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In a distributed real-time processing system, the
actions of the various processors are co-ordinated
by the passing of messages. Events generated in

one processor destined to be handled in another

are formed into messages which must wait until the
next scheduled I/0 or communication phase, at which
time they are transferred to the event gqueue of the
destination processor. The performance analysis of
blocking and delays for the inter-processor message
traffic is analysed by means of a queueing model
with batch input, finite storage and overhead. Results
are presented chiefly for the commonly occurring
case of a clocked communications schedule, although
much of the analysis is more generally applicable.

1. INTRODUCTION

In many modern real-time processing systems it is often the case
that all the intelligence is not concentrated in one large central
processor. Rather there is a tendency, for reasons of reliability
and flexibility, towards the development of distributed systems
composed of a number of individual processors operating in modes of
functional or load sharing or a combination of these. In a stored
program controlled (SPC) telephone exchange, for example, one
possibility is that there is a number of small peripheral processors
(pre-processors) concerned with the routine and time-consuming tasks
of event detection and signalling, while the higher level call
control is performed by a central processor. Or, instead of such a
hierarchical system, an exchange may be fully distributed, composed
of processors of equal ranking but with different functions, for
example processors associated with blocks of incoming and outgoing
trunks (or-subscriber circuits), and individual processors concerned
with translation or common channel signalling.

* This work was done while Dr. Manfield was at the University of
Siegen, Dept. of Communications, under a fellowship from the
Alexander von Humboldt Foundation.



For the overall real-time performance of distributed systems, which
in an SPC exchange could mean the call set-up time, the response
time of the interprocessor communication is a critical factor. To
meet real-time constraints it is common to schedule I/O phases at
clocked instants by means of high priority interrupts. The events
generated in one processor which need to be handled in another are
formed into messages which are placed into an output buffer to await
the interrupt beginning the next I/O phase. When this occurs the
messages are transferred to the input buffer of the appropriate
destination processor, under the control of a simple transmission
protocol, where they wait for processing.

In order to investigate some aspects of the performance of a distrib-
uted processing system, a queueing model is built up for the traffic
analysis of the inter-processor communication. We take into account
the overhead incurred by I/0 phases, the blocking caused by finite
processor input buffers, and the feature of batch job arrivals
caused by the scheduling of I/O phases. There are a number of works
[1-6 ] which deal with related queueing problems, mostly queues with
clocked, batch arrivals in the context of switching system control
structures. [1,2,4] consider queueing models with infinite waiting
space. In [6] finite systems are treated but with single arrivals
and clocked, batch service. In [5] is an approximate analysis by a
phase method of a finite system with clocked, batch arrivals and
overhead. Overhead is also treated in [6] but in the context of a
priority queueing model.

2. MODELLING

In this section the queueing model for event sampling, interprocessor
event-message transfer and processing is developed. Although we now
proceed to do this with explanation based on one particular example,
it should be clear that the model is useful for a wide range of
different applications in distributed or multi-level control pro-
cessing systems.
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Fig.l : Example for an event sampling mechanism

Consider the system depicted in Fig. 1, a typical scenario for
peripheral processing in an SPC switching system. At the hardware
scanning level, physical events must pass a persistency check to be
registered as valid telephonic events. These events are the input
for state transition actions at the call processing level. They will
be transferred to the event queue in the group processor according
to some I/O scheduling scheme as shown in Fig. 2. The I/O phases



represent overhead to the group processor, since it can not do any
event processing during these times.

The details of the traffic model are as follows. The process of
registered event arrivals is assumed to be Poisson, considering that
these events arise from a large number of different sources, either
subscribers or devices. The times between the initiation of
scheduled transfers of groups of events are assumed to be random
variables with a common distribution function. The lengths of
successive I/O (i. e., overhead) periods are also generally

assumed to be random variables with a common distribution. Although
much of the following analysis will be for the general case, our
chief consideration will be for the case of a clocked communication
schedule, with overhead phases of fixed length.
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Fig.2 : Event collection and processing

The size of the group of events transmitted to the destination
processor during an I/O phase will clearly depend on the length of
the sampling period and on the intensity of the underlying process
of event arrivals. Although the event messages in the primary buffer
will be transferred individually during an I/O phase, this is
exactly equivalent from the point of view of modelling to an instan-
taneous transfer of the whole group batch-wise at the scheduled I/O
instant. Every event transfer activity which is controlled by the
processor is usually performed by the same I/O task (the overhkead
phase) and has approximately the same run-time during which the
processor, is not available for event processing. The intervals
between overhead periods are called active service periods, during
which the server is available but not necessarily busy.

