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Abstract—The distribution of a stationary point process can can be well used in technical systems. We further illusttiage
be sampled by an ordinary histogram. If the distribution of gpplication of the TEWMH for experience-based admission
the process varies over time, a static histogram still yields control (EBAC) which is an example for a self-adaptive

results that are averaged over time since the beginning of the t Admissi trol admit ects for hiah
data collection. In this paper, we propose the time-exponentially system. mission control admits or rejects flows for hig

weighted moving histogram (TEWMH) to derive an estimate duality transport over a link or through a network. The diecis
for the time-dependent distribution of an instationary point is based on the bandwidth requested by the flows and on
process. The importance of the samples decays exponentially overthe bandwidth of the overall admitted flows. If the flows use
time such that young samples contribute more to the empirical only half of their requested and reserved rate, AC can admit
distribution than old ones. The strength of the decay can be . . .
controlled by a simple parameter which determines the memory gbout the double amount of flows, i.e., the available banttwid
of the histogram. We present a simple implementation of the iS safely overbooked. To that end, EBAC collects samples
TEWMH such that this mechanism can be well applied in of the utilization of the overall flow reservations. It dess/
practice. The empirical distribution serves for the derivation of the inverse of the 99%-quantile and takes the inverse as the
other time-dependent statistical measures such as time-depesrt overbooking factor. The quantile leads to a more consemvati
percentiles of the observed random variable. These provide . . . .
useful feedback in self-controlled adaptive systems. We illustrat overbooking facto.r than the. mean. This ‘?'9,3'9” decision has
the application of the TEWMH for experience-based admission Peen made to avoid congestion due to statistical fluctustién
control (EBAC) and show its benefits. a conventional static histogram is used for the implemantat
EBAC cannot adapt quickly to new traffic properties while the

TEWMH allows for a fast reaction regardless of how many
Keywords: Measurement Techniques, Quality and Perfof@mples have already been collected by the histogram.

mance in Autonomic Systems The paper is structured as follows. Section Il adapts the
time-exponentially weighted moving average (TEWMA) for
[. INTRODUCTION rates from [1] to averages. It is similar to the TEWMH,

Histograms collect data of an observed random variasblehowever’ '_t Is less c_omplex. Sect|.on .”I explains po;sﬂnie !
to obtain an estimate of the distribution Xf They allow the plementation of static and dynamic histograms and it piissen

derivation of statistical measures like the mean, the stahd the TEWMH. Section IV introduces the fundamentals of

deviation, or various percentiles. These measurementoaya EBAC, illustrates the application of the TEWMH, and points

be used for the calibration of adaptive systems. Technic%ﬂ't its benefit. Finally, we summarize this work and draw our

systems may be even self-adaptive if they adapt autonor_;nou%?m:lusmnS in Section V.

adapt to changes. The observation of changes is problematic (TEWMA)
with conventional histograms if they collect data since the . . . - "
start of the system: the more data are already collected, heSlmnar but simpler than the derivation of the current distr
more data with a different characteristic are needed taceff ution of a random variablX is the estimation of its current
a significant change in the distribution. Thus, it is ded@db meanl. l? [1]’. fou:j dlfferdent methodihavZ beer;l prefentid
give more importance to young samples and less to old orf@s calcu gte t'm?' ependent rates. We a a‘?t them or the
in order to propagate the properties of the latest sampéserfa computation of time-dependent means and discuss their pros
into the distribution obtained by the histogram. and cons.

In_this paper, we propose the t_ime-exponentially weighted stochastic Point Processes
moving histogram (TEWMH). The importance of the collected the followi b tochasti int
samples decays exponentially over time and the strength.o{n e following, we observe a stochastic point prockss

the devaluation of old samples is controlled by a simpl'(?e No. Arrivals of sizeX happen at times €Ro, i €No. It

memory parameter. Its implementation is simple such that fscrlbes, €. the packet sizes and the t_empor_al steuctur
of a packet arrival process. If the process is stationamy, th

This work was funded by Siemens AG, Munich. The authors alawe gdistribution for all X are identical. In practice, however, we
responsible for the content of the paper. might observe that th¥; depend on the daytime. For instance,



the traffic volume in a network varies over time and othdt. EWMA Based on Discrete Intervals (EWMA-DI)

aggregate properties like the traffic composition are afse-t EWMA-DI is a combination of Avg-DI and EWMA: it
dependent. applies the EWMA to the time-dependent averages obtained
B. Static Mean from Avg-DI. The corresponding memory M=At- (1—w)-

