
Throughput Performance of Java Messaging
Services Using WebsphereMQ

Robert Henjes, Michael Menth, and Christian Zepfel
Department of Distributed Systems

Institute of Computer Science
University of Würzburg, Germany

Email: {henjes,menth,zepfel}@informatik.uni-wuerzburg.de

Abstract— The Java messaging service (JMS) is a middleware-
oriented messaging technology working according to the pub-
lish/subscribe principle. If subscribers install filter rules on the
JMS server, JMS can be used as a message routing platform,
but it is not clear whether its message throughput is sufficiently
high to support large-scale systems. In this paper we investigate
the capacity of the Websphere Message Queue JMS server. In
contrast to other studies, we focus on the message throughput
in the presence of filters and show that filtering reduces the
performance significantly. We also present a model that describes
the service time for a single message depending on the number
of installed filters and validate it by measurements. This model
helps to calculate the system throughput for specific application
scenarios.

I. INTRODUCTION

The Java messaging service (JMS) is a communication
middleware for distributed software components. It is an
elegant solution to make large software projects feasible and
future-proof by a unified communication interface which is
defined by the JMS API provided by Sun Microsystems [1].
Hence, a salient feature of JMS is that applications do not need
to know their communication partners, they only agree on the
message format. Information providers publish messages to the
JMS server and information consumers subscribe for certain
message types at the JMS server to receive a certain subset
of these messages. This is known as the publish/subscribe
principle.

When messages must be reliably delivered only to sub-
scribers that are presently online, the JMS in the non-durable
and persistent mode is an attractive solution for the backbone
of a large scale real-time communication applications. For
example, some user devices may provide presence information
to the JMS. Other users can subscribe to certain message types,
e.g., the presence information of their friends’ devices. For
such a scenario, a high performance routing platform needs
filter capabilities and a high capacity to be scalable for many
users. In particular, the throughput capacity of the JMS server
should not suffer from a large number of clients or filters.

In this paper we investigate the throughput performance
of the WebsphereMQ JMS server implementation [2] by

This work was funded by Siemens AG, Munich. The authors alone are
responsible for the content of the paper.

measurement under various conditions. In particular, we con-
sider different numbers of publishers, subscribers, and filters,
different message sizes, different kinds of filters, and filters
of different complexity. Finally, we propose a mathematical
model which approximates our measurement results. It is
useful for the prediction of the server throughput in practice,
which depends strongly on the specific application scenario.

The paper is organized as follows. In Section II we present
JMS basics, that are important for our study, and consider re-
lated work. In Section III we explain our test environment and
measurement methodology. Section IV shows our measure-
ment results and proposes an analytical performance model for
the JMS server throughput. Finally, we summarize our work
in Section V and give an outlook on further research.

II. BACKGROUND

In this section we describe the Java messaging service (JMS)
and discuss related work.

A. The Java Messaging Service

Messaging facilitates the communication between remote
software components. The Java Messaging Service (JMS)
standardizes this message exchange. The so-called publishers
generate and send messages to the JMS server, the so-called
subscribers consume these messages – or a subset thereof
– from the JMS server, and the JMS server acts as a relay
node [3], which controls the message flow by various message
filtering options. This is depicted in Figure 1. Publishers and
subscribers rely on the JMS API and the JMS server decouples
them by acting as an isolating element. As a consequence,
publishers and subscribers do not need to know each other.
The JMS offers several modes. In the persistent mode, mes-
sages are delivered reliably and in order. To that end, lost
messages are retransmitted by the JMS server and messages
are preliminarily written on a disk for recovery purposes. In the
durable mode, messages are also forwarded to subscribers that
are currently not connected while in the non-durable mode,
messages are forwarded only to subscribers who are presently
online. Thus, the server requires a significant amount of buffer
space to store messages in the durable mode. In this study, we
only consider the persistent but non-durable mode.