The capacity of the event queue is considered to be finite, and when
an arriving batch is too large for the number of free queue posi-
tions, the free positions are filled and the remaining events are
assumed lost. While this is not very realistic in real systems (e.qg.,
the transmission protocol would simply stop the transfer of messages
when the event queue was full), it is a useful starting assumption
and also allows the dimensioning of the event queue size.

Taking into account the mixture of types of arriving events, each
type requiring a different program with different resident times in
the processor, the service times for events are assumed to be expo-
nentially distributed [4,5].



Gathering together all this information, the basic component of the
model is seen to be that of a GI[X])/M/1-s queue with overhead, and
s waiting places. The waiting time for customers (events) in this
queueing system is made up of two components. Firstly an event must
wait in the primary buffer from the time it is generated until the
next scheduled I/O phase. This is called the pre-queueing delay.
Secondly an event suffers a queueing delay beginning at the time it
is transferred.

The sampling period consists of two parts, the overhead period and
the active service period. When these two are both generally dis-
tributed it is possible an interrupt for the next I/O phase to

occur before the current I/O phase has ended. To overcome this
problem we will asume that by a method of moment subtraction that
the overhead and active service periods have independent distrib-
utions (after the nature of an alternating renewal process [10])
whose convolution yields the required scheduling distribution, or at
least its moments. It is important to note that in the case of major
interest, namely the clocked schedule with constant overhead, there
is no approximation involved in this assumption.

3. ANALYSIS

The basic component of the model for inter-processor communication
is the GI[XJ/M/1-s queue with overhead. In subsections 3.1 to 3.5
performance measures for this queueing system are developed, and

in subsection 3.6 the prequeueing delay is investigated. The follow-
ing terminology will be used:

A parameter of Poisson process of customer arrivals
i service rate

p = A/u offered traffic intensity

s number of waiting places in queue

N = s+1 system size

F1(t) distribution function (d.f.) of overhead period
F2(t) d.f. of active service period (period when server

is available)

Pr{batch of n customers offered to queue at
scheduled interrupt} ‘

MBS = E:: ng ~(mean batch size).

n=0

3.1 The Imbedded Markov Chain

The first step in the analysis of the queueing part of the model is
by means of the well-known technique of the imbedded Markov chain
(MC) [7], at time instants just prior to the arrival points. Let t
be the time of the nth batch arrival and let n_ be the number of
Ccustomers in the system at time t~ (i.e., n just prior to the
arrival point), the system being " assumed to be in steady state.
The intervals (tn+1—t ) are then assumed to be independent and
identically ‘ distributed. The transition probabilities of
the imbedded MC are defined from

Pyk = Pr{n 1= k|n,= 3}



The state probabilities of the MC are

Pk = Pr{nn= k}

which are calculated from the following relations

N N

Pk = E pjk Pj ' E Pk =1 eee(3.1)

j=0 k=0

By conditioning on the size of an arriving batch, the transition
probabilities are

N-j i+j-1 - N-1 e
Ya -y ey e) - e e

Pio =
=0 T=0 T=0 ' i=N=j+1
N- ©

Pix = } 9; dip-x  * Ay g g, 7 (O<ksN) (3.2b)
i= 1i=N=3+1

where we have used

oo ‘m

: fe—ux %}-,-{)—- dF, (x) i m»0
dn = 9§ o | ... (3.3)
o) ; m<O

This is just the probability of m departures during an active
service period, and in the case of the clocked schedule with active
service period of fixed length T, we have simply

m
- o~HuT (uT) .
dm = e _?l'l_!—_ ; m>0 c..(3.4)
Using egns. (3.2) and (3.3), egn. (3.1) is solved for the state
probabilities of the imbedded MC by means of the numerical method
of Gauss-Seidel iteration with over-relaxation.

