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Abstract

A simulation method for investigations of transient behaviour of queueing systems is
described in this paper. The method is based on a modification of the event-by-event
simulation technique where arrivals according to time-dependent, generalized Poisson
processes are considered. Applications of the method to performance evaluation of
switching systems are discussed where the transient behaviour of the mIX] (v)/m/1
queueing model is investigated. The more general queueing system M(t)/G/n and its
time-dependent responses to instationary traffic patterns are also considered in

the last part of the paper.

1. STATEMENT OF THE PROBLEM

In performance investigations of telecommunication systems, e.g. stored program
controlled telephone switching systems, the event-by-event simulation technique is
a well-established method [1] . This technique is applied to validate analytically
obtained results or to enable the model investigation when an analytic method is
not available.

The most simulation studies in the literature deal with model investigations under
stationary traffic conditions. These studies allow considerations of dimensioning
aspects as well as performance evaluations of telecommunication systems. However,
in order to investigate the system performance under overload conditions, modelling
approaches for instationary system loads must be taken into account. The instationary
traffic offered can be, e.g. represented by means of a generalized Poisson process
with a time-dependent arrival rate A(t). Using this approach for traffic character-
ization, investigations of telephone switching systems are given in [4, 5] which
provide instationary system characteristics, such as system response to pulse-form
overload patterns, overload handling efficiency, etc... For this class of studies,
analysis and simulation methods for instationary conditions are required.

This paper presents an exact method for the simulation of instationary random pro-
cesses with time-dependent Poissonian input traffic. The method will be described
in chapter 2 and applications to switching system investigations and to general
queueing systems are given in chapter 3.

2. SIMULATION METHOD OF INSTATIONARY PROCESSES

In the following a simulation technique for instationary system investigations,
especially for systems with generalized Poisson process input, will be described
[5] . The method is a modification of the well-known event-by-event simulation
where two aspects are considered for the nonstationary case: the event generation
technique according to the generalized Poisson process and the measurement tech-
nique for transient system characteristics.



2.1 Event Generation for the Generalized Poisson Process

The event generation method described here is based on the standard method of gene-
ration by inversion corresponding to a numerical probability transformation technique
[1] Modifications of this technique for the generalized Poisson process can be found
in [2] and [3]. The basic procedure of this technique is to first generate an uni-
formly-(0,1) distributed random variate z. The random variate T_  according to the
interarrival distribution function F (t) can then be determined as illustrated in

Fig.2.1.
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by time discretization.

In the case of A(t), a time-dependent interarrival distribution function F (tA) must
be taken into account, conditioning on an arrival at time to. The deriv- o)
ation will be outlined in the following.

As shown in Fig. 2.2, the time between the last arrival t_ and the observation instant
t is discretized into n intervals of length At, where the Poissonian arrival rate
during the i-th interval is approximated to be constant

Ai = K(to-k(i—l)At) , 1=1,2,...,n. (2.1)

Since the probability that no arrivals occur in the i-th interval is exp(-A, At), the
probability for having no arrivals in the interval (to,t) can be written as’

n n
Pr{TA,t.>tA} = _H exp(-kiAt) = exp(-At. I A, i) (2.2)
o] i=1 i=1

where T denotes the time-dependent random variable for the interarrival time at
the time ' O instant tye

Finally, for n+® and At~>O0 in eqgn.(2.2), the complementary time-dependent inter-
arrival distribution function can be derived :

n t_+t
FO(t ) = priT >t } = lim exp(-At. I X,) = exp( —Of B () .at)
t A A,t A . i
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and the time-dependent interarrival distribution function is given by

t +t
Fo(ty) = 1 - exp(- °f BA(v).at ). (2.3)

(0]
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Using the expression given in eqn. (2.3), the inversion technique for the stationary
case (Fig. 2.1) can be .used to obtain the next event for the instationary Poisson
process with arbitrary time-dependent rate A(t).



In modelling approaches for overload control investigations in telecommunication sys-
tems, especially in telephone switching systems, instationary traffic in the form of
short-term overload is often considered. This can be modelled by means of the follow-
ing time-dependent Poissonian rate :

A(t) =
L overload traffic

normal traffic level

instationary traffic

>\1 + )‘OL(t) . (2.4)

As given in eqn. (2.3), conditioning on the last arrival at time t_, the next arrival
will be at the time epoch t_+t according to the following time-dependent
interarrival distribution function

FtétA) =1 - exp(—ll.tA-K(to,tA))

where K(to,tA) represents a time-dependent correcting function

t +t

_ Or A
K(tyit,) = tg A

OL(t) .dt . (2.5)