The static mean is calculated H{X] =% So-inX. The Y- oW =At which is now independent of the arrival rate

drawback of this equation is that all samples from the paest dfOWeVver, this method suffers from the same disadvantages as
considered to calculate the mean. Therefore, if the digigh #V9-D! and its averaging strength depends on the choiae. of

of the X, change, the obtained mean value hardly changes"?faddition* samples from an interval with only a few arrival

the numbem of already collected samples is large. Thus, tH&AVE€ more impact on the mean than others.

calculation of the conventional definition of the mean does ng E\wMA Based on EWMA-Based Sums (EWMA-ES)

allow to track temporary changes of the mean vaH[X]. The static mearE[X] = SXI) s calculated as the sum

C. Time-Dependent Average Based on Discrete Intervgjs g already arrived Samgfg sizegX|(t) divided by the
(Avg-DI) sum of all arrivalsN(t) (counter). We enhance this concept
To calculate a time-dependent average based on disctegedevaluatingSX](t) and N(t) in regular intervalsit by
intervals (Avg-Dl), the time axis is slotted into equidista a parameter & w< 1. This resembles a combination of the
intervals of lengthAt. We define the set of indices with allstatic mean and EWMA-DI. EWMA-ES combines the positive
arrivals in the j-th interval by Z; ={i: j- At <ti<(j+1)- properties of EWMA-DI and the static mean as it is time-
At}. The empirical mean for interval is then calculated by dependent and reacts immediately when new samples are
E[X]; :ﬁzigj X. The valueE[X];j is taken as an estimatecollected. The average memory of the EWMA-ESNs=
for the time-dependent average during tje-1)-th interval. At-32ow—5 =At- (11, —3). The design and the memory
We define the memory! of time-dependent means by the timénalysis of the EWMA-ES look cumbersome, but the EWMA-
a sample contributes to the resulting average. In the caseE§ serves as comprehensible predecessor for the TEWMA
Avg-DI, a sample contributes exacti =At. Avg-DI suffers since the limit forAt — 0 of EWMA-ES with a constant
mainly from two drawbacks. If the interval lengtti is short, memory leads to the TEWMA.
the statlstlgal base for the computationEjiX]; is extremely . Time-Exponentially Weighted Moving Average (TEWMA)
weak. IfAt is long, the average values are late or even obsoleté

since only the average values for the last past interval areThe time-exponentially ~weighted moving —average
available. (TEWMA) is an elegant enhancement of the EWMA-

. . _ ES. It is defined byE[X](t) = LY with SX](to) =Xo and
D. Expo.nen.tlally Weighted Moving Average (EW_MA) N(to)= 1. The sumsSX|(t) and'\ll\i?t) are updated by

The timeliness of the mean values can be improved by
the exponentially weighted moving average (EWMA) without SX|(t) = SX](ti_1)-e V04X 1)
disregarding the past samples. It starts wEfX]o =X, and N(t) = N(t_q)-e¥tta4g )
calculates the succeeding values recursively B¥]i = w- . .
E[X]i_1+(1—w)- X.. The average of the last arrival instant isvhenever a nfw arrival occurs. The memory pf the TEWMA is
valid until the next one. In contrast to Avg-DI, samples atea €xactlyM = [;’e ¥'dt = and an exact half-life periodh =
contribute to the EWMA but their strength is devaluated b{22 of the sample can be derived by the equa%e*V'TH_

w whenever a new sample arrives. Thus, the memory depenike EWMA-ES, TEWMA improves the timeliness of the
on the temporal structure of the process. The average memeajculated mean without disregarding the temporal streaé

of the EWMA isM= 1 - (1-w) - 3> oW = + wherebyA is the the process and in addition, it is independent of the samplin
interarrival rate of the process. Thus, the memory dependstime interval At.

the arrival rate only. The weight parameteijust controls the
averaging strength of the EWMA, i.e., largelead to slowly
changing results and smail lead to quickly changing results. We illustrate the impact of the temporal structure of the
The EWMA comes with a semantic problem. It disregardsrocess on the time-dependent average for some of the above
the interarrival time between the samples, i.e., the impéct presented concepts. We consider four different but verylaim

a new sample on the new mean is the same whether the tastlizations of a single stochastic process that produee tw
calculation of the EWMA has been long time ago or onlgamples within the first three potential arrival instahts
recently. {1,2,3}. Thus, the arrival rate for that interval i8 :%