3.2 Blocking Probabilities

A performance measure of primary importance is the blocking probabil-
ity of the system. When a batch of customers arrives, and its length
exceeds the number of free waiting places, then some of the customers
are lost. The probability B_, of an arbitrary test customer is lost
is determined as follows. The probability that this customer ar-
rives in a batch of size 7 is just ig,/MBS [8], each position in the
batch being equally probable. By conditioning on the state
found by the batch containing the test customer,

N oo

_ 1 ; § .
k=0 i=N-k+1



A batch of size zero is stipulated never to be blocked even when

the system is full. Of secondary importance, it is possible to
evaluate the probability B, that an arbitrary batch is either partly
or fully blocked. From straightforward argument, '

N oo

B, = Zpk Z 9 c..{(3.6)

k=0 i=N-k+1

At this point it is opportune to point out that the effective
arrival rate of customers into the system, defined as p', is

p' =p (1-Bc) ... (3.7)

3.3 Arbitrary-Time State Probabilities

In order to deduce the mean waiting time in the queue for an arbi-
trary customer, it is easiest to use Little's law [9], for which it
is necessary to know the queue length at an arbitrary point in time,
as distinct from the queue length at the points of the imbedded MC.
An outside observer chooses an arbitrary time origin. He will
observe the system either during an overhead phase or during an
active service phase with probabilities m. and m respectively.
Denoting the lengths of the overhead and 'active® service phases by

X1 and Xz, from the theory of alternating renewal processes

my = E(X,)/ (E(X,)4E(X,))

1

n, = 1—n1 ...(3.8)

The two observation possibilities are labelled respectively case I
and case II. From the arbitrary time origin the observer looks back
to the last point of the imbedded process and notes the state
changes which have occured since then. In case I, the state must be
the same as immediately after the last arrival, since no servicing
occurs during the overhead phase. In case II, it is necessary
however to reckon the numbercf departures which occurred since the
end of the previous overhead phase. The time since the end of the
previous overhead phase is a random variable which is just the
backwards recurrence time for the active service period and hence
has the probability density function (p.d.f.) (1-F, (£)) /E(X,) [10].

Define the arbitrary time state probabilities

* :
Pk = Pr { outside observer sees k customers in system}

*
By consideration of the two observation cases I and II, the {Pk}
are found from the following relations:

N N-j oo

* § §d*§w*m P. (3.9a)
Po = T[1(-:’0130 + T 93 r+ dr 9i j --7a

J= 1=0 r=i+j r=N 1i=N-j+1



J=0
N N-7j o
* *
+ n, ( E di+j—k g; + dN—k E 94 } pj
. j=0 ‘1=0. i=N=j+1
a Z‘” (0 <k <N) ...(3.9p)
*
Jj=0 i=N-j
N o
+ d* + d* P
"2 o -3 * 9 9; | Py .. (3.90)
J=0 i=N-§+1
where ] oo , )m
-ux (ux _ .
* E(X,) f € - (1= F,(x)) d&x ; m>0
4o = © : ... (3.10)
© ; m<O

From this formulation it is possible to see directly that for the
special case of Markov inter-arrival periods and zero overhead that

* *
dm = dm and Pk = Pk .

By eva}uating'the integral in (3.10) it can be seen how to determine
the {dm} from the {dm} . Namely

oo

at = 1 > a
m uE(X?_) r

r=m+1

and furthermore for use in (3.9) it is possible to show that

oo n ©
j : L 1 E : § :

dm = EET§;T ( uE(Xé) - rcir - n dr) (n>0)
m=n r=0 r=n+1

3.4 Mean Waiting Time in Queue

The use of Little's law [9] in queues with overhead involves a
little care since one must keep in mind that during an overhead
period it is possible for a customer to be waiting in the server
itself. Thus the mean waiting time for non-blocked customers W_is
calculated indirectly from the mean sojourn time in the system® W
as follows :

N
*
where W = L and L = S k pk e (3.11)
—
k=0
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3.5 Waiting Time Distribution Function

The distribution function of waiting time in a queue with overhead
is in general not easy to determine, even for a system with Markov
server. We proceed in two steps. First we calculate the complemen-
tary distribution function (c.d.f.) for the component of the waiting
time generated by the workload of all customers ahead of test
customer in the queue (that is not including waiting time from
overhead) assuming FIFO queue discipline. Conditioned on the system
state and the size of the batch containing the test customer, this
will be an Erlang distribution. In the second step we include the
waiting time induced by the overhead periods to obtain the full
waiting time c.d.f. for the case of the clocked schedule with
constant overhead.

