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Dependency of Service Time on Waiting Time in
Switching Systems—A Queueing Analysis with
Aspects of Overload Control

PHUOC TRAN-GIA, MEMBER, IEEE, AND MICHIEL H. VAN HOORN

Abstract—Performance degradation of switching systems when the
load increases above the engineered load can be caused by system-
dependent and customer-dependent factors. In this paper the dependency
of the service time and the call completion rate on the waiting time of a
customer is investigated. The problem is modeled by means of a queueing
system of type M'¥1/G/1, where state-dependent batch size distributions
are considered. Two analysis methods, the continuous Markov chain
approach and the regenerative method, are used for Markovian and
generally distributed service phases, respectively. Numerical results are
given for system characteristics, in particular the call completion rate of
the system. Finally, a basic overload control scheme in investigated which
Increases the throughput of completed calls at higher traffic levels.

I. INTRODUCTION

N switching systems, especially in stored program

controlled systems, overload situations are caused by
various factors, e.g., customer behavior or lack of system
resources. Interaction between customer and system is an
important factor which affects the system performance very
strongly. . .

Reactions of customers can influence the system in different
ways. On the one hand, a customer may abandon his call with
a certain probability when he is confronted with large delays
during the call setup phase (e.g., waiting for dial tone, post-
dialing delay, etc.). In this case, an ineffective amount of work
has been offered to the processor, and hence the call
completion rate of the system decreases. On the other hand,
rejected customers may reattempt their call after a certain
time. The repeated attempts will further inflate the overload.

In order to investigate the behavior of a switching system in
overload situations, a queueing model is employed in which
the service time of a customer depends on his waiting time
before entering servite. Although this queueing model is
generally applicable, attention is devoted to the determination
of the performance limitation of overloaded switching sys-
tems. Regarding the existing complexity of the model, the
repeated attempts phenomenon is not considered in this
modeling approach.

The most important performance measures in a switching
system are the probability for call completion and the call
completion rate. The probability for call completion is defined
as the number of call attempts that have been performed
successfully, compared to all call requests offered to the
system.

There are a number of studies which consider the dependency
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of the service time on the waiting time with varying degrees of
complexity. Posner [1] analyzes a single server queueing
model with respect to the dependency of the service duration
on the waiting time, where an example for two service levels is
given. Forys [2] discusses a basic model for applications in
telephone switching systems where customers contribute one
of two exponentially distributed processing times, depending
on their waiting timec. Rosenshine [3] considers this depen-
dency in modeling the service time of air traffic controllers
where the imbedded Markov chain method is used for
analysis. Doshi and Lipper [9] introduce a queue with delay-
dependent service, where the last-come-first-served (LCFS)
service discipline is used for overload control purposes in
switching systems.

The modeling approach will be presented in Section I1. In
Section III the analysis method will be described and some
numerical results are given to show the main effects for the
considered essential system characteristics. Finally, in Section
IV a control mechanism for overload situations will be
presented and investigated which allows us to optimize the
system performance above engineered load. It will be shown
that a remarkable enhancement of the system performance can
be obtained by introducing a very simple overload control
scheme.

II. MODELING APPROACH WITH SERVICE TIME DISCRETIZATION

In this section a queueing system is presented which_ allows
us to describe the dependency of processor service tinie of a
call on its waiting time in order to calculate the call completion
rate in a switching system.

We observe a test call entering a switching system. The call
sees an amount of work waiting for processing. Concretely,
this work may stand for the number of subcalls or telephonic
events (call handling tasks or messages to be transferred tor
interprocessor or interprocess communications) buffered in
the processor qucue. Based on this observation and in order to
simplify the analysis without losing’ essential effects, we
consider the amount of work in the processor queue as a
discrete number of phases which are assumed to be indepen-
dent and identically distributed random variables. -

The number of phases the test call sees upon arrival
corresponds to its waiting time before entering service.
Depending on the duration of its waiting time, the test call
decides to bring a number of phases into the system. These
phases can be interpreted as the number of subcalls and the
corresponding call handling effort the switching system must
spend for the call attempt. From the analysis point of view, we
can consider the decision to be taken at the arrival epoch of the
call, although in reality it is taken at the instant the customer
enters service (e.g., dialing phase).

Calls with incompleted dialing or abandoned calls usually
offer a small number of phases to the system, while successful
calls with completed dialing often have offered a larger
number of phases to the system. Therefore, according to the
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number of phases chosen by a call, we define the probability
that it will become a bad call or a successful call.

