(©2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material

The defini-

for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

tive version of this paper has been published in 13th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and Communication Systems (MMB), 2006.

Throughput Performance of Java Messaging Services
Using FioranoMQ

Robert Henjes, Michael Menth, and Sebastian Gehrsitz

Department of Distributed Systems, Institute of Computer Science
University of Wirzburg, Am Hubland, D-97074 Wurzburg, Germany
Phone: (+49) 931-888 6644, Fax: (+49) 931-888 6632

{henjes,menth,gehrsitz}@informatik.uni-wuerzburg.de

Abstract. The Java messaging service (JMS) is a means to organize communi-
cation among distributed applications according to the publish/subscrib@-prin
ple. If the subscribers install filter rules on the JMS server, JMS carsée as

a message routing platform, but it is not clear whether its message tpaug
is sufficiently high to support large-scale systems. In this paper, wetigate
the capacity of the high performance JMS server implementation by Eiohan
contrast to other studies, we focus on the message throughput in genpee
of filters and show that filtering reduces the performance significantyaldb
present a model that describes the service time for a single mesgmgeld®y on
the number of installed filters and validate it by measurements. This meftel h
to forecast the system throughput for specific application scenarios.

1 Introduction

The Java messaging service (JMS) is a communication middéefor distributed soft-
ware components. It is an elegant solution to make largevaodtprojects feasible and
future-proof by a unified communication interface whichesided by the JIMS API pro-
vided by Sun Microsystems [1]. Hence, a salient feature db 8that applications do
not need to know their communication partners, they onlgagn the message format.
Information providers publish messages to the JMS senetirdarmation consumers
subscribe to certain message types at the JIMS server tegeceertain subset of these
messages. This is known as the publish/subscribe principle

When messages must be reliably delivered only to subscribleosare presently
online, the JMS in the persistent but non-durable mode idtaacéive solution for the
backbone of a large scale real-time communication apphicst For example, some
user devices may provide presence information to the JMISerQisers can subscribe
to certain message types, e.g., the presence informatitrenffriends’ devices. For
such a scenario, a high message routing platform needsddpabilities and a high
capacity to be scalable for many users. In particular, theutshput capacity of the
JMS server should not suffer from a large number of clienfdters.

This work was funded by Siemens AG, Munich. The authors alone aponsible for the
content of the paper.

Robert Henjes et al.

In this paper we investigate the maximum throughput of tledfioMQ JMS server
implementation [2] by measurement and study its perforrmamaer various condi-
tions. In particular, we consider different numbers of jehers, subscribers, and filters,
different message sizes, different kinds of filters, an@litof different complexity.
Finally, we propose a mathematical model which approximata measurement re-
sults. It is useful for the prediction of the server throughin practice, which depends
strongly on the specific application scenario.

The paper is organized as follows. In Section 2 we present Bbd&s, that are
important for our study, and consider related work. In SecB we explain our test
environment and measurement methodology. Section 4 shamwe@asurement results
and proposes an analytical performance model for the IM&istroughput. Finally,
we summarize our work in Section 5 and give an outlook on &rrthsearch.

2 Background

In this section we describe the Java messaging service (AvBjliscuss related work.

2.1 The Java Messaging Service

Messaging facilitates the communication between remoftevate components. The
Java Messaging Service (JMS) standardizes this messagange The so-called pub-
lishers generate and send messages to the JMS server, th#esbsubscribers con-
sume these messages — or a subset thereof — from the JIMS sexéne JMS server
acts as a relay node [3], which controls the message flow hpusamessage filter-
ing options. This is depicted in Figure 1. Publishers andsestibers rely on the JMS
API and the JMS server decouples them by acting as an isplatlément. As a con-
sequence, publishers and subscribers do not need to kndwodaer. The JMS offers
several modes. In the persistent mode, messages are ddliediably and in order. In
the durable mode, messages are also forwarded to subsdtibéare currently not con-
nected while in the non-durable mode, messages are onlafded to presently online
subscribers. Thus, the server requires a significant anafimiffer space to store mes-
sages in the durable mode and it achieves a larger throughthg non-durable mode.
In this study, we only consider the persistent but non-deratnde.