The first component of waiting, that caused by the_ service times of
customers ahead of the test customer, with c.d.f. W _(t), can be
derived by consideration of the principles in [8]. 9 We find, condi-
tioning on customer acceptance,

N i-2 © N-2
= - _ P =*(3+1) =*(3+1)
Ty = s 7y o) BT ) ) (t)}
1=2 3j=0 i=N+1 j=0
N-1 N-k  i-1 _ o N-k-1
+ § Pk{Zgi Zﬁ*(3+k)(t)+ § 9, Zﬁ*‘J”k’(t)}
k=1 1=1 j=0 i=N-k+1 3J=0
«..(3.12)
where : 21
=*(3) (ut)*  -ut
H '3 (r) = —F1 © '

r=0

that is the c.d.f. of the j-fold convolution of the service time
distribution function.

Now to include the effect of overhead on the waiting time it is
necessary to take into account the number of overhead periods which
occur before the. test customer reaches service. We now restrict
rourselves to the case of clocked schedule with constant overhead
(formulae for the full waiting time c.d.f. in the general case have
been derived but do not seem to be useful for explicit calculation
and hence have not been included here). Let the test _customer enter
the system at time t=0 and have waiting time c.d.f. W (t), i.e., for
the time until he first reaches the server. Let the clock period
be Tc and the overhead time To‘

For a particular time t = t' we need to determine the probability
that the test customer has not yet entered service. We condition on
the number of overhead periods which have occurred before time t'.
This number is uniquely determined by t', owing to the deter-
ministic nature of the overhead and active service periods, and we
denote this (unique) number by n(t') which may be integer or real
depending on t'. Hence the c.d.f. we require is just



—_—% -_—
W6 =W [t-n(t)To] ... (3.13)

To determine n(t) define m(t) = lt/Tcl— to be the largest integer
less than t/Tc. Then :

m(t) + 1 ; t -m(t)T > T
: C O
mn(t) =
m(t) + t—"—% Pt - me)T < T
(o]

3.6 Pre-Queueing Delay

Again in this subsection we restrict ourselves to the case of
clocked systems with constant overhead, although there seems to be
no reason why the general case cannot also be so treated (albeit
with more complicated algebra). The mean pre-queueing delay is the
expectation of the time the test customer has to wait before he
enters the queueing system at a clocked batch arrival point, as
described in Section 2. For non-blocking systems this is simply
shown to be one half of the clock period, but it is a little more
difficult for systems with blocking. The problem is depicted in
Fig. 3.

X3

x —
X
b 4

~ blocked customer/s
—[7] test customer

- |
| |
— T,— |
.

r—-:( x

<
4
x
—
<

- Te
Fig.3 : The Pre-Queueing Delay

Assume that in the clock period n customers arrive and that the test
customer occupies the kth position. Let the time from the previous
clock instant to the kth arrival be denoted by the random variable
X and the subsequent time to the next clock instant by the random
variable Y (the pre-queueing delay). Hence

E[y] = T, - E[X] ... (3.14)

Let E[Y]k,n] denote the conditional expectation of pre-queueing
delay for the kth customer given precisely »n arrive in the clock -
period. For simplicity of notation denote the clock period by T
instead of T . Then, from a renewal argument [10] considering the
position in €ime of the kth customer,



.
k-1 -px -p(T-x%) n-k
_ A plpx)" e e [p(T-x)]
! “é‘fx =1 (n=K) | dx

E[Y|k,n] =
n

By integration by parts we arrive at

+ -
k(om) ™! e=PT ...(3.15)

E[Ylk'n] =T - pgn(n+1)!

