usually operate with generating functions or
in Laplace domain, do not lead to closed expressions or effective algorithms for sys-
tem characteristics of interest.

In the following, an approximate analysis method for polling systems with finite
queue capacity and nonexhaustive cyclic service is presented, whereby a numerical
algorithm is developed. According to the type of the service time distribution func-
tion (Markovian or general), two numerical schemes for the cycle time calculation in
conjunction with an iteration method are derived. The accuracy of the approximative
method will be illustrated by means of numerical results, which have been obtained
for a wide range of system parameters.

2. MODEL DESCRIPTION

In Fig. 1 the queueing model of a single server polling system is depicted. The model
consists of a number g of finite capacity queues. At each queue it is assumed that
messages arrive according to a Poisson process. We consider a single server which
scans the queues in a cyclic order and serves it nonexhaustively, 1i.e., if there are
messages waiting, one message will be served per server visit instant. After the ser-
vice at queue j is finished the server will move to the succeeding queue jtl. If no
message is waiting in queue j the observed interscan period consists just of the
switchover time. The switchover time models all overheads spent and all procedures
performed by the server to move to and to scan the succeeding queue. In order to in-
vestigate nonsymmetrical systems, the arrival rate, the mean service time, the mean
switchover time and the queue capacity can individually be chosen for each queue.
Furthermore, service times and switchover times are assumed to be generally distri-
buted and the type of their distribution functions can also individually be chosen
for each queue.

The following symbols and random variables (r.v.) are used in this paper :

g number of queues in the system

Aj arrival rate of messages offered to queue j

Thj r.v. for the service time of messages in queue j

Tuj r.v. for the switchover time corresponding to queue j
Sj capacity of queue j
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Fig. 1: Single server polling system with finite gqueue capacity



3. ANALYSIS

In this section, a numerical algorithm for an approximate analysis of finite capacity
multiqueue systems will be derived. Basically, the analysis draws upon approaches
presented in [6,8], using the technique of the imbedded Markov chain. However, some
modifications must be provided in order to take into account the blocking effect and
the finiteness of queue capacities.

In subsection 3.1 general equations for the state analysis and system characteristics
will be derived, while in subsections 3.2 and 3.3 the special case of Markovian
server and subsequently, the case of generally distributed service time will be
investigated.

For a random variable (e.g. r.v. T) we use the following notations

F(t) probability distribution function
f(t) probability density function

d(s) Laplace-Stieltjes-Transform of F(t)
T mean value of T

c[T] coefficient of variation of T.

3.1 General Equations for the Analysis
3.1.1 Markov Chain State Probabilities

A particular queue j is considered in the following, which is observed at (n), .-

polling instants. Let t be the time of the n-th _ scanning epoch and let X'7/(07)
be the number of messages in this queue at time tn , i.e. just prior to the n-th
scanning epoch, we define the Markov chain state ~ probabilities

pén; e XMy =k}, k= 0,1, 0008 (3.1)
and the steady state probabilities of the Markov chain are defined from
Py = Prd X(0) =k} , k=0,1,...,8, (3.2)

For ease of reading, the subscript j indicating the observed queue will be sup-

pressed, e.g., the notation Pk will be used instead of Pk i
’

In order to calculate the transition probabilities of the Markov chain

+1 - - .
by = Pr £ 07y = 1 x0Ty = 51, (3.3)
we observe the system state X(n)(t) of the queue at time t_+t. Considering the pure

birth process in the queue between two consecutive scanning epochs, i.e. during a
scanning cycle, the state probabilities at time tn+t denoted by

Pén)(t) —ee (XM =k}, k=018, (3.4)
can be obtained as follows
k
(n) _ p(n) (n) - -
Pk (t) = PO ak(t) + .§ i+l ak_i(t) , k = 0,1,...,Sj 1
i=0 (3.5)
- 5,71 " :
(n) _ p(n) (n)
Ps, (t) = PO 'Z ai(t) + 'Z Pi+1 )X . am(t)
i i=§, i=0 m=S ,-i
where 0 J J
(A t) _
a_(t) = J e Mt (3.6)
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Using the consideration of conditional cycle time [8], where the following random
variables (r.v.) are defined