The EWMA was introduced by [2] and this mechanismvhich determines the average memory of the EWMA. To be
has been studied quite intensively especially in the field obmparable from a memory point of view, we s{k:!t:}\l for
economics for chart analysis [3]-[8]. The EWMA is also usethe interval-based mean anpg=A for the TEWMA.
in many technical documents of the IETF [9], [10], the most Table | shows that the static mean is unaware of the order
prominent one is probably the obsolete estimation of thadouand temporal structure of the stochastic process. Avg-DI at
trip time for TCP in [11]. time instantt =2 is based on the average of the samples at

H. Comparison of the Averaging Methods



t=0 andt=1 and, therefore, it yields delayed results. Thby w whenever a random variable is observed. The coumiers
results of the EWMA depend significantly on the valuewof contain directly the relative frequencies, therefore, iy V@ge

and are insensitive to the temporal structure of the processis recommended. The EWMH inherits the disadvantages of
The TEWMA produces timely results and respects both thlee EWMA, e.g., the memory of this approach depends on the
trend and the temporal structure of the process, i.e., itarsat arrival rateA of the process. Moreover, the EWMH requires
whether a sample arrives &0 or att=1. very large computation overhead since all counters must be

devaluated whenever a new observation is made.
TABLE |

COMPARISON OF AVERAGING METHODS WITH REGARD TO THE

D. EWMH Based on Discrete Intervals (EWMH-DI)
TEMPORAL STRUCTURE OF THE MEASURED PROCESS

X(0) [ X(T) [ X(2) | Static [ Avg-DI | EWMA | EWMA | TEWMA Similarly to EWMA-DI, EWMH-DI is a combination of
mean w=% | w=3 y=A Hist-DI and EWMA: it applies the EWMA process to the
4 4 i gg i 2 g %:gi counter values; obtained from EWMA-DI. EWMH-DI in-
- 1 4 25 1 2 3 2.99 herits its memory from EWMA-DI and suffers from the same
1 - 4 2.5 1 2 3 3.37 shortcomings.

E. EWMH Based on EWMA-Based Counters (EWMH-EC)

IIl. TIME-EXPONENTIALLY WEIGHTED MOVING ) ) )
HISTOGRAM (TEWMH) The EWMH-EC works basically like the EWMA-ES. It in-

. . . , i __crements the corresponding counters by 1 whenever a random
In this section, we discuss the implementation of tiM&,aple is observed and devaluates all countgrand Ny

dependent histograms according to the concepts of tim@-ihe static histogram in regular intervals of length The
dependent averages. Some of these concepts are t”V'atSOUI‘EWMH-EC is simpler to implement than Hist-DI and EWMH-
are new. In particular, the new TEWMH is a non-trivialy| pecayse it requires only a single data structure, anceitisie
adaptation of the TEWMA concept to histograms. less computation power than the pure EWMH since counters
A. Static Histograms are devaluated only aftéxt time. The I_EV\/MH-EC inherits its
memory from the EWMA-ES. The limit foAt — 0 of the

A histogram discretizes a certain value ranew, Vhigh E\WMH-EC with a constant memory leads to the TEWMH
into nyins equidistant subintervals numbered from (igs—1, presented in the next section

the so-called bins. Each of them is associated with a coopter

0< j<nhpins. A random variableX; is collected in the histogram i ) . . .

by incrementing the counter for bir{X _VIOW)\(Vhigr?bleow)J F. Time-Exponentially = Weighted Moving  Histograms
by 1 and by incrementing the total number of hlrﬂ%ts by (TEWMH)
1, too. If the random variable lies outside the considered The TEWMH is basically derived from the TEWMA.

interval, counter O ompjpns—1 is incremented. All cocl_lected Whenever a new random variab¥ is observed, the corre-
values contribute equally to the relative frequeh@y&ﬁs of sponding countec; and nyiis are set to
|

their corresponding bins. Therefore, the static histogianot

able to represent the latest trends of the observed progess i cit) = cjti—a) e Vitiog) 4 g 3)
the empirical distribution. Mis(ti) = DNhis(ti_1)-€ V-0 41 (4)
B. Time-Dependent Histogram Based on Discrete Intervals Crsj(ti) = Cnyjtiog)-e V-t (5)