Removing the conditioning on k and n, but conditioning on customer
acceptance, and noting MBS = pT, the mean pre-queueing delay
(conditioned on customer acceptance) is given by:

N-1 w N-7

N-9 n
;—l g g
E[y] = {; P, ‘5%-5 E[Y|k,n]+ S | 5% 5 E[Y|k,n]
) n=1 k=1

=0 n=N-j+1 k=1

After a little algebraic manipulation we have in full :

N-1 N-3 -3
o 1 e—pT N-J pn-1 oD
Byl =) By | ) no-S—) £
J=0 n=1 n=1
ad T ad 1
+ AN-3) g - &5 (N-3) (N-j+1) S
) n 2 (n+1)!

«e..(3.16)

When the blocking is zero (3.16) reduces to T/2 as required.

4, RESULTS AND DISCUSSION

In this section numerical results are presented from the analysis of
the clocked queueing system with overhead, and the effects of queue
capacity, offered traffic level, and choice of clock period are
discussed. In all the results, time is assumed to be normalised by
the customer mean service time. Furthermore the (constant) length of
the overhead period is chosen to be one time unit, that is the I/0
routine needs one average customer service time.

4.1 System Performance

Fig. 4 shows the customer blocking probability as a function of the
number of waiting places s, for different values of traffic
intensity and length of clock period. These curves allow for a
suitable dimensioning of the processor event queue. The crossover of
the curves for fixed offered traffic and a suitable value of s
indicate the existence of an optimum choice of clock period, a
subject which is discussed in the next subsection. The blocking
probabilities for customers and batches, and the mean queueing time
are depicted in Figs. 5 and 6 respectively, as a function of offered
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traffic intensity. With regard to Fig. 6, the mcan waiting time
asymptotically approaches T_as the traffic goes to zero, sincec even
customers entering an empty system have to wait at least onec
overhead time. Fig. 7 gives the c.d.f. of waiting time in the queue
until a customer first reaches the server, for different values of
offered traffic and clock period. The effect of the overhead times
can be recognised easily by the "step" characteristic of the curves.
These results may be useful for dimensioning the queue to a
percentile delay for some fixed offered traffic level. The mean pre-
queueing delay as a function of offered traffic is shown in Fig. 8.
For a certain value of clock period, the pre-queueing delay increases
with offered traffic because the latest-arriving customers tend to be
blocked. However in a useful working range, say p less than 0.7,
blocking is seen to have little effect and the mean pre-queueing
delay can be approximated by one half the clock period.

20.0
w
s ]
w
o }
(o]
z
15.0
¥ /
-
2 Te-2 s/ 10 20
s //‘—'——
<
S
b4
< 10.0
3

;7/" CLOCKED SCHEDULE

NUMBER OF WAITING PLACES = 20
OVERHEAD TIME =z 1

|

0.0

0.1 0.5 1.0 1.5
OFFERED TRAFFIC INTENSITY
Fig.6 : Mean Waiting Time vs Offecred

Traffic. Parameter : Clock Period



CLOCKED SCHEDULE

NUMBER OF WAITING PLACES
s 20

OVERHEAD TIME = 1|

0.01

COMPLEMENTARY WAITING TIME DISTRIBUTION FN.

0.001

Fig.7 :
L 0.0001
Complementary Waiting :
Time Distribution TIME
Function
15.0 T
CLOCKED SCHEDULE
> NUMBER OF WAITING PLACES = 20
<
o OVERHEAD TIME = 1
o
O )
4
lg Tc = 20 /
%10.0
<]
w
o
a
<
<
w
>3
5 0 Tc - 10 //
Fig.8 :
. = /
Mean Pre-Queueing Te =5 —
Delay vs Offered
Traffic ' T =2
(Parameter :Clock
Period) 0.0
0.1 0.5 1.0 1.5

OFFERED TRAFFIC INTENSITY



- 14 -

4.2 Effect of Clock Period

In Fig. 9, blocking probabilities for customers and batches are
Plotted as a function of clock period, and it is quite clear an
optimum choice of T _ exists for a given level of offered traffic.
Moreover this optim value varies very little with the level of
offered traffic. Related to the clock period are two opposing
effects which give rise to the optimum. For small T , the percentage
of time taken up with overhead is large, and so customers spend
longer in the queue and the blocking is therefore high. If T is
large, the mean batch size at a clock instant is also large,- and
blocking is again high.