Considering all arguments discussed above, we have mod-
eled the system as a single server queueing system of type
M'X1/G/1 with state-dependent batch arrivals. In fact we have
the discrete version of a single server queue with state-
dependent service time.

In this model the following assumptions are made.

® Call arrivals follow a Poisson process with rate A.

® A call that sees k& phases in the system (including the
phase in service) will offer G phases to the system, where
Pr {GW® = j} — g,

® A cull having chosen 4 phases becomes a successiul call
(completed call) with the conditional completion probability
Cj.

® The service time for an arbitrary phase has the distribu-
tion function Fg(¢) with mean A.

As will be specified in Section III-B, the probability that a
call chooses j phases decreases with increasing number k& of
phases in the system and the conditional completion probabil-
ity ¢; increases in j.

The modeling arguments described below will help to
simplify the calculation algorithm.

® Considering the observation of subcalls in switching
systems, the number j of service phases chosen by a call may
vary between fixed numbers Ny and N, (N < j < N)).

® A call that sees upon arrival a very large number of
phases in the system, say at least k, phases, will tend to
become a bad call, and it will add N, phases for service. For
the sake of convenience, we let G = G% and g; = g for

= ko. This assumption corresponds to the observation that a
customer who waits too long often tends to abandon his call
after producing few subcalls.

Using the state-dependent batch size distribution, the effect
of dependency between customer service time and waiting
time can be described. In the next section, based on the
calculation of the steady-state probabilities of the queueing
system, the call completion rate for customers and the
effective system throughput can be derived under different call
traffic conditions.

HI. PERFORMANCE ANALYSIS

In this section, the steady-state analysis of the MXlI/G/1
queueing system with state-dependent batch arrivals, as
described in the previous section, is presented. For ease of
presentation, we shall refer to customers or calls consisting of
phases and describe the state of the system by the number of
phases present, including the phase in service.

Let the random variable X denote the number of phases in
the system at an arbitrary epoch and define

=Pr {X=n}, n > 0.

The assumption is made that conditions for statistical equilib-
rium are satisfied. A sufficient condition for a stable queue is
that the normalized call traffic intensity pg = N-h-E[G] is less
than 1.

In Section III-A, Markovian service phases are considered
(Fs(r) = 1 — e #). In this case the queueing process is a
birth-and-death process with multiple births, and the analysis
is substantially easier than in the general case which will be
dealt with in Section III-D.

A. Analytic Algorithm for Markovian Service Phases

To derive a set of equations for the state probabilities, we
use the well-known balance property of Markov processes that
the transition rate into some macro state S equals the transition
rate out of S for any subset S of the state space. Consider the
choice S = {0, 1, , n}; the transition rate out of S is given
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by
Apo Pr {G© > n+1}+Mp; Pr {GD > n}

*+Ap, Pr {G" > 1}
and the transition rate into S by

KPn+ 1

(0)
anoZ

(0
Xgn’1

%\\\\\
® @ - O 16 @

(3

Hence, we obtain

BPns1=N Y pi Pr {G® > n+1-k}, n=0. (3.1
k=0
The following generating functions are defined:
P(z)=Y; pnz"
n=0
rd(z)="3% gwzn
n=0
P(z)=7; gnz". (3.2

n=0

Multiplying (3.1) with z"*! and summing over n, we obtain

- 1-T®
#(P(2)=p) =Nz Y, pizt *“—l_—(z-)
A=0
1-T
=)\z——(2P(z)
-z
byl 1-TW(Z)—(1-T
e S pct (z)-(1-T'(2))

-z

A =0

or

ko1

P(z)= [upoH\z > ezt

k=0

-z

1-T -
[“_)\z (z)]
1-z

Substituting px = p¥po (0 < k < ky — 1) with pf = 1, we
can compute p* (1 < i < ko — 1) with (3.1). Inserting z = 1
in (3.3) we obtain

1-TW(z)-(1 —I‘(z))']

3.3)

Po=(u—NE[G])) - <u+)\ 2 PYLEIGW]- E[G]J>

k=0
(3.49)
by noting that
1-T®(z
lim -——A=E[G“"].
z—1 1—-z2
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The algorithm to calculate py is summarized in the following
steps.

1) Set pf = 1 and compute recursively p¥, 1
ko - 1 with (3.1).