Information providers with similar themes may be groupegktber and publish to
a so-called common topic; only those subscribers havingaided for that specific
topic receive their messages. Thus, topics virtually sepahe JMS server into several
logical sub-servers. Topics provide only a very coarse #atitsnethod for message se-
lection. In addition, topics need to be configured on the J&t8es before system start.
Filters are another option for message selection. A suirscnnay install a message fil-
ter on the JMS server, which effects that only the messag&shing the filter rules are
forwarded instead of all messages in the corresponding.tBgich subscriber has only
a single filter. In contrast to topics, filters are installggdamically during the operation
of the server. To learn more about the different filter types,need to have a look at
the JMS message header. It consists of three parts thalusteated in Figure 2: the
message header, a user defined property header sectiohgaméssage payload itself

©VDE Verlag GmbHA3" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 2

Throughput Performance of Java Messaging Services Using Bigi@n

Fommm——— Message Flow—-------- >
.—. > 2
B L

. / .

]
Publishers / Subscribers
Filters Replication
Grade

Fig. 1. The JMS server decouples publishers and subscribers.

‘ JMS Message |
\ \

Fixed Header Fields | | Application Properties Application Data
I

Fig. 2. JMS message structure.

[Header Body |

[1]. So-called correlation IDs are ordinary 128 byte stsitigat can be set in the header
of JIMS messages. Correlation ID filters try to match thesevibsreby wildcard fil-
tering is possible, e.g., in the form of ranges |jk&;#13. Several application-specific
properties may be set in the property section of the IMS rgesggplication property
filters try to match these properties. Unlike to correlatibrfilters, a combination of
different properties may be specified which leads to moreptexfilters with a finer
granularity. After all, topics, correlation ID filteringnd application property filtering
are three different possibilities for message selectidh different semantic granularity
and different computational effort.

2.2 Related Work

The JMS is a wide-spread and frequently used middlewarantdady. Therefore, its
throughput performance is of general interest. Severasagdress this aspect already
but from a different viewpoint and in different depth.

The throughput performance of four different IMS serverimpared in [4]: Fio-
ranoMQ [2], SonicMQ [5], TibcoEMS [6], and WebsphereMQ [The study focuses
on several message modes, e.g., durable, persistenfugtit.does not consider filter-
ing, which is the main objective in our work. Like in our intiggtion, this study used
FioranoMQ'’s version 7.5. Initially, we reproduced somelaf simple experiments in
[4] and obtained similar results. The authors of [8] conduttenchmark comparison

© VDE Verlag GmbH13M GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 3

Robert Henjes et al.

for the Sun OneMQ [9] and IBM WebsphereMQ. They tested thinpug performance

in various message modes and, in particular, with diffeeekihowledgement options
for the persistent message mode. They also examined sintpls fout they did not

conduct parametric studies and no performance model wasdaged. The objective of
our work is the development of a performance model to fotdba@smaximum message
throughput for given application scenarios.

A proposal for designing a “Benchmark Suite for Distributedblish/Subscribe
Systems” is presented in [10] but without measurement t®sthe setup of our ex-
periments is in line with these recommendations. Generathmaark guidelines were
suggested in [11] which apply both to JIMS systems and da¢abBlewever, scalability
issues are not considered, which is the intention of our warknathematical model
for a general publish-subscribe scenario in the durableenwaith focus on message
diffusion without filters is presented in [12] but withoutligation by measurements.
In our work a mathematical model is presented for the thrpugperformance in the
non-durable mode including filters and this model is vaédaby measurements. Sev-
eral studies address implementation aspects of filters. & 3&tver checks for each
message whether some of its filters match. If some of thedittex identical or similar,
some of that work may be saved by intelligent optimizatidrss is discussed, e.g., in
[13]. We conduct measurements for the FioranoMQ with isehiand different filters
in Section 4.9 and the results do not show an increased thpautidor identical filters
compared to different filters.

3 Test Environment

Our objective is the assessment of the message throughgbe dfioranoMQ JMS
server in different application scenarios by measuremeétas comparability and re-
producibility reasons we describe our testbed and our measnt methodology in
detail.

3.1 Testbed

Our test environment consists of five computers that arstitiied in Figure 3. Four
of them are production machines and one is used for contrplgges, e.g., controlling
jobs like setting up test scenarios and starting measuriemaes. The four production
machines have a 1 Ghit/s network interface which is conddotene exclusive Gigabit
switch. They are equipped with 3.2 GHz single CPUs and 1024slyd8em memory.
Their operating system is SuSe Linux 9.1 in standard cordigam. To run the JIMS
environment we installed Java SDK 1.4.0, also in defaulffigomation. The control
machine is connected over a 100 Mbit/s interface to the Gligahtch.