2.2 Organization of Transient Simulations

The simulation of a transient process usually begins at a starting point with a
starting condition, e.g. the system is empty or in a predefined stationary or quasi-
stationary state. Based on the starting condition which is usually given in the

form of an initial probability vector, the process is simulated under instationary
conditions until an instant, say ty, where the process is in another stationary state
or when the time interval of interest is exceeded. As illustrated in Fig.2.3, a single
transient simulation task as described will be called an elementary test. Each ele-
mentary test will start at the same system initial condition. A simulation rum con-
sits of a number of part-tests; each part-test is composed of a large number of ele-
mentary tests. The simulation program must be implemented in such a way to ensure

the independency between elementary tests.
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Fig. 2.3 Elementary tests and measurement technique of
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The measurement of values of interest or system characteristics can be done by means
of standard technique [1] at measurement points (Fig.2.3) which can arbitrarily be
chosen depending on the particular investigation requirements. The statistical ana-
lysis of a simulation run is done using the ensemble averages of elementary tests.
For measurements of waiting time or flow time in the process, virtual test-customers
must be inserted in the current process and their fates, i.e. their waiting time or
flow time, are observed.

In the applications described in the next chapter the Student-t-test technique is
employed where for each measurement point the system characteristic to be investi-
gated is given in the form of a sample mean and a related confidence interval which
are calculated out of part-test results.

3. EXAMPLES FOR APPLICATION
3.1 Overload Performance of Switching Systems

a) Model Description

Analytical estimation of overload control performance of stored program control (SPC)
switching systems is a subject which has been addressed in some recent studies [4, 5]
whereby the instationary simulation technique is used for the purpose of validation.
The modelling approach which will be resumed below is investigated in more detail

in [4:] .

The model deals with the interdependency between telephone customers and a switching
system where the dynamical system performance, i.e. the system throughput measured

in terms of the call completion rate, is taken into account. The queueing model used
is of type
w (¥l (t)/G/1

where

- M(t) models the instationary arrival process (generalized Poisson process)
with rate A(t)) for telephone calls under overload conditions

- the batch process stands for the number of tasks or telephonic events (sub-
calls) generated for call handling in the processing unit. The batch size
is dependent on the actual system state upon the call arrival instant;
depending on the batch size (number of subcalls), the call completion
characteristic is estimated

- the single server models the processing unit which handles subcalls. In the
analytical studies, a Markovian server is considered, while for the insta-
tionary simulation, arbitrarily distributed service times can be taken into
account.

b) Instationary Behaviour under Overloads

Some results will be given in the following to show the accuracy of the instationary
simulation. The time axis is normalized by the mean service time h, and the normalized
overload traffic p_(t) is considered as short-term, time-continuous triangular pulse
patterns. Fig.3.1 shows a comparison between simulation and analytical results where
the server is assumed to be Markovian. A simulation run consists of 5000 elementary
tests which are subdivided into 10 part-tests. The simulation results are depicted
with their 95% confidence intervals.

In this diagram which shows the trajectory of the time-dependent system response to a
triangular overload traffic pattern where the hysteresis characteristic of the call
completion rate of the switching system can clearly be recognized. This effect is
caused by the state-dependency of the batch arrival process and the waiting-time de-
pendency of the call completion probability. In order to investigate such effects,
instationary performance analysis is indispensable. Therefore, the instationary simu-
lation technique is an useful means for studies concerning the overload phenomenon
and the overload control efficiency of switching systems.
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Fig.3.1 Trajectory of time-dependent system response to a triangular
overload traffic pattern.

b p(t)

TRAFFIC
o
©

o
N

3.2 Transient Behaviour of the '
M(t) /G/n Queueing System 0 2 12 t

T "Erx(t)]

>y

The multi-server queueing system
M(t)/G/n with infinite waiting capac-
ity and time-dependent Poissonian
input process is considered. The

time axis is normalized by the mean
service time h and the traffic inten-
sity is given as p(t) =A(t).h/n,

where n denotes the number of servers.
Again, a simulation run is composed
of 5000 elementary tests which are
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confidence intervals are small (<3%)
and are not given in the diagrams. 5+
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Fig.3.2 Transient responses of the M(t)/G/n
queueing system to a rectangular
traffic pattern (n=10).



A periodical triangular
traffic pattern is consid-
ered in Fig.3.3. Starting
with an initial traffic in-
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tionary conditions, the
system response can com-
pletely be described by ob-
serving one period of the 5-
quasi-stationary process. {
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Fig.3.3 Transient responses of the M(t)/G/n queueing
system to a quasi-stationary, triangular
traffic pattern (n=5).

CONCLUSION AND OUTLOOK

The simulation technique for instationary Poisson traffic processes forms a powerful
means for performance investigations of dynamical, time-dependent behaviour of com-
puter and communications systems, especially for overload situations in such systems.
The exact simulation technique for gqueueing systems with generalized, time-dependent
Poisson inputs can be used to validate analytical investigations. Furthermore, the
technique enables system studies where analytical methods are not available.

The instationary simulation technique described here can be extended for time-depen-
dent general input processes for which a renewal approximation is considered.
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