(Hist-DI)
: R H (i —t—
Time-dependent histograms based on discrete intervhfs: the other counters,,; are just devaluated by v (),

(Hist-DI) are analogous to time-dependent averages baddljs makes the approach as computationally expensive as the

on discrete intervals (Avg-DI). The data are collected nigri PU'®¢ EWMH method since all counters are updated upon a
an interval of lengthAt and during that time, the relative "W observation. We get rid of scaling down the other cosnter

frequencies from the previous interval are taken as resuffy l€aving them untouched and scaling up the increments in
This approach comes with the same disadvantages as Avg-Bftation (3) and 4 instead. Thus, only two counters need to
for small intervals the data lack statistical significanoel or  P€ incremented in case of a new observation:

large intervals the results are late. i) = cjtiq)+erti® (6)

C. Exponentially Weighted Moving Histograms (EWMH) Mhits() = Nhigs(ti_1) + iR @)
The exponentially weighted moving histogram (EWMH)

starts with an increment of 1 for the countgrcorresponding taking the last reset instati into account. When the number

to the first sample to assure that the sum of the counters i§f1hits nhits(ti) becomes too large, the counters are reset by

which is an invariant of this method. It continues with increc; (ti):% and nits(ti) =1, and the new reset timg =t;

ments of(1—w) combined with a devaluation of each counteis stored.



G. Derivation of Percentiles B. Impact of the Histogram Type on the EBAC Reaction Time

The perc_entile or qu_antile of a distribution regarding a In [13], EBAC worked well when we used static histograms
random variableX is defined by for the measurement of the utilization of the reservationses
Xp=min(x: P(X <X) > p). (8) the flows had constant traffic properties and the statistical
properties of the collected utilization values did not ajan
An estimation of the time-dependent quantig(t) can be over time. However, in the presence of traffic changes, the
derived from the TEWMH or EWMH-EC by percentile of the utilization must quickly reflect the newndo
tions, thus, the applied histogram must be time-dependent.
Xo(t) = min { Vigw - : Z Gt) > p-mist) | . (9) keep t.hlngs S|mp!e, we study _the behavior of EBAC on a smgle
0= j link with a capacity of 10 Mbit/s. As AC only reacts to avoid

congestion, we operate the link under saturated condijtions

Thus, the relatlvp freqqency of the smallest bins is summ g we trigger so many flow requests that many of them are
up such that their sum is equal to or larger tharrhe lower rejected

\t;gll:]:}d of the next largest bin yields the desired percentlleIn [14] we investigated EBAC for very fast traffic changes,
’ i.e., the PMRRK(t) of the traffic aggregate suddenly increased
IV. APPLICATION OETEWMH To EXPERIENCEBASED  OF decreased. A PMRR increase means that less traffic is sent
ADMISSION CONTROL (EBAC) than before and a PMRR decrease denotes more traffic from
) ) o the admitted flows. The adaptation of the overbooking factor
_ In this section, we show the application of the TEWMHy ) \yorks very fast when the PMRR(t) suddenly decreases,
in the context of experience-based admission control (EBAGyt s is relatively slow when it increases. Very fast desesa
We briefly review the concept of EBAC that we first presentegk pprR may result from coordinated QoS attacks of all

in [12]. We calibrated its basic parameters in [13] and itives o ymitted traffic sources, which is an extreme and also ngt ver
gated its behavior in the presence of traffic changes in [M]. ,oqistic scenario.

this paper, we illustrate the impact of the histogram type on In this paper, we investigate the impact of a slow increase

the reaction time of EBAC and show the benefit of TEWMHOf the PMRRK(t) on the reaction time of the EBAC. We