Information providers with similar themes may be grouped
together and publish to a so-called common topic; only those

c ©
2
0
0
6

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u
se

s,
in

a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
it

iv
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

5
th

In
te

rn
a
ti

o
n

a
l

W
o
rk

sh
o
p

o
n

D
is

tr
ib

u
te

d
E

v
en

t-
B

a
se

d
S

y
st

em
s

(D
E

B
S

)
2
0
0
6

1
0
.1

1
0
9
\/

ic
d

cs
w

.2
0
0
6
.1

1
0
.

1

2

3

n

1

2

3

m

SubscribersPublishers

Message Flow

Filters Replication
Grade

JMS
Server

Fig. 1. The JMS server decouples publishers and
subscribers.

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Controlling

1 Gbit/s Link
100 Mbit/s Link

Gigabit-Switch

Fig. 2. Testbed environment.

subscribers having subscribed for that specific topic receive
their messages. Thus, topics virtually separate the JMS server
into several logical sub-servers. Topics provide only a very
coarse and static method for message selection. In addition,
topics need to be configured on the JMS server before system
start. Filters are another option for message selection. A
subscriber may install a message filter on the JMS server,
which effects that only the messages matching the filter rules
are forwarded instead of all messages in the corresponding
topic. In contrast to topics, filters are installed dynamically
during the operation of the server. A JMS message consists
of three parts: the message header, a user defined property
header section, and the message payload itself [1]. So-called
correlation IDs are ordinary 128 byte strings that can be set
in the header of JMS messages. Correlation ID filters try
to match these IDs whereby wildcard filtering is possible,
e.g., in the form of ranges like [#7;#13]. Several application-
specific properties may be set in the property section of the
JMS message. Application property filters try to match these
properties. Unlike to correlation ID filters, a combination of
different properties may be specified which leads to more
complex filters with a finer granularity. After all, topics,
correlation ID filtering, and application property filtering are
three different possibilities for message selection with different
semantic granularity and different computational effort.

B. Related Work

The JMS is a wide-spread and frequently used middle-
ware technology. Therefore, its throughput performance is of
general interest. Several papers address this aspect already
but from a different viewpoint and in different depth. The

throughput performance of four different JMS servers is
compared in [4]: FioranoMQ [5], SonicMQ [6], TibcoEMS
[7], and WebsphereMQ [2]. The study focuses on several
message modes, e.g., durable, persistent, etc., but it does
not consider filtering, which is the main objective in our
work. The authors of [8] conduct a benchmark comparison
for the Sun OneMQ [9] and IBM WebsphereMQ. They tested
throughput performance in various message modes and, in
particular, with different acknowledgement options for the
persistent message mode. They also examined simple filters
but they did not conduct parametric studies, and no perfor-
mance model was developed. The objective of our work is
the development of such a performance model to forecast the
maximum message throughput for given application scenarios.
A proposal for designing a “Benchmark Suite for Distributed
Publish/Subscribe Systems” is presented in [10] but without
measurement results. The setup of our experiments is in line
with these recommendations. General benchmark guidelines
were suggested in [11] which apply both to JMS systems
and databases. However, scalability issues are not considered,
which is the intention of our work. A mathematical model
for a general publish-subscribe scenario in the durable mode
with focus on message diffusion without filters is presented
in [12] but without validation by measurements. In our work
a mathematical model is presented for the throughput per-
formance in the non-durable mode including filters and this
model is validated by measurements. Several studies address
implementation aspects of filters. A JMS server checks for
each message whether some of its filters match. If some of
the filters are identical or similar, some of that work may be
saved by intelligent optimizations. This is discussed, e.g., in
[13].

III. TEST ENVIRONMENT

Our objective is the assessment of the message throughput
of the WebsphereMQ JMS server in different application
scenarios by hardware measurements. For comparability and
reproducibility reasons we describe our testbed and our mea-
surement methodology in detail.