We installed the FioranoMQ version 7.5 server component3MS server soft-
ware. We used the vendor’s default configuration as delivetith the test version. Our
publisher and subscriber test clients are derived fromalRio’s example Java sources
for measurement purposes. Each publisher or subscribealzed as a single Java
thread, which has an exclusive connection to the JMS senmponent. A manage-
ment thread collects the measured values from each threbapgends these data to a

©VDE Verlag GmbHA3" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 4

Throughput Performance of Java Messaging Services Using Bigi@n

Measurement Measurement
(3.2 GHz, 1GB RAM) (3.2 GHz, 1GB RAM)

Measurement\ Aeasurement
(3.2 GHz, 1GB RAM) (3.2 GHz, 1GB RAM)
%ﬁl‘ﬁﬁé; N

Gigabit-Switch M

Controlling

—_— 1 Gbit/s Link
——— 100 Mbit/s Link

Fig. 3. Testbed environment.

file in periodic intervals. In our experiments one machinaded as a dedicated JMS
server, the publishers run on one or two exclusive publishachines, and the sub-
scribers run on one or two exclusive subscriber machinesrabpg on the experiment.

If two publisher or subscriber machines are used, the phudaligr subscriber threads are
distributed equally between them.

3.2 Measurement Methodology

Our objective is to measure the capacity of the JMS servexréfare, we load it in all
our experiments closely to 100% CPU load and verify that r@iobottlenecks like
system memory or network capacity exist on the server machin, that they have a
utilization of at most 75%. The publisher and subscriberiras must not be bottle-
necks, either, and they must not run at a CPU load larger tB&& To monitor these
side conditions, we use the Linux tool “sar”, which is parttod “sysstat” package [14].
We monitor the CPU utilization, 1/0, memory, and networHimétion for each mea-
surement run. Without a running server, the CPU utilizatibthe JMS server machine
does not exceed 2%, and a fully loaded server must have a GRAdtidn of at least
98%.

Experiments are conducted as follows. The publishers rarsiaturated mode, i.e.,
they send messages as fast as possible to the JMS serveveéfpthey are slowed
down if the server is overloaded because publisher sideagesgueuing is used. To
save system processing resources during the measurenaset pi JIMS messages that
will be ever sent by the publisher are created in advance wrespublisher test clients
are started. For the same reason, all connections areisktabbefore measurements
are taken. Each experiment takes 100 s but we cut off the fidtlast 5 s due to
possible warmup and cooldown effects. We count the oveuafitver of sent messages
at the publishers and the overall number of received messagine subscribers within
the remaining 90 s interval to calculate the server's rateeoéived and dispatched
messages. For verification purposes we repeat the measatsessgeral times but their
results hardly differ such that confidence intervals arg warrow even for a few runs.

To illustrate a realization of a typical experiment, Figuiega)—4(c) show the uti-
lization of the publisher, subscriber, and server machines

©VDE Verlag GmbHA3" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 5

Robert Henjes et al.

CPU Utilization [%]
588 833888
CPU Utilization [%)]

g 5883888

=
1)

oty |)

20 40 . 60 80 100 120 0 20 40 . 60 80 100 120
Time [s] Time [s]

(a) CPU utilization of publisher machine. (b) CPU utilization of subscriber machine.

o

of

CPU Utilization [%]

0 20 40 80 100 120

60
Time [s]

(c) CPU utilization of IMS server machine.

Fig. 4. lllustration of the CPU utilization of the production machines in our experiments

4 Measurement Results

In this section we investigate the maximum throughput offlteeanoMQ JMS server.
The objective is to assess and characterize the impact offispgpplication scenarios
on its performance. In particular, we consider filters sithey are essential for the use
of a JMS server as a general message routing platform.

4.1 Impact of the Number of Publishers

In our first experiment, we study the impact of the number dflighers on the message
throughput. Two machines carry a varying number of publishad one machine hosts
a single subscriber. Figure 5 shows the message throughpi¢ MS server. The
throughput of received and dispatched messages is plafedaely, as well as their
sum which we call the overall throughput. The throughputeases with an increasing
number of publishers up to 20 publishers and decreases tilgslghtly. Hence, the
number of publishers influences the JMS server throughpatt@or extent.

We also observe on our monitoring tool that the CPU utilaratof the server ma-
chine is only 72% if we install only one publisher thread pablsher machine, 97% for

©VDE Verlag GmbHA3" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 6

Throughput Performance of Java Messaging Services Using eigt@n

x 10

~

‘\Hﬂ
\A‘\

(&)
T

Received and Dispatched Messages
| Dispatched Messages

S

Received Messages

Throughput [msgs/s]

=
T

(=)

0 éO 40 6‘0 Sb 1€)O 120 14‘10 160
Number of Publishers

Fig. 5. Impact of the number of publishers on the message throughput.

four publishers, and 99% for six or more publishers. Thusast four publishers are
needed to fully load the JMS server. Therefore, we use inadh@fing experiments at
least five or more publishers. We repeated the experimese thmes and calculated the
99.99% confidence intervals on this basis. They are showmeifigure for the overall
throughput. Obviously, they are very narrow which resutbsrf hardly varying results.
Therefore, we omit them in the following figures.