A. Basic EBAC Mechanism have almost t.he same experim.ent setti.ngs like in.[14] where
) _ _ _ also the detailed traffic model is described. We simulate the
The idea of EBAC is briefly described as follows. Anggac with the following time-dependent parameters. Until
admission control (AC) entity limits the access to a lihk gjmulation timet =230 s, new flows have a PMRR kff)=2
with _capacityc(l) anq recor_ds all admitted flowke F(t) at 44 afterwards new flows have a PMRR kiff) = 4. We
any timet together with their requested peak rafesf) : f € porform this experiment 50 times and present averagedtsesul
]—‘(t)}. When a new flowfrey arrives, it requests a reservatior), Figures 1(a) - 1(d). The figures show the link bandwidth
for its peak rater(fnew). If c(l), the reserved ratéR(t), the measured ratd(t), the
) ) resulting overbooking factap (t) and the effective PMRK (t
F(frew) + (0 = d)- oM prac (100 S admitted flows, Figuré )1(a) shows that the overb(o)oking
factor ¢ (t) approximates the PMRR(t) quite well as long as
holds, admission is granted anfilew joins F(t). If flows K(t) is constant. As soon as the PMRR of the entire aggregate
terminate, they are removed fraffi(t). The experience-basedk t) increases since old flows wik{ f) =2 terminate and new
overbooking factorg(t) is calculated by statistical analysisfiows with k(f)=4 are admitted, the reservation utilization
and indicates how much more bandwidth theih) can be yt) decreases, but a significant amount of samples is required
safely allocated for reservations. The maximum link WHiz that the quantiléJ,(t) decreases, too. This delays the increase
tion threShOldpmaX limits the traffic admission such that theof the Overbooking facto¢(t) The reserved Capacity grows
expected packet delayf exceeds a maximum delay thresholgyith the overbooking factor because we assumed a suffigient
Whax only with probability py . high request rate such that free capacity can be used wheneve
The reserved bandwidth of all flows R(t) =3 tc =« r(f) available by EBAC. Sincé(t) is underestimated compared to
while C(t) denotes the unknown mean rate of the traffig(t), the measured traffic ratel(t) drops under 7.5 Mbit/s
aggregateZ (t). The intention of EBAC is to derive a suitablefor a while. The results in Figure 1(a) belong to EBAC
overbooking factorp(t) that takes advantage of the peak-tomplementations with EWMH-EC with a memory M=14 s
mean-rate ratio (PMRRK(t) = % of the traffic aggregate. and a devaluation interval @t =10 s. This produces the same
EBAC makes traffic measurementd(t) at an appropriate curves like the TEWMH with the same memory. Figures 1(b)
time scale on the link and samples the reservation utiimati- 1(d) show the results for time-dependent histograms of typ
U(t)=M(t)/R(t) by a histogram [13] to derive the-percentile EWMH-EC with the same memory dl =14 s but longer
Up(t) of the empirical distribution otJ. Its reciprocal yields devaluation intervals ofAt =110,210,310 s. The resource
the time-dependent overbooking factpft) = 1/Up(t) as the utilization for large values ofAt is lower than for small
contents of the histogram depends on the current time ones which is disadvantageous in a situation where traffic is
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Fig. 1. Impact of lengthAt of the devaluation interval for EWMH-EC histograms with a memofyM =14 s on the reaction time of EBAC if the
peak-to-mean rate ratio of new flows suddenly changes #0in=2 to k(f)=4 at timet=230 s.

blocked. The curves fop(t) and the accompanying(t) tend overhead for the devaluation of the counters. The TEWMH is
to have steps whose corners appro&dh). The size of the simpler since it does not require any other parameters &gsid
steps clearly correlates with the devaluation intervalanse the length of its memory. Its quantile reacts rather quickly to
the percentileUp(t) increases when the counters with higlthanges of the traffic properties compared to the one from the
utilization values in the histogram are devaluated. At ¢heEWMH-EC with largeAt and improves thereby the timeliness
time instants, there is no safety margin betwekft) and of the histogram without sacrificing the statistical sigrafice
K(t) anymore, which might lead to QoS violations. Histogramaf its values.
with large values ofAt have a very small devaluation factor
w for a short memory ofM =14 s such that the overall
sum nyis(t) in the histogram becomes extremely small. As The conventional calculation of average values and the
a consequence, sufficiently many new samples are requiredonventional evaluation of histograms to derive empirical
produce a good estimate for the quantilg(t). We performed distributions respect all samples equally. As a consedjenc
the same experiments with the TEWMH, too, with differentheir results do not react quickly to changes of the statsti
thresholds to normalize the counters. They all lead to thoperties of the observed random variable. In earlier work
same smooth results as in Figure 1(a) but without updatimg proposed several methods to derive time-dependent rates
all counters within relatively short intervals at =10 s. of a point processX(t). In this paper, we adapted these
concepts to calculate time-dependent averages. We extende
After all, the presented curves show that the EWMH-EC ihem to time-dependent histograms to obtain time-depénden
well feasible, but it must be carefully parameterized,, iits. empirical distributions that allow, e.g., the derivatiohtione-
devaluation intervaldt must not be chosen too long comparedependent percentiles &f. The most elegant method is the
to its memoryM. Very short intervals increase the computatiotime-exponentially weighted moving histogram (TEWMH). In