A. Testbed

Our test environment consists of five computers that are
illustrated in Figure 2. Four of them are production machines
and one is used for control purposes, e.g., controlling jobs like
setting up test scenarios and starting measurement runs. The
four production machines have a 1 Gbit/s network interface
which is connected to one exclusive Gigabit switch. They are
equipped with 3.2 GHz single CPUs and 1024 MB system
memory. Their operating system is SuSe Linux 9.1 in standard
configuration. To run the JMS environment we installed Java
SDK 1.4.0, also in default configuration. The control machine
is connected over a 100 Mbit/s interface to the Gigabit switch.
In our experiments one machine is used as a dedicated JMS
server, the publishers run on one or two exclusive publisher
machines, and the subscribers run on one or two exclusive
subscriber machines depending on the experiment. If two

publisher or subscriber machines are used, the publishers or
subscribers are distributed equally between them. We imple-
mented test clients such that each publisher or subscriber
is realized as a single Java thread, which has an exclusive
connection to the JMS server component. A management
thread collects the measured values from each thread and
appends these data to a file in periodic intervals. We installed
the the IBM Websphere MQ 6.0 Trial version [2] on the server
machine with the default configuration except for the following
modifications. For the sake of performance we deactivated
the security module because our experiments do not focus on
security issues. We raised the internal restriction regarding the
number of parallel connections to the queue manager from the
default value 100 to 500. To conduct our experiments, we used
WebshereMQ’s integrated publish/subscribe feature instead of
an additional broker.

B. Measurement Methodology

Our objective is the measurement of the JMS server ca-
pacity. Therefore, we intend to load the server in all our
experiments closely to 100% CPU load and verify that no
other bottlenecks like system memory or network capacity
exist on the server machine, i.e., that they have a utilization
of at most 75%. The publisher and subscriber machines must
not be bottlenecks, either, and they must not run at a CPU
load larger than 75%. To monitor these side conditions, we
use the Linux tool “sar”, which is part of the “sysstat”
package [14]. We monitor the CPU utilization, I/O, memory,
and network utilization for each measurement run. Without a
running server, the CPU utilization of the JMS server machine
does not exceed 2%, and a fully loaded server has a CPU
utilization between 90% and 98%. For some reasons these
values could not be increased by any means.

Experiments are conducted as follows. The publishers run
in a saturated mode, i.e., they send messages as fast as possible
to the JMS server. However, they are slowed down if the server
is overloaded because publisher side message queuing is used.
Each experiment takes 100 s but we cut off the first and last
5 s due to possible warmup and cooldown effects. We count
the overall number of sent messages at the publishers and the
overall number of received messages by the subscribers within
the remaining 90 s interval to calculate the server’s rate of
received and dispatched messages. For verification purposes
we repeat the measurements several times but their results
hardly differ such that confidence intervals are very narrow
even for a few runs.

IV. MEASUREMENT RESULTS

In this section we investigate the maximum throughput of
the WebsphereMQ JMS server. The objective is to assess and
characterize the impact of specific application scenarios on its
performance. In particular, we consider filters since they are
essential for the use of a JMS server as a general message
routing platform.

A. Impact of the Number of Publishers

In our first experiment, we study the impact of the number
of publishers on the message throughput. Two machines carry
a varying number of publishers and one machine hosts 1
subscriber. Figure 3 shows the message throughput at the JMS
server in the persistent mode. The throughput of received and
dispatched messages is plotted separately, as well as their sum
which we call the overall throughput. The overall message
throughput reaches its maximum rate at 2000 msgs/s for 5
or more publishers. Hence, the number of publishers hardly
influences the JMS server throughput. As a consequence, we
use in the following experiments at least 5 or more publishers.
In this particular experiment series, the JMS server could only
utilized to 70% due to the limitation of a single subscriber.
To assess the impact of the persistent mode, we conduct the
same experiment in the non-persistent mode and the results are
collected in Figure 4. The overall throughput is about 10000
msgs/s for the non-persistent mode in contrast to about 2000
msgs/s for the persistent mode. Thus, the server capacity has
increased by 400%. In this case, the server is utilized to 98%.
Due to the non-persistent mode, the dispatched message rate
is lower than the received message rate for a large number of
publishers which leads to about 8% message loss in the end.
We conducted the same experiments with 5 subscribers instead
of a single one and achieved an overall message throughput
of 6000 msgs/s and 11000 msgs/s, respectively.

