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In order to characterize traffic streams in distributed
computer and communications systems, as well as for
approximative investigations of overflow processes in
telecommunication networks, the class of Switched Poisson
Processes is often employed. By means of such processes,
piecewise correlated input processes with high variance

and state-dependent processes can be approximately modelled.
This paper deals with the Generalized Switched Poisson Pro-
cess SPP(G,G,) for which an approximation method with a
renewal assumption is presented and discussed. The accuracy
of the renewal approximation is shown by means of numerical
results for the single server queueing system with a finite
waiting capacity SPP(MM)/M/1-S.

1. INTRODUCTION AND PROCESS DESCRIPTION

In real-time processing systems with distributed control, statistical
characteristics of traffic streams resulting from events interchanged
between processors are very complex. On the one hand the behaviour of
these streams often depends on the actual state of the system which
is represented for example by the number of active processes to be
scheduled in the system. On the other hand, traffic streams which re-
sult from input processes in overload situations, such as interpro-
cess or interprocessor communications, are highly time-dependent.
They must be described by means of instationary processes or appro-
ximately by means of quasistationary processes.

In order to provide model components which allow a description of
such traffic streams, this paper investigates an approach of a quasi-
stationary process, i.e. the generalized switched Poisson process

for which a renewal approximation is presented.

There are a number of studies which utilize the regular switched
Poisson process and its related marginal processes (e.g. the inter-
rupted Poisson process) as input process of queueing models. In [8, 9]
systems with interrupted Poisson input process (IPP) are discussed.
While in [8 ] the infinite server model with IPP input is investigated,
the output process of the queue GI/M/n is treated in [9 ]. The
switched Poisson process (SPP) with Markovian phase lengths is dealt
with in [7, 10, 11, 12]. In [7 ] the process SPP appears as a special
case of the GI+M input. A solution for the delay system SPP/M/1 is
given in [11], using generating functions.
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Fig. 1 Generating model for the generalized
switched Poisson process.

A generating model of the generalized switched Poisson process is
shown in Fig.1. The process results from an alternated switching
between two Poisson processes (the originating processes) which are
characterized by the rates A, and A,, respectively. The visit times
of the resulting process are indepefident and identically distributed
random variables T] and T,. According to the arbitrary phase length
distribution functions, tﬁe following notation will be used for the
generalized switched Poisson process: SPP(G,G,), where G, and G, de-
note the distribution types of T, (Phase 1) and T., (Phase 2), réspec-
tively. For A, = O, the special case of Generalizéd Interrupted
Poisson Process IPP(G1G2) is defined.

Thus, the generalized switched Poisson process SPP(G4G,) can be com-
pletely characterized by the following random variableS (r.v.):

T1 r.v. for the length of phase 1

T2 r.v. for the length of phase 2

TA1 r.v. for the interarrival time in phase 1

TA2 r.v. for the interarrival time in phase 2.
*
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Fig. 2 Parameters of the generalized switched
Poisson process SPP(GIG2).



According to the definition, T and T are negativ exponentially

distributed r.v. correspondingA%o the O6riginating Poisson processes
in Fig.1, where

At . ]
Fpq(t) = Pr{T, <t} =1 - e ; ELTA1] = A (1.1)
—Azt - 1
Fpp(t) = PriT, <t} =1 - e ; ELTAZ:] =5 - (1.2)

Furthermore, the mean phase lengths are denoted by:

= =1
E[r,] =h, ol (1.3)
= =1
E[T,] =h, = —. (1.4)
2
As an alternative to the basic parameters given in egns. (1.1 - 1.4)

the following process parameters are defined for modelling purposes
which allow a description of input processes (e.g. overload traffic
streams) in a more realistic way:

i) The mean arrival rate (c.f. [10])

X1h1 +)\.2h2 A1w2 +l2w1

A= = . (1.5)
h, + h2 W, +m1

1

ii) Considering two consecutive phases of type 1 and 2 together

as a period of the process, the mean number of events in a
period is

A
- 1
hy = — +

1

No

Sl >
NN

A1h1 + 12 (1.6)

The parameters A and n, can be used to characterize the

switching frequency of the SPP(G1G2)-process.

iii) The ratio of phase lengths

. (1.7)



iv) The overload factor

M

Y= - (1.8)

In the following it is assumed that y>1 (Az > A), i.e. Xz

represents the higher and A1 the lower load level.