2) Calculate py with (3.4) and renormalize p; = p}p, for
0 < k < hy - 1.

3) Compute further state probabilities py, kK > k, recur-
sively with (3.1). "

After differentiation of (3.3) and setting z = 1, the
following expression for the mean number of phases in the
system is found:

< k<

EIX1=P' ()= kp,

A-1

——ee 2
26— NEIG]) [E[GHE[G :
+'S @k+ Dp(EIGW) - E(G))
k=0

ko—1
+> pk(E[G(k)Z]_E[GZD] .

k0

3.5)

B. System Characteristics

The derivation of the steady-state distribution of the number
of phases in the system forms the basic requirements to obtain
the following performance characteristics:

Pcompi.  completion probability for an arbitrary call
call completion rate
Y, = Y Np: normalized call completion rate
E[X] mean number of phases in the system
MBS mcan batch size, i.e., mean number of phases

brought into the system by an arbitrary customer.

The performance characteristics are expressed in terms of p,
in the following way:

PcompL = 2 Pk E ng;k’

k=0  j=0

Y =APcomr

E[X]=E kpy

k=1

MBS = E DRE[GP).

k=0

(3.6)

With the assumptions g_jk’ =0, < Nyorj > N;, and g;k) =

g; for k = ko, PcompL can be rewritten as

N, ko1
Pcompr. = 2 Cj<gj+ E Pk(g;k)"gj)> .

J+ Na ko0

3.7

Further note that A\- MBS is the average arrival rate of phases
and N\-MBS- 4 is the workload offered to the system per time
unit, which is equal to 1 — p,, the fraction of time the server is
busy. So we have

(3.8)

The mean system size E|X] is given by (3.5).
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Fig. 1. Conditional completion probabilities.

For the probabilitics ¢; we have made the following choice
containing the parameters vy and Ny as degrees of freedom
(cf. Fig. 1).

J=Ny .
YHU-D) = Ny S Ny
C = Num— Ny
j . 3.9)
1 Num=<Jj=N,
0 otherwise.

In practical situations, the number of subcalls produced by a
completed call will vary between certain limits, here presented
by Num and N,. If the number of subcalls produced by a call is
less than Ny, the probability to be completed decreases, but
need not be zero.

The batch size distribution is the factor that takes into
account the dependency between the service time of a
customer and his waiting time. If a customer sees k phases in
the system upon arrival, his waiting time has an Erlang-k
distribution corresponding to the negative exponential phases.
He is supposed to have a certain patience, i.e., he is willing to
wait a reasonable time, say 7, before entering service. If his
waiting time is short, he will choose a service time consisting
of a relatively large number of phases, corresponding to a
large number of subcalls. If his waiting time is longer than 7,
he will tend to bring a smaller number of phases into the
system, because he abandons his call sooner. As discussed in
Section II, it is realistic to assume that the number of phases a
customer chooses lies between certain numbers N, and N,.
However, for the analysis this assumption is not essential. The
length of the patience 7 could be obtained by measurement in a
real system. Here, we choose 7 = 3N,k (cf. Forys [2]). The
above reasoning allows the following choice for the batch size
distribution:

Pr {GW=N,}=Pr {W;<71}
Pr {GR=j}=Pr [+ (N,—j—Dh<W,<7+(N,—j)h}
Ny<j<N,

Pr {G® =Ny} =Pr { W,>7+(N,~N,—1)h}. 3.10)
The random variable W), denotes the waiting time of a
customer seeing k phases in the system on his arrival epoch. In
Fig. 2 the average number of phases chosen by a customer is
shown. Also, the effect of the patience of customers is clcarly
illustrated.

C. Some Numerical Results

In this subsection, numcrical results are prescnted which
show system characteristics under different traffic conditions.
For all the results, time is normalized by the mean service time
of phases A = 1/p = 1, and the offered traffic intensity is
standardized by py = AN/ pu.

Fig. 3 shows the completion probability for an arbitrary call
as a function of the offered traffic intensity. The curves arc
drawn for different values of v. It should be recalled that v
represents the completion probability for calls which have a
relative long waiting time and choose the minimum number N,
of phases. It can be seen here that the call completion
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Fig. 3. Completion probability for calls versus normalized traffic intensity.

probability decreases rapidly above a certain level of the
offered traffic. A degradation of the system performance is
said to have occurred. This effect is shown more clearly in
Fig. 4, where the call completion rate is depicted for different
traffic intensities.