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Publishers

T
hr

ou
gh

pu
t [

m
sg

s/
s]

Received Messages

Dispatched Messages

Received and Dispatched Messages

Fig. 3. Impact of the number of publishers on the
message throughput in the persistent mode.

0 20 40 60 80 100 120 140 160
0

5000

10000

15000

Number of Publishers

T
hr

ou
gh

pu
t [

m
sg

s/
s]

Received Messages

Dispatched Messages

Received and Dispatched Messages

Fig. 4. Impact of the number of publishers on the
message throughput in the non-persistent mode.

We also observe on our monitoring tool that the CPU

utilization of the server machine is very low if we install just
2 publishers. For 4 or more publishers, the CPU utilization
reaches a saturation and cannot be further increased. Thus, at
least 4 publishers are needed to fully load the JMS server. We
repeated the experiment series several times and calculated the
99.99% confidence intervals on this basis. They are shown in
the figure for the overall throughput. Obviously, they are very
narrow which results from hardly varying results and we omit
them in the following figures.

B. Impact of the Number of Subscribers

Similarly to the above, we investigate the impact of the
number of subscribers on the JMS server throughput. To that
end, we have 5 publishers threads running on one machine
and vary the number of subscribers on two other machines.
Figure 5 shows the received, dispatched, and the overall
message throughput. The overall throughput of the JMS server
starts at 2000 msgs/s for 1 subscriber, it increases with an
increasing number of subscribers to a value of about 11000
msgs/s for 40 subscribers, and it decreases then to 6000 msgs/s
for many subscribers. Thus, the previous experiments led to a
untypically low capacity due to the single subscriber.

Unlike in Figure 3, the received message rate decreases
significantly with an increasing number of subscribers n. This
can be explained as follows. No filters are applied and all
messages are delivered to any subscriber. Thus, each message
is replicated n times and we call this a replication grade
of r = n. This requires more CPU cycles for dispatching
messages and increases the overall processing time of a single
message. As a consequence, the received message rate is
reduced because the overall throughput capacity of the server
stays constant. Hence, the replication grade must be considered
when performance measures from different experiments are
compared.

C. Impact of the Message Size

The throughput of a JMS server can be measured in
messages per second (message throughput) or in transmitted
data per second (data throughput). The message body size has
certainly an impact on both values. We test the maximum
throughput depending on the message size. We set up 5
publishers on one publisher machine and 5 subscribers on
a single subscriber machine without any filters; a single
subscriber is not able to fully utilize the server CPU. Figure 6
shows the overall throughput depending on the payload size
and the corresponding message body size. The throughput in
msgs/s is measured but the throughput in Mbit/s is derived
from these data. The calculation of the corresponding overall
message size takes into account various message headers,
i.e., 40 bytes JMS header, 32 bytes TCP header, 20 bytes
IP header, and 38 bytes Ethernet header, as well as TCP
fragmentation. Figure 6 shows that an increasing message
body size decreases the message throughput and increases the
data throughput significantly. For small message bodies, the
message throughput is limited by 6000 msgs/s while for very
large message sizes, the data throughput increases significantly

0 50 100 150 200 250 300320
0

2000

4000

6000

8000

10000

12000

Number of Subscribers

T
hr

ou
gh

pu
t [

m
sg

s/
s]

Received Messages

Dispatched Messages

Received and Dispatched Messages

Fig. 5. Impact of the number of subscribers on the
message throughput.