Tc r.v. for the cycle time with respect to the observed queue j

TC r.v. for a cycle, conditioning on an empty queue at the previous scanning
instant (i.e., without service of queue j during the cycle)

Té' r.v. for a cycle, conditioning on an non-empty queue at the previous
scanning instant (i.e., with service of queue j during the cycle),

the state equations which implicitly contain the transition probabilities can be
written as

© k+1 ©
(ntl) _ ,(n) (n)
Py = P, OJ/ a (t) £, (t)de + I By [ ap_s41 () foo.(E)dE
i=1 0
k=0,l,ooo,s._1
h|
o © s] o o
Pén+l)= Pén) T fa(e) f..(e)de + 2 Pin) L fap(t) g, (£)de.
j i=Ss . 0 i=1 m=S —-i+l1 O
| J (3.7)

Defining the arrival probabilities, i.e. the probabilities for m arrivals during a
conditional cycle of type Té or T .’

> C
bm = OJ am(t) fC,(t) dt
~ (3.8)
bl = Oj a_(t) fo..(t) dt
we obtain from (3.7) the following set of Markov chain state equations
k+1
(n+l)= (n) ’ (n) L4 = -
P, o™ b + I BB » k=0,1,...,8 -1
i=1
- g - (3.9)
P§“+l)= Pé“) Dby o+ 13 Pi“) I b
3 i=s i=1 w=s ~i+]

Eqn. (3.9) will be used for the numerical calculation of the steady state probabili-
ties {P,}. It remains to determine the arrival probabilities {bé} and {b;'} in
(3.8), which is the subject of subsections 3.2 and 3.3.

3.1.2 Conditional Cycle Time

Define T. . to be the random variable for the time interval between the scanning
epochs of > queue j and (j+l) , i.e. , the segment of the cycle time corresponding
to queue j, with the Laplace-Stielt jes-Transform (LST)

¢E,j(s) = ¢uj(s) . ((l-PO,j) ¢hj(s) + PO,j)' (3.10)

Under the assumption of independence between T. ., 3j=1,2,...,8, the LST of the
conditional cycle times can be given as follows ’

g

<3

(s) (3.11a)

~

n

~
[l

C’Li ¢uj(5) ¢E’k

~
n
~
]
©
~
/7]
~
©
=2
~
n
~

0 E,k(s) . (3.11b)
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Eqns.(3.10) and (3.lla,b) yield the first two moments of the conditional cycle times,
thus

_ _ g _ g
Tc’j =T, + X TE’k ,VAR[TC’j] = VAR[Tuj]+ E VAR[TE,k]
Kkl kzd
h 3
, ™ ™™ g m a4 g
TC’j = uj+ Thj + Zl TE,k ,VAR[TC,j]—VAR[Tuj]+VAR[Thj]+ ElVAR[TE’k] ,
k7} E%J
ees (3.12)
where
T. .=T ,+ (-p, )T .
E,] uj ( O,J) hj ) (3.13)
VARIT. .] = VAR[T .] + (1-P. .)VAR[T,.] + P, .(1-P, .) T . .
[ E, ] [ uJ] ( 0’J) [ hJ] 0,J( 0,3) hj

In general eqns. (3.11a,b) which determine the conditional cycle times can be used
in conjunction with the state equations (3.9) for the calculation of the Markov chain
state probabilities.

The main idea in the calculation method presented in this paper is to develop an
alternating calculation algorithm to obtain the Markov chain state probabilities

{Pk} and the cycle times {Té ,Té' }, which fulfill the eqns. (3.9) and (3.11a,b).

3.1.3 Arbitrary Time State Probabilities

In order to calculate system characteristics, e.g. blocking probability for messages
or mean waiting time in the queue, it is useful to obtain first the arbitrary time
state probabilities (cf.[15]). Again, the subscript j indicating the observed queue
is suppressed in this subsection.

*

Define {P, , k=0, 1, ...,5.} to be the arbitrary time state probabilities, i.e. the
distribution of the numberJ of messages in the considered queue j at an arbitrary
observation instant.

