
Algorithms for Fast Resilience Analysis in IP Networks

Michael Menth, Jens Milbrandt, and Frank Lehrieder

Department of Distributed Systems, Institute of Computer Science
University of Würzburg, Am Hubland, D-97074 Ẅurzburg, Germany

Phone: (+49) 931-888 6644, Fax: (+49) 931-888 6632
{menth,martin,lehrieder}@informatik.uni-wuerzburg.de

Abstract. When failures occur in IP networks, the traffic is rerouted over the
next shortest paths and potentially causes overload on the respective links. This
leads to congestion on links and to end-to-end service degradation. Theycan be
anticipated by evaluating the bandwidth requirements of the traffic on the links
after rerouting for a set of relevant failure scenariosS. As this set can be large in
practice, a fast evaluation of the bandwidth requirements is needed. In this work,
we propose several optimized algorithms for that objective together with an ex-
perimental assessment of their computation time. In particular, we take advantage
of the incremental shortest path first (iSPF) algorithm to reduce the computation
time.

1 Introduction

In IP networks, traffic is forwarded according to the shortest path principle. The OSPF
or the IS-IS protocol [1, 2] signal the topology informationby the use of link state
advertisements (LSA) through the network such that every node in the network knows
all working links with their associated cost metrics. Basedon this information, each
router can run the shortest path first (SPF) algorithm to calculate the least cost paths
and to insert the information about the next hops towards anydestination in the network
into its routing table. When a node or a link fails, this information is disseminated by
the routing protocol to all nodes in the network and the distributed routing tables are
recomputed. This is called rerouting and leads to the restoration of traffic forwarding
when a failure occurs.

In case of single shortest path (SSP) routing, the router calculates the well-defined
next hop for the shortest paths towards any destination (cf.e.g. 7.2.7 in [3]). In case of
equal-cost multipath (ECMP) routing, the router identifiesall next hops on the paths
with equal costs towards any destination and records them inthe routing table. As a
consequence, the traffic is forwarded almost evenly over allof these next hops. The
calculation of the shortest paths is quite time consuming since it scales withO(n ·
log(n)) whenn is the number of nodes in the network. This has a significant impact
on the restoration time [4]. If a single link or a single router changes its cost, joins, or
disappears, only a small fraction of the shortest paths changes. The incremental SPF
(iSPF) algorithm adjusts only those shortest paths that areaffected by the change. The
iSPF algorithm is known from the early days of the ARPANET in the seventies and

This work in cooperation with Infosim GmbH & Co.KG was funded by the Bavarian Ministry
of Economic Affairs. The authors alone are responsible for the content of the paper.

c ©
2
0
0
6

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
it

iv
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

6
th

IE
E

E
In

te
rn

a
ti

o
n

a
l

W
o
rk

sh
o
p

o
n

IP
O

p
er

a
ti

o
n

s
a
n

d
M

a
n

a
g
em

en
t

(I
P

O
M

),
2
0
0
6
,

1
0
.1

0
0
7
\/

1
1
9
0
8
8
5
2

3
.

2 Michael Menth et al.

has been published in [5]. It speeds up the time for the distributed computation of the
shortest paths substantially [6] and it has been implemented recently in routers, e.g.,
Cisco Systems supports iSPF both for IS-IS and for OSPF [7]. In [8] the complexity
regarding comparisons of several iSPF algorithms has been compared experimentally
and analytically and another comparison regarding the runtime of Dijkstra’s SPF and
the iSPF algorithm is provided in [9].

In this paper, we present and assess algorithms to calculatethe link utilization for a
set of relevant failure scenariosS in order to detect potential bottlenecks a priori. This
set is rather large even if it contains only all single and double element (link or node)
failures. Therefore, the applied algorithms must be fast. They calculate (a) the path
layout for all end-to-end traffic aggregates in different failure scenarios and based on
them (b) the required bandwidth of all links in the network. In contrast to the distributed
routing algorithms above, our objective is the computationof the well-defined path
layout generated by the distributed calculation of the nexthop information. This is
achieved by the use of destination graphs. To speed up the computation time, we take a
special order of the considered failure scenarios inS to allow an incremental update of
the destination graphs and the required bandwidths. We alsoadapt the iSPF algorithm
to that context to minimize the computation effort. In particular, the iSPF is simplified
[10] since it needs to react only to link or node failures but not to new links or nodes,
or to the change of their costs. We do not implement any optimization for sorting heaps
in the algorithms that can further speed up the calculation [11]. Our results show that
our new algorithm is significantly faster than a straightforward naive implementation.
Therefore, we recommend their implementation in tools for the a priori detection of
overload due to network failures.