0

1000

2000

3000

4000

5000

6000

7000

0 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Message Body Size [bytes]
O

ve
ra

ll
T

hr
ou

gh
pu

t [
m

sg
s/

s]

0

100

200

300

400

500

600

700
13

0
14

6
16

2
19

4
25

8
38

6
64

2
11

54
22

68
44

06
87

72
17

41
4

34
78

8

69
53

6
Total Message Size [bytes]

O
verall T

hroughput [M
bits/s]

Message Throughput

Data Throughput

Fig. 6. Impact of the message body size on the message
and data throughput.

up to 450 Mbit/s. Obviously, the network interface of the
JMS server becomes the system bottleneck. We proved this
speculation by measuring the maximum throughput of a single
TCP connection which amounts to at most 350 Mbit/s in one
direction. In our experiments, the default value for the message
body size is 0 bytes.

D. Impact of Filter Activation

We evaluate the impact of filter activation on the message
throughput. We perform 4 different experiment series where
all publishers send messages with an application property or
correlation ID value set to #0. We set up a variable number
of n subscribers with the following filter configurations, both
for application property and for correlation ID filters.

(1) No filters are installed.
(2) A filter for #0 is installed by each subscriber.
(3) A filter for #0 is installed by one subscriber and the others

install a filter for #1.
(4) The subscribers install n different filters for #0, ..., #(n−1)

We use 5 publisher threads on a single publisher machine
and a varying number of n subscriber threads on two sub-
scriber machines. Figure 7 illustrates the overall throughput
for the above described experiments. In all experiments, cor-
relation ID and application property filters lead to the same
throughput. The curves for experiment (1) and (2) show the
same high throughput, which is due to the same replication
grade of r=n. However, if we change the replication grade

0 40 80 120 160 200 240 280 320
0

2000

4000

6000

8000

10000

12000

Number of Subscribers

O
ve

ra
ll

T
hr

ou
gh

pu
t [

m
sg

s/
s]

No Filters
Correlation ID Filters
Application Property Filters

Experiment (1 and 2)

Experiment (3 and 4)

Fig. 7. Impact of filter activation and the number of
subscribers on the message throughput for correlation
ID filters.

1 2 4 10 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

O
ve

ra
ll

T
hr

ou
gh

pu
t [

m
sg

s/
s]

Number of Topics

r = 1r = 5

r = 20

r = 40

Fig. 8. Impact of the number of topics on the message
throughput for different replication grades.

to r=1 in (3) by turning all filters but one to #1 instead to
#0, we see a clear reduction of the throughput. Hence, the
message replication grade r has a significant impact on the
overall throughput. A comparison of the results for experiment
(3) and (4) concludes that different filters lead to the same
throughput as equal filters. Obviously, WebsphereMQ does not
implement optimized filter matching as the JMS server cannot
take advantage of equal filters to save processing power per
message. More on filter optimization can be found in [13].

E. Impact of Topics

Messages published to a specific topic are only dispatched
to consumers who have subscribed to this particular topic.
Thus, topics allow a very coarse form of message selection.
In this section, we evaluate the impact of the number of topics
on the message throughput for different replication grades. In
our next experiment, 5 publisher threads are installed on one
publisher machine and two machines host the subscribers. We
vary the number of topics on the JMS server. Each publisher
is connected to every topic and sends messages to them in
a round robin manner. A replication grade r is obtained by
registering r subscribers for each topic. Figure 8 shows that
the message throughput remains constant for a replication
grade of r = 1, independently of the number of topics. The
overall throughput is so low due to the single subscriber per
topic, which is consistent with the results in Section IV-B. For

larger replication grades, the throughput is significantly larger,
it decreases for an increasing number of topics, and converges
to a value of around 5000 msgs/s.

F. Impact of Complex OR-Filters

A single client may be interested in messages with different
correlation IDs or application property values. There are two
different options to get these messages. The client sets up
subscribers

(1) with a simple filter for each desired message type or
(2) with a single but complex OR-filter searching for all

desired message types.

We assess the JMS server performance for both option. We
keep the replication grade at r=1. The publishers send IDs
from #1 to #n in a round robin fashion.

(1) To assess simple filters, we set up for each different ID
exactly one subscriber with a filter for that ID.

(2) To assess complex filters, we set up 5 different subscribers
numbered from 0 to 4. Subscriber j searches for the IDs
#(j · n

5+i) with i∈ [1; n
5] using an OR-filter.