The time interval from the last scanning epoch until the observation point is the
backward recurrence time with the probability density function (pdf)

fé,(t) = (1= Fg.(e) / TE (3.14a)
and fr ) _
C”(t) = (l- - FCII(t)) / TC ] (3'14b)

The arrival probabilities during the backward recurrence time Tér and Té'r can be
given as

I 3
b a t f a4 t

Considering both types of conditional cycle times and combining the above results the
arbitrary time state probabilities can be given (c.f. [15])

* . ‘E;'P b+ e k;1 Pb k=0, 1 S .-1
P T T, Ok Te 4o 1Pk-1+1 > T Ty
_ _ g (3.16)
pr c P ; b+ c Zj P ? e
S5y Tg 0 1=5 1 Te 4=1 1 m=Sj—i+1m



3.1.4 System Characteristics

With the arbitrary time state probabilities given from eqn. (3.16) and taking into
account the Poisson arrival process offered to the observed queue j, the blocking
probability for messages in queue j can be determined :
*
Bj = st (3.17)
The mean delay in queue j, referred to transmitted messages, is found from Little’s
law as

L,
= —1
T,s ey (3.18)

where Lj is the mean length of queue j

S, .
L. = zdip, . (3.19)
] i=1

It should be noted here that the well-known formula for the mean cycle time [8] is
obtained in a modified form for the case of finite queue capacity

g
b} Tuj
TC = = J=l . (3.20)
1- 3¢ AT .(1-B))
j=1 M3 3

3.2 The Case of Markovian Server and Constant Switchover Time

In this subsection we devote attention to symmetrical polling systems with Markovian
service time and constant switchover time, i.e.
u

st

A= A T, =T == ¢hj(s) = ¢h(s) = s 3 =1,e00,8

b hj "h g

Under these assumptions, the conditional cycle times can be given as follows (c.f.
(3.10,11))

-st g1
e O(By+ (1-Rg) 0, (s))

¢C,(S)

~st g-1
d)le(S) = e q)h(s)(PO + (1_P0) Cbh(S)) ’ .;o(3.21)

where tO = gTu.

It can clearly be seen that the cycle time probability density functions consist of
terms corresponding to Erlangian density functions, which are deferred according to
the total system switchover time (t.). Thus, the conditional cycle time density
functions can be given in the time domain as

C g-1 g-1-i i
C,(t) = I ( i ) 3 (1-P0) fE,i(t-tO)

£
i=0
f ) = B Ly e eyt g (t-t )
’ = . = . - Py
C 1=0 i 0 0 E,it+l 0 . (3.22)

where fE,i(t) denotes the Erlangian probability density function of i-th order. With
eqn. (3.22) the arrival probabilities given in eqn. (3.8) can be calculated in
a straightforward manner as



o
N
|

g-1 . ., m L. . .
g-1 g-1-1 N | j+i-1 Joi_ a1
3 EH R At 1T @l

- p8l
Po " a (ty) + )
m- 0 =0 it o

m 0
i

g-1 . . m iy . .
., -1 -1- + +1
b’ = £ (87hy P& Tt (1-p )t I ™ Ja-of

where q = p/(1 + p) with p = A u . ee.(3.23)

am_j(to) R

o

Based on these arrival probabilities, the Markov chain state probabilities can be
calculated according to eqn. (3.9). In order to calculate the arbitrary time state
probabilities of a queue, the arrival probabilities have to be calculated. The
density functions of the backward recurrence conditional cycle times are

00 g—l

r =__l_ _ - 1 g-1 g-1-i _ i _
for =7, (I F (0 =77 IR SPIRR (1-Rg)" £ ;(T-tg) d T
C C 1=t i=0
o g-1
r_ L =1 g-1ly pg~l-1 . p yi -
oo T‘,fl FC,,(t)) T, J oz ( i ) B (1 PO) fE’i+16r tO) dt .
C C =t i=0 (3.24)

Using eqn.(3.24), the probability of m arrivals during the backward recurrence condi-
tional cycle times as stated in eqn. (3.15) can be derived

w -1
. * 1 g-1 & g-1 g-1-1i i
b’ === 1{FP S a(t) + £ (BT (1-P.)
m XTC, 0 jommtl j- o0 j=1 & 0 0
m i-l [e)
i+ +1
L Ta (e OO0 T oaie )
j=0 ™J k=0 3 jemtl I
-1
I | & g-1, ,g-1-i , 5 i
b =y, U2 Gy By (1-24)
C i=0
o Lok k j+l ®
. C Za_(t)) I - T aeg) b .
j=0 ™7J k=0 jemtl I ...(3.25)

Thus, the arbitrary time state probabilities of a considered queue can be calculated
according to eqn. (3.16), in order to obtain system characteristics.