For pg = 1 the system becomes unstable and the queue
increases to infinity. However, according to the modeling
approach, the call completion rate is constant with value v.

The mean number of phasces in the system is shown in Fig. §
as a function of the offered tralfic intensity, where different
values of the ratio N,/N, are considered. For higher values of
N,/N, the curve can be clearly recognized as a superposition
of two segments. The first segment of the curve corresponds to
lower traffic levels where the batch size is approximately Ny;
the second segment corresponds to higher traffic intensities,
where the majority of customers chooses N, phases.

D. General Phase Distribution

The analysis of the MXI/G/1 queue with a general
distribution of the service time of phases is more complicated
than the M'¥1/M/1 case. In van Hoorn [4] the analysis is done
by means of the regenerative method. Using up and down
crossing arguments, a complete set of equations is derived to
obtain’the steady-state probabilitics at arbitrary and at depar-
ture epochs. We shall summarize below the main aspects of
the analysis.

Assuming the system is empty at epoch 0, we define the
following random variables:

T the next epoch at which the system becomes empty

T, amount of time during which n phases are in the system
in the busy cycle (0, 7). n = 0

N number of phases served in (0, T)

N, number of service completion epochs at which the
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phasc served leaves n other phases behind in the
systemin (0, 7], n = O

and the quantities

Axn expected amount of time during which n phases are in
the system until the next service completion epoch,
given that at epoch O a service is completed with k
phases left behind in the system.

By partitioning the busy cycle by means of the service
completion epochs and using Wald’s theorem (cf. Ross [7]),
we find

bl Tu]= 2 E[NklAlms

k=0

n=1.

3.11)
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Note that E[N;] equals the average number of times in a busy
cycle that a service starts with k phases present.

For a second relation between the ££[ T, | and E|N,|, we use
a similar up and down crossing argument as in Section ITI-A.
However, now we equate the number of transitions into S and
out of S in a busy cycle. Noting that E[N,] is the average
number of transitions from state # + 1 to n and NE[T] the
average number of arriving batches, given state k, we get

E[N, )=\ E[T] Pr {GY=n+1-k}, n=0.

k=0

(3.12)

Together, (3.11) and (3.12) allow the computation of the
E[T,] and E[N,], as shown below.

1) Evaluate the constants Ay,.

2) Put E[Ny] = 1,

1
A= (o=t} -
3) Given that E[Ty], *--, E[T,_;], E[Ny], , E[N,_1]
arc computed, solve
E[T,]=E[Ny1Apm
+ func (F| Ny, ., EIN, 1D [ef. (3.11))
E[N,]=\E|[T,] Pr {G"=1}
+func (E[Tyl, ---, EIT, |D. [ef. (3.12)]
4) Return to step 3 if necessary.
5) Compute E[T|=X,_o E[T,] and E[N]=3;_, E[N,].

Define

Pn steady-state distribution of the number of phases at an
arbitrary epoch

qn steady-state distribution of the number of phases at a
(phase) departure epoch.

Then by the theory of the regenerative processes (cf. Stidham
[8] and Ross [7]),

EIT,] )
ey " 9T

E[N,]
E[N]

for all n=0.

Pn=

Below, we specify some schemes for the evaluation of the
constants A, in the case of exponential, hyperexponential,
and Erlang service time distributions of phases. These
schemes can be extended to more general phase type service
time distributions.

In van Hoorn [4] a scheme is given to compute A,, in the
case of general service time distributions which is, however,
less efficient than the scheme below.

Case I: Fg(f) = 1 — e #: Using the memoryless property
of the exponential distribution and the property that with
probability N/(A + pu) a batch of phases arrives before the
completion of a service, we find

N nok
A""_ngﬁm“’-"’ I<k<n.
N
App=——gPAp+— nx=1.

ANp’

Starting with A,,,,, the A, can be computed recursively for k&
=n — 1, , 1.
Case 2: F;(r)

AN+

1 — pie "' — pre *2'. We apply case 1
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twice to compute A () and A, with u replaced by p, and p,,
respectively, and then find

A=A+ AL,

Case 3: Fy(t) =
quantities:

By, =

I — (1 + pr)e *: We define the auxiliary

expected amount of time that during the second
phase of the service n phases are present, given that
the second phase of the service starts with k phases
present.