Two well-known renewal processes, the interrupted Poisson process
(IPP, c.f.[7]) and the Poisson process can be identified as limiting
cases of the switched Poisson process. These marginal processes
correspond to the limiting values of the overload factor y :

- Poisson process:

A, = A, =A >y . =1. (1.9)

(1.10)

2. RENEWAL APPROXIMATION FOR THE GENERALIZED SWITCHED POISSON
PROCESS

2.1 General

In this chapter, an interarrival distribution function for the gene-
ralized switched Poisson process SPP(G1G ) will be presented and
investigated, whereby the renewal proper%y is assumed. The derivation
ensues from the following steps (c.f.[6]):

i) Calculation of the distribution function of the forward
recurrence interarrival time.

ii) Calculation of the interarrival distribution function with

a renewal approximation.

For the notation of random variables and their related functions,
the following symbols will be used:

Ti random variable (r.v.), index i
TZ forward recurrence time of the r.v. Ti
Fi(t) = Pr{Tgt}

probability distribution function (PDF) of the r.v. T,



£,(8) = dFi(t)/dt
probability density function (pdf) of the r.v. T,
LT{f; (t)} = LST{F, (t)}

@i(s)

Laplace-Stieltjes-Transform of the PDF Fi(t) or
Laplace-Transform of the pdf fi(t).

Additionally, the conditional random variables TiITi>Tj and TilTj>Ti
are introduced, which have the following unnormalized pdf's and

Laplace Transforms

* *
* *
l(t)IT >1, = £;(£). (1-F (t)) 5 LT ¢i(s)|Tj>T ... (2.1)
The corresponding normalized forms are :
*
l(t)lT >TJ -
£ g 50, = o7 o= ®;(s)|q >,
i™ 73 | 1(t)|T sp dt i™ 73
0 j
*
1(t)|T >T -
f.(t) = o e O.(s) ce.(2.2)
i |T.>T, w _* i |T.>T.
joOi [ £ l(t)lT >, dt joO1

o

2.2 The Forward Recurrence Time Distribution Function

The calculation of the forward recurrence time PDF F'(t) and its
Laplace-Stieltjes transform ¢V (s) is based on an observation of the
process at an arbirary time epoch t* (the observation point, see
Fig.2). The probability of seeing the process in a phase 1 can be
written as follows:

Pr{t* is in a phase of type 1}

p, =
ey 9 (2.3)
h1+h2 1/m1+1/m2 w1+w2

and analogously:

Pr{t* is in a phase of type 2}

Py

w,
_ (2.4)
w,*w,




Let the observation point t* be now in a phase 1. Conditional on
this assumption, Fig.3 illustrates three examples of the forward
recurrence time TV which is the duration from t¥ to the next arrival
instant.
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Fig. 3 On the calculation of the forward recurrence time
distribution function of the generalized switched
Poisson process.

Two cases can occur:

i) The expected event is an arrival in the current phase 1 (see
case 65 in Fig.3). In this case the forward recurrence time is

v o_ v
= Tp1 |T1 > T

T A1

ii) The expected event is the end of the current phase 1. The pro-
cess must spend the time interval TY|T 1>T§|’, after which the
process observation will be continued.



The process is now in the beginning of a phase 2. The following
cases can occur:

i) The expected event is an arrival in the current phase 2
(see case (@) in Fig.3). In this case, the compound forward
recurrence time is given as

v v v
= >
T T1|TA1 T, + T

1 a2l T2>T

A2°
ii) The expected event is the end of the current phase 2, i.e.

no arrival has occured in this phase. After the phase T2|TA2>T2
the observation of the process will be continued.