0 50 100 150 200 250 300320
0

500

1000

1500

2000

2500

Number of Different IDs / Simple Filters

O
ve

ra
ll

T
hr

ou
gh

pu
t [

m
sg

s/
s]

0

10

20

30

40

50

60

70

F
ilter C

om
plexity

Application Property Filters

Correlation ID Filters

Simple Filters

Complex Filters

Filter Complexity

Fig. 9. Impact of simple filters and complex OR-filters
on the message throughput for a replication grade of
r=1.

0 5 10 15 20 25
0

200

400

600

800

1000

1200

Components per AND−Filter

O
ve

ra
ll

T
hr

ou
gh

pu
t [

m
sg

s/
s]

Filter Distinction in
First Component (1)

Filter Distinction in
Middle Component (2)

Filter Distinction in
Last Component (3)

Fig. 10. Impact of an early non-match decision for
AND-filters on the message throughput depending on
the filter complexity for a replication grade of r=1.

We use in this experiment one publisher machine with 5
publisher threads and one subscriber machine with a varying
number of simple subscribers or 5 complex subscribers, re-
spectively. Figure 9 shows the message throughput and the
filter complexity depending on the number of different IDs

n. The diagonal line indicates the length of the complex
OR-filters. Complex filters (1) lead to significantly more
throughput than the equivalent number of simple filters per
client (2). Thus, it is better to use complex OR-filters than to
filter each component separately by an additional subscriber.
This observation holds both for application property and for
correlation ID filters.

G. Impact of Complex AND-Filters

In the application header section of a message, multiple
properties, e.g. P1, ...,Pk, can be defined. Complex AND-filters
may be used to search for specific message types. In the
following, we assess the JMS server throughput for complex
AND-filters. Note that complex AND-filters are only applica-
ble for application property filtering. In the following, we use
one machine with 10 publisher threads and one machine with
m=10 subscriber threads that are numbered by j∈ [1;m]. We
design three experiment series with a different potential for
optimization of filter matching. The subscribers set up the
following complex AND-filters of different length n:

(1) for subscriber j: P1=# j,P2=#0, ...,Pn=#0
(2) if n is odd:

for subs. j: P1 = #0, ...,Pn+1
2 −1 = #0,Pn+1

2
= # j,Pn+1

2 +1 =

#0, ...,Pn=#0
if n is even:
for subs. j if j≤ n

2 : P1=#0, ...,Pn
2−1=#0,Pn

2
=# j,Pn

2+1=
#0, ...,Pn=#0
for subs. j if j> n

2 : P1=#0, ...,Pn
2
=#0,Pn

2+1=# j,Pn
2+2=

#0, ...,Pn=#0
(3) for subscriber j: P1=#0,P2=#0, ...,Pn=# j

The corresponding messages are sent by the publishers in a
round robin fashion to achieve a replication grade of r= 1.
Then, the filters can reject non-matching messages by looking
at the first component in experiment (1), at the first half of
the components in experiment (2), and at all n components
in experiment (3). This experiment is designed such that both
the replication grade and the number of subscribers is constant
and that only the filter complexity n varies. To avoid any
impact of different message sizes in this experiment series,
we define k= 25 properties in all messages to get the same
length. Figure 10 shows the message throughput depending on
the filter complexity n. In all scenarios, the filter complexity
slightly reduces the server capacity, but there is no significant
difference regarding the server throughput. Thus, no advantage
is taken of the potential for an early rejection of filters to
shorten the processing time of a message and to increase
thereby the server capacity.

H. An Analytical Model for the Message Throughput

We have learned from Section IV-D that both the number
of filters and the replication grade impact the JMS server
capacity. In this section, we investigate their joint impact and
present a simple model to forecast the server performance for
a given number of filters and for an expected replication grade.
The model is validated by measurements.