Again, applying Case 1, By, can be computed and then we

get
Akll E g(k)Ak44n "L Ber 15k<n
x+ A+u
) ! i
A,,,, g A,,,,+5\-;+)\+ Bnm n=1.
For the numbers A, the following relation holds.
" g
1
AO":E ]-g},°’Aim n=1.

Remark that gf"’/(l gf,") is the probablllty that an arriving
batch initiating a busy period consists of j phases.

Remark 1: Putting E[Ny] = 1 in step 2 of the algorithm is
motivated by the fact that in every busy cycle, the system is
left behind empty only once after the completion of a service.

Remark 2: E[T] and E[N] Lan be computed as follows.
Note that 7., Ay, = hand S5, Pr {G® =n+ 1 - k}
= E[G"]. By summing (3.11) for n=1and 3.12) forn =
0, we get

E[T]|-E[To|=E[N] - h

E[N]=i NE[T,1E[G®.

k=0

Using E[G®] = E[G] for k =

(3.13)

ko, (3.13) is rewritten as

ko-1

E[N]=\NE[T] : E[G]+\ E E[T.NE[G®]-E[G)).
k=0

So, E[N] and E[T] can be found after computing E[T}],
0 = kK = ko — 1. A comparison of different service phase
distributions is given in Table I, where numerical results for
the call completion rate are listed. In general, above a certain
value of the mean batch size, thc system performance is
dominated by the batch size statistics, and the system is
relatively insensitive to the service time distribution (cf. [5]).

IV. INVESTIGATION OF AN OVERLOAD CONTROL SCHEME
A. Description of the Control Scheme

In the previous scction it can be seen that the system
performance, say the call completion rate, has decreased
rapidly above a critical level of the offered load. At these high
load levels, the queue becomes large and customers must wait
for a long time before they enter service. They then become
impatient, tend to abandon their calls and, as a result, the call
completion rate decreases.

In order to avoid this effect, the system may stop accepting
all calls at a predefined load level. The idea behind it is that, if
the switching system accepts fewer calls, it is able to handle
them more effectively. As illustrated in Fig. 6, we can save
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TABLE 1
COMPARISON OF THE CALL. COMPLETION RATE FOR DIFFERENT PHASE

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL

SERVICE TIME DISTRIBUTIONS (N, - 4, N, 8, Nim S,y 0.1)
Offered Phase Service Time Distribution
Traffic I
Intensity

P E M 2

0 3 €12 3
0.1 0.099981 0.099975 0.099953
0.2 0.199375 0.199231 0.198698
0.3 0.294200 0.293248 0.290196
0.5 0.411585 0.406709 0.394015
0.7 0.356940 0.352679 0.342012
0.9 0.198035 0.196382 0.192602

system
call requests accepted calls good calls successful
calls
bad calls
unsuccessful
blocked calls calls

Fig. 6. On the call completion in a switching system.

processor time and increase the amount of good calls, if we
allow the system to reject calls according to a scheme which
will be described in the following. It should be noted here that
the phenomenon of repeated attempts of blocked calls is not
taken into account.

Two levels £, and L, arc defined for the call blocking
scheme. A call, seeing upon arrival k phases in the system,
will be blocked with probability By, where we choose

0 0<k=L,
k—L,
B, = L L <k<L, 4.1)
2— Ly
1 k=L,.

According to this scheme, the maximum number of phases the
system can have is L, + N, — 1. The system attains this
maximum when an accepted call sees L, — 1 phases in the
system, and then adds N, phases for service. Hence, we have a
queuceing system with finite capacity 1., + N, — 1.

To show the performance of the overload control method,
we have chosen the lincar characteristic of By in (4.1). In
principle, from the analysis point of view, we could choose
any other gradual blocking scheme for By between Ly and L,.

In the case of one-level control we can choose L, = L, +
1, and all call arrivals seeing at most L, phases will be
accepted; otherwise they will be blocked.

B. Model Modification and Analysis

The overload control scheme, described by the two levels L,
and /., reduces our queucing system 1o a finite capucity M4/
G/1 queue. The blocking probability, gradually increasing
with the queue size a customer sees, equals 1 when there are
more than L, — 1 phascs in the system. As discussed above,
the system has the finite capacity M = L, + N - 1.

The most simple way to model blocking is to allow a
customer to bring a ‘‘batch of size zero’’ into the system.
Blocked customers do not affect the system by having a batch
without phases.