3.3 The Case of General Service Time

In this subsection, the service time distribution is assumed to be generally
distributed. The calculation of the conditional cycle times as well as of the state
probabilities are of higher complexity (c.f. [15]).

Since the expressions of the conditional cycle times (3.1lla,b) are given in the
Laplace-Stielt jes domain, a Laplace inversion procedure should have been utilized
during each iteration cycle, in order to enable the calculation of eqns. (3.7) or
(3.8). However, for reasons of computing efforts, the two-moment approximation
technique, as proposed in [14], will be used in this subsection. This will briefly be
described in the following.

According to the mentioned moment matching method [l4], a given random variable T
with the expected value T and the coefficient of variation c¢ is approximately
described by means of the following substitute distribution function F(t) :



i. 0 £¢ =1
0 0=t = tl
F(t) = —(t-t. )/t (3.26a)
1 2
1 -e t >t
1
where tl = Ekl—c) and t, = Eﬁ
ii. ¢ 21
—t/t1 —t/t2
F(t) =1 -pe - (1l-p) e (3.26b)
where
tl )= T (1 + c2—1 )-1
’ c +1
and p=T/2t, , pt; = (-p)t, .

The method is applied to the conditional cycle times T’ and T.’, which are derived in
(3.11a,b) in conjunction with their means and variances in 3.12). We obtain subse-
quently the arrival probabilities as follows, where {bm} are given for {bé} and {b;'}

i. 0 csc =1
o (Atz)m X, Bty K
= = - _ 1
b oj a (£) f,(t) dt e ] e kzo E, (e, +1) 7/ k!
2 (3.27a)
ii. ¢ 21
(Atl)m (Atz)m
b =p —; *t (1-p) . (3.27b)
m (1+Xt1)m+1 (1+At2)m+l

Based on the arrival probabilities (3.27a,b) and the state equations (3.9) the Markov
chain state probabilities are calculated. Analogously, the arrival probabilities
during the backward recurrence conditional cycle times given by eqns. (3.15a,b) can
be explicitly written as follows:

i. 0 sc =1
K
by = ey (LT z EE;%E‘G AR 'E';EE“‘ Py (3.282)
n 1 2 k=0 : )

where bm corresponds to eqn.(3.27a)

[
[
.
[¢]
v
—

m m
K (At)) - (At,) _ (3.28b)
m 2(1+xe )" 2 (1+xt,)

3.4 Calculation Algorithm for Markov Chain State Probabilities

In this subsection a numerical algorithm is given to calculate the Markov chain state
probabilities. The algorithm, which utilizes the derived expressions for the Markov
chain state probabilities and the conditional cycle time [15], is an alternating
iteration scheme with the following main steps
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Step l: Depending on the actual Markov chain state probabilities, the conditional
cycle time probability density function is obtained according to the
expressions given in subsection 3.2 or 3.3, corresponding to the type of the
service time distribution function

Step 2: Calculation of the arrival probability vectors

Step 3: Based on the arrival probability vectors the Markov chain state probabilities
of all queues are determined in a cyclic manner according to eqn. (3.9); the
obtained values will be used in the next iteration cycle. In the case of a
symmetrical system, the calculation must only be done for one queue.

The convergence criteria for the iteration are defined from

g S, S, _
TA = % A, < € with A, =|zJ kPé“). - 3 kPén.l) (3.29)
j=1 J J k=1 ] k=1 »J

If the convergence condition of the iteration is fulfilled, the arbitrary time state
probabilities according to subsection 3.1 are calculated and, subsequently, the
performance measures required.

4., APPROXIMATION ACCURACY

In this section, numerical results will be presented and discussed for the two cases
of symmetrically and nonsymmetrically loaded polling systems, in order to illustrate
the accuracy of the algorithm presented in subsection 3. For both systems the time

variables are standardized by T, ., = 1, j=1,2,...,g, and the switchover time is chosen
to be constant. The coefficient of variation of the service time is denoted by
e, = c[Thj], j=1,2,...,8.