The process is being observed at the beginning of a phase 1, where
the following two cases can occur:

i) The expected event is an arrival in the current phase 1,

(see case (@ in Fig.3). The compound forward recurrence
time in this case is

V _ oV v

TW = T,|Ty>T7 + Ty |Tp,>Ty + Taq|T1>Taq.

ii) The end of the current phase 1 is reached and no arrival has
been registered.

The observation of the process can be analogously continued until

an arrival is attained. Taking into account all combinatorial possi-
bilities for the forward recurrence time TV, a phase diagram as
shown in Fig.4 can be obtained. It should be recalled here that the
observation point t* is assumed to be in a phase of type 1.

Fig. 4 Phase diagram of the forward recurrence time
(conditioned on an observation point in phase 1).

QO——— observation point

—| next arrival
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The combination of the two cases for the observation point t¥yields
to the phase diagram of the forward recurrence interarrival time in
Fig.5, where the random variables for time intervals are indicated.
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Fig. 5 Phase diagram of the forward recurrence interarrival time
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Considering the phase diagram in Fig.5 as a Mason flow graph [3,4],
the Laplace-Stieltjes transform of the forward recurrence inter-
arrival probability distribution function of the Generalized Switched
Poisson Process SPP(G1G2) can be obtained as follows:

v *
® (s) =p @, (8)|nvs
1 %A1 |T1 T,

* * *
o, ,(s) +0, (s) @ . (s)
22" % >, 020 [, >1s a1 S 1 >

v A1

1

V*
+ @ (s)l
1 T >T * *
A1 1 - ¢1(s)|TA1>T1.¢2(s)lTA2>T2

*
+p, °A2 (s) lT\27>TA2

*
®_ . (s)
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2 |,

*
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The probabilities P, P, are given in egns. (2.3), (2.4) and the La-
place-Stieltjes Transfor¥ms of the conditional PDFs for the conditio-

nal phases in eqgn. (2.5) and Fig.5 can be calculated according to
eqns. (2.1) and (2.2).

It should be recalled here that the expression for @V(s) given in

eqn. (2.5) is wvalid for arbitrary probability distribfition functions
of the phase lengths T1 and T2'

2.3 The Renewal Approximation

Assuming the renewal property for the generalized switched Poisson
process SPP(G.G,), we obtain the following approximate expression

for the Laplace=Stieltjes transform of the inerarrival distribution
function c.f.[1, 2]):

o(s) = 1 - %p"(s)- (2.6)

where ¢V(s) is given in egn. (2.5).

2.4 The Special Case of Markovian Phase Lengths

As mentioned above, the expressions given in egns. (2.5) and (2.6) can
be used for arbitrary phase lengths T, and T, (c.f. Figs.1 and 2)
which correspond to the notation SPP(&1G2). %n the following we will
devote attention to a special case which“is often used and investi-
gated in the literature. The phase lengths T.(i = 1,2) are defined
here to be negative exponentially distributed:

_wit
Fi(t) = P{Tigtj =1 - e , 1 =1, 2. (2.7)

Using the notation presented in chapter 1, the process is of type
SPP (MM). This special case of the generalized switched Poisson pro-
cess corresponds to the two-state Markov-modulated Poisson process

(MMP) discussed in [10]and the input process with heterogeneous
arrivals analyzed in [11].

According to the PDFs given in egns.(1.1), (1.2), (2.7) for the r.v.
TA1’ T o TT' T, of the process SPP(MM) the Laplace-Stieltjes trans-
form o% the conaitional PDFs in egn.(2.1) can be determined and, sub-

sequently, the Laplace-Stieltjes transform of the forward recurrence
time is calculated:

1 A1w2(s+w1+m2+kz)+kzm1(s+w1+w2+k1)

V —
¢ (s) = © ¥, " (s+A.) (s+A,)+0, (s+A,)+w, (S¥A,) . (2.8)

Taking into account the renewal assumption in eqgn. (2.6), the Laplace
transform of the interarrival time of the generalized switched Poisson
process with Markovian phase lengths SPP(MM) is given by:



_..10_

2 2
_ 1 .s(l1m +A2w1)+(k1kz+k1w2+kzm1)(A1m2+x2w1)
A1w2+A2w

O(s) %
1 s +s(k1+A2+w1+m2)+A1x2+x1w2+xzm1

(2. 9)

The corresponding pdf. of the interarrival time can be obtained

from egn. (2.9)
iy K -s,t -s,t
f(t) = LT {®(s)} = t(a-s,)e +(s,-a)e ) (2.10)
sz--s1 1 2
where
Azm + kzw A A, + Ao, + A0
R = 172 21 12 172 21
Ao, F Ao, ' 2T K .
172 21

1 1 2 . -
b + = \/b® - 4ak with b = AgtA to +o, .