The modified batch size distribution for the overload control

.. COM-34, NO. 4, APRIL 1986

scheme is denoted by g‘i“ = Pr {GW = j}. We th(. the

following relations between the probabilitics g % and g
O<k=<L,
{gf,“:o Jj=0
g}k):g}“ No=j=N,
L <k<lL,

g0 =By
P =gW(1-By)

L,<k=M

_(kl =1 j-“—O
g(k"o No=Jj=N,
g(/\) 0

J=0
No<j=<N,

otherwisc. 4.2)
For the computation of the state probabilitics, we again use
(3.1) with the modified batch size distribution. The algorithm
to calculate py, 0 <= kK < M is as follows.

1) Set py = 1.

2) Compute p,, * -+, py recursively with (3.1).

3) Renormalize py, py, ***, Pum-

The system characteristics can be written as follows.

Pcompr.= E Cj 2 Pkg(k)
J=No =
M
EIX]=Y kp
k=0
MBS = - a-ro

Ah(1 _PBLOCK)

M
Pyrock = 2 P&y

k=L,+1

px _ Piomm
COMPL — T

4.3)

1- PBLO(‘K ’

P&ompL is defined as the completion probability for accepted
calls (cf. Fig. 6).

C. Results and Comparison

The performance of the overload. control strategy will be
discussed in the subsection.

Fig. 7 shows the interference between call blocking and call
completion in the system. The dashed line stands for the case
without overload control. With the simple control mechanism
(L, = 3N,, L, = 4N,, linear call blocking between L, and L,)
the call blocking probability increases rapidly with higher
offered traffic intensity, while the call completion probability
PcompL lies above the curve without overload control. As
expected, the system accepts fewer calls but is able to perform
them well. For the accepted calls, Pfome gives us an idea
about the fraction ol good calls scrved by the system.

The call completion rate with overload control is depicted in
Fig. 8. It can be seen clearly that the choice of the control
levels (with L; = L, + 1) affects the system performance
very strongly in overload situations. For L, = Ny, the system
performance is worse in the case of lower traffic levels but
becomes better for higher traffic intensities. Above a level of
L /N, the call completion rate is always higher with overload
control.

Table II compares the call completion rate using the
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Fig. 8. Performance of the overload control strategy: call completion rate
versus normalized traffic intensity.
overload control strategy for different phase service time
distributions. For the given batch statistics, the difference
caused by the phase distributions is not essential. This
TABLE II argument justifies the Markovian phase modeling approach,

CALL COMPLETION RATE WITH OVERLOAD CONTROL—A COMPARISON
FOR DIFFERENT PHASE SERVICE TIME DISTRIBUTIONS (N, = 4, N, = 8,
Num = S5,y = 0.1, CONTROL LEVELS: L, = 3N,, L, = 5N,)

Offered Phase Service Time Distribution

Traffic

Intensity 53 M 1,
oo (c23)
0.1 0.099980 0.099974 0.099949
0.3 0.294192 0.293271 0.290380
0.5 0.425019 0.421388 0.412192
0.7 0.445664 0.443856 0.439294
1.0 0.405236 0.407232 0.412044
1.2 0.375811 0.379266 0.387623
1.5 0.338031 0.343039 0.354784
2.0 0.290323 0.297062 0.312029

which requires a simple analysis and less computing effort
without losing the essential effects.

V. CONCLUSION AND OUTLOOK

In this paper a queueing model is presented in which the
service time of a customer depends on his waiting time in the
queue. The model is used to investigate the influence of
customer behavior on the call completion characteristics of
switching systems. It is shown that under overload conditions,
the impatience of customers causes a serious degradation of
the system performance. The influence of this effect can be
controlled and minimized by using a very simple overload
regulation scheme which is presented and discussed in Section
IV. However, the improvement of the call completion rate by
the overload control method depends strongly on the statistics
of the customer behavior and on the call handling mechanism
of the switching system, which is modeled by the number of
subcalls according to a successful or unsuccessful call.

The modeling approach discussed in this paper can also be
used for investigations of system performance under insta-
tionary conditions. In Tran-Gia [10] the system responses to
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short-term, time-dependent overload patterns, and the tran-
sient behavior of the overload control method are considered.
Furthermore, the analysis methods used in this paper can be
applied for a wide range of systems and modeling approaches,
using the freedom of the state-dependent batch size and the call
service time distributions.
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