1) Joint Impact of the Number of Filters and the Replication
Grade: We set up experiments to conduct parameter studies
regarding the number of installed filters and the replication
grade r of the messages. We use one publisher and one
subscriber machine. Five publishers are connected to the JMS
server and send messages with application property value
#0 in a saturated way. Furthermore, n + r subscribers are
connected to the JMS server, r of them filter for #0 while
the other n subscribers filter for different values. Hence, n+ r
filters are installed altogether. This setting yields a message
replication grade of r. We choose replication grades of r ∈
{1,2,5,10,20,40} and n ∈ {5,10,20,40,80,160} additional
subscribers.

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

Number of Filters
R

ec
ei

ve
d

T
hr

ou
gh

pu
t [

m
sg

s/
s] Measured Throughput

Analytical Throughput

r = [1,2,5,10,20,40]

Fig. 11. Impact of the number of filters n f ltr and the
message replication grade r on the received message
throughput – measurements and analytical data.

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Filters

O
ve

ra
ll

T
hr

ou
gh

pu
t [

m
sg

s/
s]

Measured Throughput
Analytical Throughput

r = 1

r = 2

r = 5

r = 10
r = 20

r = 40

Fig. 12. Impact of the number of filters n f ltr and
the message replication grade r on the overall message
throughput – measurements and analytical data.

Figure 11 shows the received message throughput depend-
ing on the number of installed filters n f ltr = n+r and on
the replication grade r. The solid lines show the measured
throughput. An increasing number of filters reduces the mes-
sage throughput of the system which is obviously independent
of the replication grade. Figure 12 shows the resulting overall
message throughput. It decreases also with an increasing
number of filters but it rises with the replication grade. We
have performed the same experiments for correlation ID filters,
too, and obtained the same measurement results.

2) A Simple Model for the Message Processing Time:
Figure 11 shows that the message processing time depends

only on the number of filters n f ltr but not on the replication
grade r. Thus, the time to send messages is obviously so small
for the server that it is not noticeable for a replication grade
of up to r=40. A linear approximation model for the message
processing time regarding the number of filters does not work.
Therefore, we propose the following model for the message
processing time B:

B = trcv +n f ltr ·
√
(n f ltr) · t f ltr (1)

The parameter trcv is a fixed time overhead for each received
message. The filtering effort affects the processing time with
a supplement of n f ltr ·

√
(n f ltr) · t f ltr. Hence, it increases more

than linearly with the number of installed filters n f ltr.
3) Validation of the Model by Measurement Data: Within

time B, one message is received and r messages are dispatched
by the server. Thus, the received and overall message through-
put is given by 1

B and r+1
B , respectively, and corresponds to

the results in Figures 11 and 12. The parameter n f ltr for
the message processing time B is known from the respective
experiments. We fit the parameters trcv and t f ltr by a least
squares approximation [15] to adapt the model in Equation (1)
to the measurement results. We get the best fit for trcv =
7.03 ·10−4 and t f ltr=1.1017 ·10−5. We calculated the received
and overall throughput for all measured data points based on
these values and Equation (1), and plot them with dashed lines
in Figures 11 and 12. The throughput from our analytical
model agrees very well with our measurement data for all
numbers of filters n f ltr and all replication grades r. For a very
high message replication grade like r = 80, the prediction tends
to be incorrect since the time to send the 80 outgoing messages
imposes additional time which is not captured by the model.
However, the model predicts the overall message throughput
of the server quite accurately for a wide range of realistic
parameters n f ltr and r. This is useful for the dimensioning of
distributed systems. In addition, the parameters trcv and t f ltr

allow a simple comparison of the server capacity on different
server platforms.

V. CONCLUSION

In this work, we have investigated the capacity of the
Java Messaging System (JMS) server WebsphereMQ under
various conditions. We first gave a short introduction into
JMS and reviewed related work. We presented the testbed
and explained our measurement methodology. We performed
many parametric experiment series and obtained measurement
results. We briefly summarize our findings.
(1) At least 5 subscribers, and 5 publishers sending in a

saturated mode are required to fully utilize the server
CPU and to obtain the server’s maximum overall message
throughput.