4.2 Impact of the Number of Subscribers

Similarly to the above, we investigate the impact of the nendf subscribers on the
JMS server throughput. To that end, we have 5 publisheradlsreunning on one ma-
chine and vary the number of subscribers on two other mashkigure 6 shows the
received, dispatched, and the overall message throughipaibverall throughput of the
JMS server decreases only slightly with an increasing nummisubscribers. Up to 320
subscribers can be connected to the JMS server simultdggmusubscriber machine,
which is, however, only a restriction of our test clients.

Unlike in Figure 5, the received message rate decreasesicagily with an in-
creasing number of subscribersThis can be explained as follows. No filters are ap-
plied and all messages are delivered to any subscriber, €aok message is replicated
n times and we call this a replication graderc£ n. This requires more CPU cycles
for dispatching messages and increases the overall piogéisse of a single message.
As a consequence, the received message rate is reducedddoawverall throughput
capacity of the server stays constant. Hence, the regitgtiade must be considered
when performance measures from different experimentsanpared.

©VDE Verlag GmbHA3" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 7

Robert Henjes et al.

7x 10
- \
0
B sl |
o) I
0w |
£, —
—
>
0_3
c 3r . 1
S Dispatched
-
(@]
= 2r . 1
< | Received
|— |
\
1—\ 4
\
\
0 \\\’\‘*f——a——fffL 77777 R - [
0 50 100 150 200 25 300320

Number of Subscribers

Fig. 6. Impact of the number of subscribers on the message throughput.

4.3 Impact of the Message Size

The throughput of a JMS server can be measured in messagesqmrd (message
throughput) or in transmitted data per second (data thnouyhThe message body size
has certainly an impact on both values. We test the maximuougfhput depending on
the message size. We set up 10 publishers on two publishé&imesand one subscriber
on a single subscriber machine without any filters.

Figure 7 shows the overall throughput depending on the pay$ize and the cor-
responding message body size. The throughput in msgs/saisuresl but the through-
put in Mbit/s is derived from these data. The calculationhaf torresponding overall
message size takes into account various message heaglerdQibytes JMS header,
32 bytes TCP header, 20 bytes IP header, and 38 bytes Etherader, as well as
TCP fragmentation. Figure 7 shows that an increasing medsady size decreases the
message throughput and increases the data throughputcsgtly. For small message
bodies, the message throughput is limited by 61000 msgsie ¥Yan very large mes-
sage sizes, the data throughput is limited by about 600 Migithviously, the network
interface of the JMS server becomes the system bottleneelr@ved this speculation
by measuring the maximum throughput of a single TCP conmeethich amounts to
at most 350 Mbit/s in one direction. In all the other experitsethe default value for
the message body size is 0 bytes.

4.4 Impact of Filter Activation

We evaluate the impact of correlation ID and applicationperty filter activation on
the message throughput. We perform three different exgartiseries that are designed
in such a way that a mean replication grader ef n achieved for the sake of a fair

©VDE Verlag GmbHA3" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 8

Throughput Performance of Java Messaging Services Using eigt@n

Total Message Size [bytes]

x10146 162 104 258 386 642 1154 2268 4406 877217§ééo

©

Message Throughput 1700

~
T

1
|
|

600

&)
T

1500

1400

w
T

Data Throughput 300

N
T

200

100

Overall Throughput [msgs/s]

[s/snain] indybnouyl |reisno

- = =

i I I I I I I I 0
0 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Body Size [bytes]

(=]
T

Fig. 7. Impact of the message body size on the message and data throughput.

comparison. The publishers send all messages with caolHd or an application
property value set to #0. We set up a variable numbarsoibscribers with the following
filter configurations.

(1) No filters are installed.
(2) A correlation ID filter for #0 is installed by each subsen.
(3) An application property filter for #0 is installed by easibscriber.

We use 5 publisher threads on a single publisher machine ailgie machine for
the subscribers in the filter experiment; for the experinvétitout filters we need two
subscriber machines like in Section 4.2 to avoid that theyhaavily loaded.