V. CONCLUSION



contrast to other methods, it provides timely results sin¢gt] J. Milbrandt, M. Menth, and J. Junker, “Performance ofp&sience-

the impact of collected samples is immediately seen in the Based Admission Control in the Presence of Traffic Changes,” i
.. T . . 5M|FIP-TC6 Networking Conference (Networkingjoimbra, Portugal,
empirical distribution. It has a relatively low computatad May 2006.

overhead and it is simple to use as it relies only on the
single parametey that controls the length of its memory. To
illustrate the usefulness of the TEWMH, we used it to make
experience-based admission control (EBAC) self-adaptive
changes of the traffic properties. Our experiments showad th
the TEWMH leads to stable results while other time-dependent
histogram types can lead to artifacts in the system that are
caused by additional implementation parameters of thesthes
histograms.

Due to its simplicity regarding both its implementation and
parametrization, the TEWMH is a good concept for measure-
ments in self-adaptive systems as they require timely faeldb
for quick reactions to changes in the observed environment.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Phouc Tran-Gia for
the stimulating environment which was a prerequisite fait th
work.

REFERENCES

[1] R. Martin and M. Menth, “Improving the Timeliness of Rate Me
surements,” in 12GI/ITG Conference on Measuring, Modelling and
Evaluation of Computer and Communication Systems (MMB3thay
with 39Polish-German Teletraffic Symposium (PGTB)esden, Ger-
many, Sept. 2004, pp. 145 — 154.

[2] S. W. Roberts, “Control Chart Tests Based on Geometric iktpwver-
ages,"Technometrics (Journal of the American Statistical Assttmn),
vol. 1, no. 3, pp. 239 — 250, 1959.

[3] S. J. Hunter, “The Exponentially Weighted Moving AveeggJournal
of Quality Technologyvol. 18, no. 4, pp. 203 — 210, 1986.

[4] S. V. Crowder, “A Simple Method for Studying Run-Lengthdlibu-
tions of Exponentially Weighted Moving Average Chart$¢chnomet-
rics (Journal of the American Statistical Associatippp. 401 — 407,
1987.

[5] J. M. Lucas and M. S. Saccucci, “Exponentially Weightedwihg Av-
erage Control Schemes: Properties and Enhancemdetstinometrics
(Journal of the American Statistical Associatiprpl. 32, no. 1, pp. 1
— 29, 1990.

[6] S. H. Steiner, “Exponentially Weighted Moving Averager@rol Charts
with Time Varying Control Limits and Fast Initial Responségurnal
of Quality Technologyvol. 31, pp. 75 — 86, 1999.

[7] J. E. Wieringa, “Statistical Process Control for Sdyi@orrelated Data,”
PhD thesis, University of Groningen, Department of EconoitetFeb.
1999.

[8] A. Chen and E. A. Elsayed, “Design and Performance Analgsdithe
Exponentially Weighted Moving Average Mean Estimate fordesses
Subject to Random Step Changedgchnometrics (Journal of the
American Statistical Associationyol. 44, no. 4, 2002.

[9] D.O. Awduche, L. Berger, D.-H. Gan, T. Li, V. Srinivasaamd G. Swal-
low, “RFC3209: RSVP-TE: Extensions to RSVP for LSP Tunfiélc.
2001.

[10] Y. B. et al., “RFC3290: An Informal Management Model forfiderv
Routers,” http://www.ietf.org/rfc/rfc3290.txt, May 200

[11] Information Sciences Institute, “RFC793: Transmiss@ontrol Proto-
col,” September 1981.

[12] J. Milbrandt, M. Menth, and S. Oechsner, “EBAC - A Simpldraission
Control Mechanism,” in 12IEEE International Conference on Network
Protocols (ICNP) Berlin, Germany, Oct. 2004.

[13] M. Menth, J. Milbrandt, and S. Oechsner, “Experiencas®& Admission
Control (EBAC),” in 9"IEEE Symposium on Computers and Communi-
cations (ISCC)Alexandria, Egypt, June 2004, pp. 903 — 910.