(2) In the non-persistent mode, the JMS server achieves a
significantly larger throughput but it may lose messages.

(3) The message size has a significant impact on the message
and the data throughput of the server.

(4) The number of topics hardly influences the server capac-
ity.

(5) The message replication grade and the number of filters
have a large impact on the server capacity.

(6) Application property and correlation ID filters lead to the
same message throughput.

(7) Different and equal filters impose the same effort for
filtering on the JMS server.

(8) Complex OR-filters lead to a significantly higher through-
put than the equivalent number of simple filters per client.

(9) For complex AND-filters, the order of the filter compo-
nents has no impact on the server capacity.

Finally, we studied the joint impact of the number of filters
n f ltr and the replication grade r of the messages on the overall
message throughput and developed a model to predict the
overall message throughput depending on n f ltr and r. It is
useful to predict the server capacity in practical application
scenarios and for dimensioning purposes.

Currently, we investigate the message throughput of other
JMS servers than the WebsphereMQ to compare their capacity
[16]. We study the message waiting time taking into account
the variability of the replication grade in practice. In addition,
we intend to increase the JMS throughput by the use of server
clusters.

REFERENCES

[1] Java Message Service API Rev. 1.1, Sun Microsystems, Inc., April 2002,
http://java.sun.com/products/jms/.

[2] IBM WebSphere MQ 6.0, IBM Corporation, 2005, http://www-306.ibm.
com/software/integration/wmq/v60/.

[3] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” in ACM Computing Surveys, 2003.

[4] Krissoft Solutions, “JMS Performance Comparison,” Tech. Rep., 2004,
http://www.fiorano.com/comp-analysis/jms_perf_comp.htm.

[5] FioranoMQT M: Meeting the Needs of Technology and Business, Fio-
rano Software, Inc., Feb. 2004, http://www.fiorano.com/whitepapers/
whitepapers_fmq.pdf.

[6] Enterprise-Grade Messaging, Sonic Software, Inc., 2004, http://www.
sonicsoftware.com/products/docs/sonicmq.pdf.

[7] TIBCO Enterprise Message Service, Tibco Software, Inc., 2004,
http://www.tibco.com/resources/software/enterprise_backbone/message_
service.pdf.

[8] Crimson Consulting Group, “High-Performance JMS Messaging,” Tech.
Rep., 2003, http://www.sun.com/software/products/message_queue/wp_
JMSperformance.pdf.

[9] Sun ONE Message Queue, Reference Documentation, Sun Mi-
crosystems, Inc., 2005, http://developers.sun.com/prodtech/msgqueue/
reference/docs/index.html.

[10] A. Carzaniga and A. L. Wolf, “A Benchmark Suite for Distributed
Publish/Subscribe Systems,” Software Engineering Research Laboratory,
Department of Computer Science, University of Colorado, Boulder,
Colorado, Tech. Rep., 2002.

[11] T. Wolf, “Benchmark für EJB-Transaction und Message-Services,” Mas-
ter’s thesis, Universität Oldenburg, 2002.

[12] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Virgillito, “Mod-
elling Publish/Subscribe Communication Systems: Towards a Formal
Approach,” in 8th International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2003), 2003, pp. 304–311.

[13] G. Mühl, L. Fiege, and A. Buchmann, “Filter Similarities in Content-
Based Publish/Subscribe Systems,” Conference on Architecture of Com-
puting Systems (ARCS), 2002.

[14] Sysstat Monitoring Utilities, http://perso.wanadoo.fr/sebastien.godard/,
http://perso.wanadoo.fr/sebastien.godard/, Feb. 2004.

[15] C. Moler, Numerical Computing with MATLAB. Philadelphia, PA:
Society for Industrial and Applied Mathematic (SIAM), 2004, http:
//www.mathworks.com/moler/chapters.html.

[16] R. Henjes, M. Menth, S. Gehrsitz, and C. Zepfel, “Throughput Perfor-
mance of Popular JMS Servers,” in ACM SIGMETRICS (short paper),
Saint-Malo, France, June 2006.