Figure 8 shows the overall throughput without filters (1), ¢orrelation 1D filters
(2), and for application property ID filters (3) for an incsé@y number of subscribers.
The throughput is maximal for two or four subscribers, resipely, and decreases
slightly for an increasing number of subscribers when nerSliare installed (1), but
it decreases drastically when filters are activated ((2)(8)d Application property fil-
ters lead to about half the throughput compared to corceldb filters. Thus, filtering
reduces the capacity of IMS servers significantly.

4.5 Impact of Topics

Messages published to a specific topic are only dispatchedrisumers who have
subscribed to this particular topic. Thus, topics allow ayweoarse form of message
selection. In this section, we evaluate the impact of thelmemof topics on the message
throughput for different replication grades. In our nexpesiment, 5 publisher threads

©VDE Verlag GmbHA3" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 9

Robert Henjes et al.

No Filters (1)]

sl x\?iCorrelation ID Filters 2|

Overall Throughput [msgs/s]

Application Property Filters (3) |

20 50 160 150 260. 250 360 320
Number of Subscribers

Fig. 8. Impact of filter activation and the number of subscribers on the meskagughput.

are installed on one publisher machine and two machinegtsubscribers. We vary
the number of topics on the JMS server. Each publisher isexiad to every topic and
sends messages to them in a round robin manner. A replicgtaater is obtained by
registering subscribers for each topic.

r=40 r=20 e

Overall Throughput [msgs/s]

12 4

10 . 20
Number of Topics

Fig. 9. Impact of the number of topics on the message throughput for diffeeplication grades.

Figure 9 shows that the message throughput decreasedysfighin increasing
number of topics and that it seems to converge to a value afnar@5000 msgs/s
independently of the replication grade.

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 10

Throughput Performance of Java Messaging Services Using eigt@n

4.6 Comparison: Impact of Topics and Filters

In the following experiment we compare the message throuigfop topic, correlation
ID, and application property filtering since all three opSocan be used for message
selection. For the sake of a fair comparison, we design ther@ments in such a way
that they have all a replication graderc£ 1.

(1) In the case of topics, only one subscriber without filkeconnected to each topic.
Each publisher is connected to all topics and sends messagiesm in a round
robin fashion.

(2) In the case of correlation ID filters, each publisher secatrelation ID numbers
from #1 to #n in a round robin fashion. Furthermore, we setagiy n subscribers
with correlation ID filters in such a way that there is exaaitye matching filter
installed for each sent correlation ID number.

(3) Inthe case of application property filters, experimé)tig adapted by substituting
correlation IDs by application property values.

We use one subscriber machine and one publisher machin& witblisher threads for
all experiments.

57 0.8

»
o
T
’
’

. / {0.75

IS
/.
/

w
o
o
/
/
/
/
o
~

w
T

Application Property /
Correlation ID Ratio 106

ye
T\
oney

N
T

[
3
/ /
’
/
/
/
/
/
/
/
o
o
a

Overall Throughput [msgs/s]

o
3]

| Application Property Filters

(=]

1 2 3 45 16 Zb' 4‘0 .Sb 160 BéO
Number of Topics or Filters

Fig. 10.Impact of the number of filters or topics on the message throughput.

Figure 10 shows the overall message throughput dependitigearumber of topics
or filters, respectively. In each case, the throughput ése® for an increasing num-
ber of topics or filters. The throughput for topics decreakedeast for an increasing
number and is around 35000 msgs/s for 20 different topice ©uhe high manual
configuration overhead, we limited this experiment to 2@edént topics. In contrast,
the throughput for filters is steadily decreased by an irgingenumber of filters. In ad-
dition, the impact of filters on the server performance isaapptly significantly larger
than the one of topics. The figure also shows the ratio of treutfthput for application

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 11

Robert Henjes et al.

property and correlation ID filters. The application prdpdiltering leads to only 50%
of the JMS server capacity compared to correlation ID fitgnvhen many filters are
activated. Thus, the finer the configured message selectmulgrity of the JMS is,
the lower is its maximum throughput. Note that the throughqurves for both filter
types differ significantly from those in Figure 8. This candx@lained by the different
replication grade.

4.7 Impact of Complex OR-Filters

A single client may be interested in messages with diffecentelation IDs or applica-
tion property values. There are two different options totese messages. The client
sets up subscribers

(1) with a simple filter for each desired message type.
(2) with a single but complex OR-filter searching for all dedimessage types.

We assess now the JMS server performance for both option.eéfe the replication
grade ar =1. The publishers send IDs from #1 to #n in a round robin fashio

(1) To assess simple filters, we set up for each different Exey one subscriber with
a filter for that ID.