The mean waiting time in the queue, depicted in Fig. 10 exhibits a
similar characteristic with respect to clock period. As T grows
very large, the batch sizes are also very large and the s§stem will
tend to be filled at each clock instant, and tend to be emptied
before the next clock instant. An arbitrary customer therefore has
to wait, on the average, for the service of s/2 customers (those
ahead of him in the batch), plus one overhead period. This explains
the asymptote at high traffic for the mean waiting time.
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5. ALTERNATIVE I/O SCHEDULING SCHEME

5.1 Description

The previous section is devoted to results for the case of a clocked
communication schedule. An alternative scheme easily implemented in
software is an "event collection” scheme as follows. Two processors
performing different functions generate events which need to be
handled in the other. For simplicity only one direction of communi-
cation is considered. When the primary processor has collected a
fixed number, »n say, of event messages which need to be sent to the
secondary. processor, then it generates an interrupt to begin an I/0O
phase. For example this is very efficient at low traffic levels when
we set n = 1, and clearly in this case the pre-queueing delay is zero.
During the I/O phase both processors are unavailable for event
processing and so no new event messages for transmission can be
generated in these intervals. During the active periods it is assumed
that events to be transmitted are generated according to a Poisson
process with intensity

a=p[To+E[x2]] /E[X,] c..(5.1)

where the overhead periods are again assumed to be constant and of
length T . In this way the active period has an Erlang distribution
of order® n, and the analytical tools of section 3 (except for the
calculation of waiting time c.d.f. and pre-queueing delay) may be
applied.



5.2 “Pre-queueing Delay

To calculate the expected pre-queueing delay we assumed the same
notation as in subsection 3.6. For a system without blocking it is
not difficult to see that

E[Y] = E:: ax - ol ... (5.2)

When blocking is considered, we condition on the state of the system
just prior to the next I/O phase, and condltlon on customer accept-
ance to obtain

N- 1 N-j
n-k
E(Y] = p g PJ S ey
j=0

*N—n+1 k=1

which quickly reduces to

N-n N-1
_ P n-1 . N-j+1
E[Y] = 53| 5 E Py + E By(N-3) (1 -] | ---(5.3)
1= j=N-n+1
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In the case of n = 1 it is clear from the development that the
second term of (5.3) will not exist.

5.3 Results and Comparison

In Fig. 11 the blocking curves for the queue with 20 waiting places
are drawn, for various values of n in the "collect n events"
scheduling scheme. For comparison the blocking for the clocked

schedule with T = 5 is also drawn. From Fig. 9 it is seen that
T =5 is not € the optimum with respect to blocking, and at
aSproximately T, = 10 the clocked scheme works as well as the best

event collectioffi scheme.

In Fig. 12 the expected total delay (pre-queueing delay plus mean
waiting time in queue) is also depicted for a range of n for the
event collection scheme and compared to the clocked scheme for Tc=5.
Generally speaking it may be said that from the point of view of
waiting time one can always do better with the event collection
scheme by an optimal choice of n. On the other hand, the total
delay and the optimal value of n are very sensitive to changes in
traffic load, and it may not be easy to quickly compute the optimal
n in real-time. The clocked scheme in contrast is very robust with
respect to changes in traffic load.
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6. CONCLUSION

The queueing model and accompanying analysis which have been
developed in this paper give a range of tools useful in the per-
formance evaluation for inter-processor message traffic in a
distributed system. The model is applicable to a range of systems,
not only to stored program controlled switching systems, but also
to more general distributed computing systems, for example in the
traffic analysis of bus systems. The results show how blocking and
delay criteria can be taken into account in the traffic engineering
of inter-processor communication.

For the scheme of a clocked communications schedule, it is seen that
the clock period is a critical parameter for system performance,

with an optimum value that is largely determined by the system
overhead rather than the level of inter-processor message traffic.

In comparison to the alternative communication scheme, the

"collect n events" schedule considered in Section 5, the clocked
scheme is seen to be relatively robust with respect to traffic level,
when the clock period is well chosen.
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