In order to validate the approximation, computer simulations are provided. The sim-
ulation results are depicted with their 95 percent confidence intervals.

4,1 Systems with Symmetrical Load Conditions

In this subsection, two symmetrically loaded systems with g=4 and g=20 are taken into
account. Figs. 2 and 3 depict the mean and the coefficient of variation of the cycle
time as function of the offered traffic intensity

g _

o jfl Ay Ty (4.1)
for different values of the number g of queues, the mean switchover time and the
service time coefficient of variation. Fig. 2 exhibits the effect that servers with
higher variance lead to shorter cycle times. This effect can be explained considering

the higher blocking probability by large Cy

It can also be seen in Fig. 2 that the mean cycle time approaches the limiting value
(the maximal cycle), given by the sum of switchover times and average service times
for all queues. As expected, for the two limiting cases of the mean cycle time, which
correspond to lower traffic intensities (the empty cycle) and overloads (the maximal
cycle), the cycle time coefficient of variation is very small (c.f. Fig. 3). This
effect is caused by the very high (or low) probability for a queue to be empty at the
considered low (or high) traffic intensity. As depicted in Fig. 3, there exists a
maximum value for the cycle time coefficient of variation. This maximum increases by
increasing service time variation or decreasing mean switchover time.

The mean waiting time and the blocking probability for messages are shown as func-
tions of the offered traffic intensity in Figs. 4 and 5, respectively, for different
service time coefficients of variation. In Fig. 4, a crossover effect of the waiting
time characteristics can be recognized. While the overall approximation accuracy is
satisfying concerning the waiting time, the algorithm presented is less accurate for
large values of the service time coefficient of variation.
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The case of Markovian service time distribution function (c,=1) can be calculated by
both methods discussed in subsections 3.2 and 3.3. From tEe approximation accuracy
point of view and for Markovian service time, there is no significant difference
between results obtained using the direct approach and using the moment matching
method. However, the direct method is more effective concerning the computing efforts
and the number of iteration cycles required for convergence.

It can clearly be seen that the overall approximation accuracy for the given system
parameters is good. However, the accuracy depends very strongly on the number of
queues and the mean values of the switchover time. In general, the accuracy of the
algorithm increases with increasing values of switchover time (c.f.[8]). It should be
noted here that results delivered by the presented method always show the same tend-
encies and phenomena as they are obtained by computer simulations.

4,2 Systems with Nonsymmetrical Load Conditions

Nonsymmetrical load conditioms exist in polling systems, in which overload occurs in
a part of the system. This phenomenon can be observed, e.g., in systems with distrib-
uted control (switching systems, local area networks,etc.), in the case of a dramatic
induction of an overload situation arising in a particular subsystem throughout the
whole system.

The example in this subsection considers a multiqueue system with g=4, in which the
first two queues are overloaded with the traffic intensity o, =p, = AT = AT ..

. ‘s - 1 2 17hl 2"h2
Symmetrical conditions are assumed for the remainder queues.
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Figs. 6 and 7 show the influence of the overload in queues 1 and 2 on the delay and
blocking characteristics of queues 3 and 4, for different values of service time
coefficient of variation. It can be clearly seen that the blocking probability and
the mean delay in queues 3 and 4 increase rapidly with increasing traffic intensity
until a certain level (p1 = 0.2). Above this level, according to the finite queue
capacity and the blocking é%fects in the system, the influence of the local overload
(queues 1 and 2) to the normally loaded system part (queues 3 and 4) is limited. For
the system parameters discussed, the approximation accuracy is higher for smaller
service time coefficients of variation.

5. CONCLUSIONS

In this paper, we presented an approximation technique for polling systems, where the
realistic assumption of finite capacity has been considered. The numerical algorithm
provided can be applied to performance investigations of a class of computer and
communication systems, such as local area networks with token-ring protocols or
stored program controlled switching systems with distributed control structures. The
cycle time distribution function, which is required for the iteration scheme in the
analysis, was given in terms of Erlangian distribution functions in the simple case
of Markovian server or approximated using a two moment matching method for generally
distributed service times. Results like mean cycle time, blocking probability, etc.
for symmetrical as well as nonsymmetrical load conditions are discussed. The accuracy
and convergence of the presented algorithm is good over a wide range of system param—
eters.
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