(2) To assess complex filters, we set up 5 different subssrim@mbered from 0 to 4.
Subscriberj searches for the IDs(#- 2+i) with i € [1; 2] using an OR-filter.

We use in this experiment one publisher machine with 5 phblishreads and one
subscriber machine with a varying number of subscriberssutiscribers, respectively.

[\
ul

80

Simple Filters

‘b‘“ - - - - Complex Filters 170

N
T

A 60

b _ -
|Application Property Filters =
| 50 @

1.5}
0
140 g
1 "~ Filter Complexity =
__Correlation ID Filters 130 §
10 2

I
3

__J10

Overall Throughput [msgs/s]

% 50 16q 150 200] 250 _36032%
Number of Different IDs / Simple Filters

Fig. 11.Impact of simple filters and complex OR-filters on the message throtudpa replica-
tion grade ofr =1.

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 12

Throughput Performance of Java Messaging Services Using eigt@n

Figure 11 shows the message throughput and the filter coityptespending on the
number of different IDs1. The diagonal line indicates the length of the complex OR-
filters. For correlation ID filters, complex filters (1) leamabout 100% more throughput
than simple filters (2) when 40 or more simple filters are usalient. Thus, it is better
to use complex OR-filters than to filter each component séggay an additional sub-
scriber. For application property filters, the absolutetighput is considerably smaller
than with correlation ID filters and the use of complex filté23 brings hardly any
advantage compared to simple filters (1).

4.8 Impact of Complex AND-Filters

In the application header section of a message, multiplpepties, e.gh, ..., F, can
be defined. Complex AND-filters may be used to search for ipenessage types. In
the following, we assess the JMS server throughput for copND-filters. Note that
complex AND-filters are only applicable for application peoty filtering.

In the following, we use one machine with 10 publisher theeadd one machine
with m=10 subscriber threads that are numbered &y1;m|. We design three experi-
ment series with a different potential for optimization d¢t&fi matching. The subscribers
set up the following complex AND-filters of different length

(1) for subscribelj: P =#j,P,=#0,...,P,=#0
(2) if nis odd:

for subscriberj: P, =#0, ...,P%Ll:#o, P%l :#j,P%lH:#O,...,Pn:#O

if nis even:

for subscriberj if j<5:P1=#0,..., Po_1=#0,Py=#],Py, 1 =#0,...,P,=#0

for subscriberj if j>3: PL=#0, ..., Py =#0,Py 1 =#],Py, ,=#0,...,P,=#0
(3) for subscribelj: PL=#0,P, =#0,..., B, =#]
The corresponding messages are sent by the publishers nd robin fashion to
achieve a replication grade pf 1. Then, the filters can reject non-matching messages
by looking at the first component in experiment (1), at the Fedf of the components in
experiment (2), and at aflcomponents in experiment (3). This experiment is designed
such that both the replication grade and the number of sillessris constant and that
only the filter complexityn varies. To avoid any impact of different message sizes i thi
experiment series, we defilke= 25 properties in all messages to get the same length.

Figure 12 shows the message throughput depending on threcbiteplexity n. In
all scenarios, the filter complexity reduces the server aapaExperiment (1) yields
the largest message throughput, followed by experimenta@) (3). Thus, an early
reject decision of the filters shortens the processing tifre message and increases
thereby the server capacity. As a consequence, practisisheuld care for the order of
individual components within AND-filters: components wiitle least match probability
should be checked first.

4.9 An Analytical Model for the Message Throughput

We have learned from Section 4.4 and Section 4.6 that bothuhwer of filters and
the replication grade impact the JMS server capacity. Is $leiction, we investigate

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 13

Robert Henjes et al.

9000

0 8000t 1

2N Filter Distinction in

g 7000F /First Component (1) |

— 6000f 1

S

£ 5000 \ o 1

[=) N\ Filter Distinction in

3 L \ Middle Component (2 i

B 4000 \ N p @)

c \.

— 3000} M N 1

© 2000} g) 1

O 10001 Filter Distinction in T
Last Component (3) N

0 5 10 1‘5 . 26 25
Components per AND-Filter

Fig. 12. Impact of an early non-match decision for AND-filters on the messagaiginput de-
pending on the filter complexity for a replication grade ef1.

their joint impact and present a simple model to forecasstger performance for a
given number of filters and for an expected replication gradiés model is validated
by measurements.