1
5 (2.11a)

as expected, the coefficient of variation c can be calculated
from (2.9 ) or (2.10):

cz E T21 A(A1+k2+w1+w2—k)

E[sz A112+A1w2+lzw1

As mentioned above, the formula given in eqn. (2.9) covers the whole
range between the Poisson process and the interrupted Poisson pro-

cess, according to the overload factor y defined in eqn.(1.8). For

these two marginal processes which have the renewal property, edqn.

(2.9) can be rewritten as follows:

. — — — 3 - —_— —_A‘
- Poisson process: A1—X2— A(Y—Ymin—1) : O(s)= Y

. —O(ve =1+ 4.
Interrupted Poisson process (IPP): A1—O(y—ymax—1+ 9)’

o _ Az(s + w1)
(s) = — (c.f. Kuczura [8])

s” + s(oo1 + @, + Az) + A2m1
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3. ON THE ACCURACY OF THE RENEWAL APPROXIMATION

In order to estimate the accuracy of the renewal approximation, we
consider in this chapter the process SPP(MM) as input of a single
Markovian server queueing system with finite waiting capacity S, i.e.
the delay-loss system SPP (MM)/M/1-S. The mean service time 1 will be
used here to standardize the results. H

In the following, system characteristics will be compared to validate
the renewal approach and to show the dependency of the approximation
accuracy on the process parameters, where:

i) The exact solution of the system SPP(MM)/M/1-S is carried out
by means of a consideration of a two-dimensional Markov process.
Numerical results are obtained using a recursive algorithm

ii) The renewal approximation transforms the process SPP(MM) into
a general independent input process with the Laplace transform
given in eqn.(2.9) or the PDF in eqn. (2.10). Thus, the results
for the approximation are obtained by solving the equivalent
system GI/M/1-S, using a numerical algorithm.
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Fig. 6 Accuracy of the renewal approximation:
mean system size vs offered traffic.
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Fig. 6 shows the mean system size as a function of the offered

traffic p=A/u . For the chosen parameters (S=20, 0=1, n.=10) the

overload factor y can vary from Yo =1 (Poisson process) to

Yna =14+1/0 =2 (interrupted Poisson  process). For these two marginal
cases, the renewal assumption is exact as expected.

The blocking probabilities are depicted in Fig.7. For different
values of the offered traffic p, it is seen here that the renewal
assumption is a closed approximation for a wide range of y. However,
the accuracy shown here depends very strongly on the mean number ny
of arrivals per process period. This can be explained by the fact
that for smaller values of n, the switched Poisson process is more
random and therefore the renéwal approximation is more accurate.
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Fig. 7 Accuracy of the renewal approximation :
blocking probability vs overload factor.
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4. CONCLUSIONS AND OUTLOOK

In this paper an approximation method for the Generalized Switched
Poisson Process SPP(G.,G,) using a renewal assumption is developed

and investigated. As shdwn by the reults presented for the exemplary
system SPP(MM)/M/1-S the renewal approximation provided is accurate
for a wide range of process parameters. The approximate formula

(c.f. egqns. 2.5 and 2.6) is valid for arbitrary phase lengths of the
generalized SPP. Therefore, the renewal approach represents a simpli-
Fication of the analysis in the case of more complex models with SPP
input, where merely the PDF of the input process or its Laplace trans-
form is required. These models are subjects of current studies which
deal with traffic streams in distributed computer and communication
systems in order to estimate their performance under overload con-
ditions. Furthermore, attention is devoted to the renewal IPP (GM)

process, where more accurate approximations for overflow processes
can be obtained.
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