Joint Impact of the Number of Filters and the Replication Grade We set up ex-
periments to conduct parameter studies regarding the nuofibestalled filters and the
replication grade of the messages. We use one publisher and one subscribeinmach
Five publishers are connected to the JMS server and senédgesswith correlation ID
#0 or application property value #0 in a saturated way. Funtiore,n+r subscribers
are connected to the JMS serveqf them filter for correlation 1D or application prop-
erty attribute #0 while the othersubscribers filter for different correlation IDs. Hence,
n-+r filters are installed altogether. This setting yields a rageseplication grade of
r. We choose replication gradesraf {1,2,5,10,20,40} andne {5,10,20,40,80, 160}
additional subscribers.

Figure 13 shows the message throughput for correlation tBrdildepending on
the number of installed filteras;;r = n+r and on the replication grade The solid
lines show the measured throughput. An increasing numbiaistidlled filters reduces
obviously the message throughput of the system and an singeeeplication grade in-
creases the system performance to a certain extent. Simélasurements are obtained
for application property filtering, which are illustrated Figure 14. The basic perfor-
mance behavior is the same, but the absolute overall mesagghput is about 50%
compared to the one of correlation ID filters when many fileesapplied. We get the
same results for both experiments if all th@on-matching filters search for the same
value, e.qg. for #1, and if they look for different values,.day #1, ..., #. Thus, we can-
not find any throughput improvement if equal filters are usestidiad of different filters
[13].

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 14

Throughput Performance of Java Messaging Services Using eigt@n

r=1 —— Measured Throughput
- — - Analytical Throughput

>
> o
T T

w
[
:

r=10 1
r=40

w
T

=
BN
: T T

Overall Throughput (msgs/s)

o

50 160 . léO 200
Number of Correlation ID Filters

Fig. 13.Impact of the number of filtera¢|;, and the message replication graden the overall
message throughput in case of correlation ID filters — measuremeahgalytical data.

A Simple Model for the Message Processing TiméANe assume that the processing
time of the JMS server for a message consists of three comporieor each received
message, there is

— a fixed basic time overhedgd, independently of filter installations.

— a fixed time overheadys, - ts;r caused by the JMS server while checking which
different filters are matching. This value depends on thdiegdpn scenario.

— avariable time overheadt;x depending on the message replication gradidakes
into account the time the server takes to forwanbpies of the message.

This leads to the following message processing tdne

B = trev + Nitr - teier +1 - tix 1)

Validation of the Model by Measurement Data The results in Figures 13 and 14
show the overall throughput regarding received and sensages.

Within time B, one message is received antessages are dispatched by the server.
Thus, the overall throughput is given b§4 and corresponds to the measurement results
in Figures 13 and 14. The parameters, andr for the message processing tirBe
are known from the respective experiments. We fit the parensigd,, tf;-, andty by a
least squares approximation [15] to adapt the model in Bmuét) to the measurement
results. The results are compiled in Table 1 for correlatidand application property
filters. We calculate the message throughput based on tladsesvand Equation (1)
for all measured data points, and plot the results with dhBhes in Figures 13 and 14.
The throughput from our analytical model agrees very wethwiur measurements for

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 15

Robert Henjes et al.

35 ‘
—— Measured Throughput
- - - Analytical Throughput |

Overall Throughput (msgs/s)

0 I
0

50 . 16_0 léO . 200
Number of Application Property Filters

Fig. 14.Impact of the number of filtera¢|;, and the message replication graden the overall
message throughput in case of application property filters — measuteared analytical data.

Table 1.Overhead values for the model of the message processing time in Eg(igtio

overhead type trev(S) tier [tex[3]
corr. ID filtering [8.52-10~7(7.02-10 6[1.70-10°°
app. prop. filtering.10-10-5|1.46-1075|1.62.10°°

all numbers of filtersiz1¢, and all replication grades Thus, if we know the the number
of installed filtersns i, on the JMS server and the meaif the message replication
grade in a certain application scenario, we have a modekilats prediction of the
average message processing time.

4.10 Impact of the Aging of the SuSe Linux OS

We conducted an experiment over 4 weeks. The FioranoMQ rseofevare was re-

run every day. After 4 weeks the JMS server throughput wascesd by about 30%

compared to the start of the experiments. We booted the cmmanew and the exper-
iments yielded again the originally higher throughput. Venbt have an explanation
for that phenomenon, but we want to report this as an iniegesbservation. To avoid

a corruption of the measurement results by the aging of tsiesy we booted the JMS
server regularly.

5 Conclusion

In this work, we have investigated the capacity of the FioM@ Java Messaging Sys-
tem (JMS) server regarding the maximum message throughmulérwarious condi-

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 16

Throughput Performance of Java Messaging Services Using eigt@n

tions. We first gave a short introduction into JMS and revigwedated work. We pre-
sented the testbed and explained our measurement metggdwfore we conducted
the experiments.

We studied first the impact of different numbers of publishend subscribers on
the server capacity as well as the impact of the IMS messagesithe achievable
throughput both in terms of messages rate and bit rate. Theronsidered the concepts
of topics, correlation ID filters, and application propefityers. They allow message
selection with an increasing flexibility but this also redsthe server capacity signif-
icantly. Complex filters decrease obviously the serverughput. The use of complex
OR-filters instead of several simple filters increases theeseapacity if correlation ID
filters are used but it yields hardly any benefit for applmatproperty filters. In case
of AND-filters, the order of the components in the filter exg®ien has a severe impact
on the server capacity. The filters should be arranged inla\wag that least probable
components should be checked first. Finally, we studieddime jimpact of the num-
ber of installed filters and the replication grade of the rages. The server capacity
decreases for an increasing number of filters but it inceefmean increasing message
replication grade. Thus, the message throughput deperdg#yhen the specific appli-
cation scenario. We developed an analytical model for theeseapacity and validated
it by our measurements. This model is useful to predict tingeseapacity in practical
application scenarios.

Currently, we are investigating the message throughputh@ra]MS servers than
the FioranoMQ to compare their capacity. Furthermore, wdysthe message waiting
time taking into account the variability of the replicatigrade of the messages which
leads to different message processing times. In additienimtend to study how the
JMS throughput can be increased, e.g., by the use of senstecs.

Acknowledgements

The authors would like to thank Prof. Tran-Gia for his fruitfliscussions.

References

1. Sun Microsystems, Inc.: Java Message Service APl Rev. D02fAttp://java.sun.
com/products/jms/.

2. Fiorano Software, Inc.: FioranoM®: Meeting the Needs of Technology and Business.
(2004)http://wuw.fiorano.com/whitepapers/whitepapers_fmq.pdf.

3. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.Mhe Many Faces of Pub-
lish/Subscribe. In: ACM Computing Surveys. (2003)

4. Krissoft Solutions: JMS Performance Comparison. Technicalrt€@004)http: //wuw.
fiorano.com/comp-analysis/jms_perf_comp.htm.

5. Sonic Software, Inc.: Enterprise-Grade Messaging. (2R04p): //wuw.sonicsoftware.
com/products/docs/sonicmq. pdf.

6. Tibco Software, Inc.: TIBCO Enterprise Message Service. (RB84p: //www.tibco.
com/resources/software/enterprise_backbone/message_service.pdf.

7. IBM Corporation: IBM WebSphere MQ 6.0. (200%ttp://www-306.ibm.com/
software/integration/wmq/v60/.

(©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 17

Robert Henjes et al.

8. Crimson Consulting Group: High-Performance JMS Messaginghrieal report (2003)
http://www.sun.com/software/products/message_queue/wp_JMSperformance.
pdf.

9. Sun Microsystems, Inc.: Sun ONE Message Queue, Referencenidmtation. (2005)
http://developers.sun.com/prodtech/msgqueue/reference/docs/index.html.

10. Carzaniga, A., Wolf, A.L.: A Benchmark Suite for Distributed Publ&ubscribe Systems.
Technical report, Software Engineering Research Laboratoryairapnt of Computer Sci-
ence, University of Colorado, Boulder, Colorado (2002)

11. Wolf, T.: Benchmark fur EJB-Transaction und Message-Sesvidlaster's thesis, Univer-
sitat Oldenburg (2002)

12. Baldoni, R., Contenti, M., Piergiovanni, S.T., Virgillito, A.: Modellingilitish/Subscribe
Communication Systems: Towards a Formal Approach. fhir@ernational Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2003). (3043811

13. Muhl, G., Fiege, L., Buchmann, A.: Filter Similarities in Content-BaBatllish/Subscribe
Systems. Conference on Architecture of Computing Systems (AR©82)2

14. http://perso.wanadoo.fr/sebastien.godard/: Sysstat Monitoring Utilities. (2004)

15. Moler, C.: Numerical Computing with MATLAB. Society for Industraid Applied Mathe-
matic (SIAM), Philadelphia, PA (2004)ttp: //www.mathworks.com/moler/chapters.
html.

©VDE Verlag GmbH13" GI/ITG MMB Conference, Erlangen, Germany, March 2006 — page 18