The paper is structured as follows. Section 2 presents several optimized algorithms
to calculated the bandwidth requirements due to traffic rerouting. Section 3 describes
our experimental comparisons of the computation time of these algorithms. In Section 4
we summarize our work and draw our conclusions.

2 Fast Calculation of Resource Requirements in Failure Cases

We represent the network as a graphG = (V, E) with V being the set of nodes andE
being the set of edges. A failure scenarios is characterized by the sets of its failed nodes
V̂(s) and linksÊ(s) such that the remaining topology is given byG(s) = (V(s), E(s))
with V(s) = V\V̂(s) andE(s) = E\Ê(s). The destination graphDGw

s is a directed
acyclic graph (DAG) that contains all least cost paths inG(s) from any sourcev∈V(s)
to the destinationw. To calculate the resource requirements in a special failure case
s, we calculate first the destination graphsDGw

s for all possible destinationsw ∈V(s)

and derive then the vector̂rs∈R
+

0

|E|
of the required bandwidth on all links depending

on the choice of single shortest path (SSP) or equal-cost multipath (ECMP) routing.
Vectors are printed bold, i.e.,0 is the zero-vector.

To construct the destination graphsDGw
s , we present four different methods with

increasing optimization degree.

(R0)The simplest one uses Dijkstra’s algorithm [12] and recalculateŝrs entirely.

Algorithms for Fast Resilience Analysis in IP Networks 3

(R1)If the destination graphsDGw
s for a failure scenarios ⊂ s′ exist, most of the

destination graphsDGw
s′ are equal toDGw

s and do not need to be computed anew.
In this case, the bandwidth vectorr̂s can be updated incrementally.

(R2Copy)If a destination graphDGw
s′ changes relatively toDGw

s due to an additionally failed
element,DGw

s′ may be computed based on a copy ofDGw
s using the iSPF algo-

rithm. In this case, the incremental update of the bandwidthvectorr̂s is even more
efficient.

(R2)Copying the full destination graphDGw
s may take a long time, therefore, we work

with a single copy ofDGw
s that is reset for another use if it is not needed anymore

after its modification toDGw
s′ .

2.1 Naive Calculation (R0)

The naive method (R0) calculates the path layout using Dijkstra’s algorithm whenever
it is needed and computes the bandwidth vector for each scenario s∈S from scratch.

Basic Path Calculation Based on Dijkstra’s Algorithm Algorithm 1 calculates the
destination graphDGw

s for a specific destination nodew by assigning the appropriate set
of predecessor nodesPredw

s (v) and successor nodesSuccw
s (v) to each nodev∈V(s).

The remaining listR contains all nodes without any successors and the tentative
list T contains all nodes that can still become successor nodes forother nodes and for
which shorter paths towards the destination can be possiblyfound. The functiond(v)
indicates the distance from any nodev to the destinationw.

The distance from the nodev with the shortest distance to the destinationw among
all nodes on the tentative listT cannot be further diminished. Therefore, its set of suc-
cessors is fixed andv can be removed from the tentative listT . Prior to that, the al-
gorithm checks whetherv can be used to find shorter paths to one of its predecessor
nodes. This is done by looking at all linksl whose destination routerω(l) is v. The
source router of such a linkl is denoted byα(l) which is a predecessor node ofv within
the graph. If a shorter path can be found viav, the set of successorsSucc(α(l)) is substi-
tuted. If routing viav provides an equal-cost path,v is just added to the setSucc(α(l)).
At last the nodev is registered as a predecessor node for all its successors. This in-
formation is required to implement the incremental algorithm efficiently. The shortest
paths towards the destinationw are constructed by callingDijkstra({w},V(s) \ {w}
with the initializationd(w)=0 andd(v)=∞ for v 6=w.

Basic Calculation of the Required Bandwidth We calculate now the required band-
width of all links in a special failure scenarios based on the destination graphsDGs

v,w,

v, w ∈ V. The required link bandwidths can be represented by a vectorr̂s ∈ R
+

0

|E|

whereby each of its entrieŝrs(l) relates to linkl.
The rate of the aggregates from a sourcev to another destinationw is given by the

entryR(v, w) of the traffic matrixR. This rate together with the path of the aggregate
that can be derived from the destination graphDGw

s induce the aggregate-specific rate

vectorrv,w
s

∈
(

R
+

0

)|E|
. Equal-cost multipath (ECMP) routing uses all suitable paths in

4 Michael Menth et al.

Input: tentative listT , remaining listR
while T 6= ∅ do

v=argminu∈T (d(u))
for all {l : ω(l) = v} do

if d(α(l)) > d(v) + cost(l) then
{a shorter path is found forα(l)}
d(α(l))← d(v) + cost(l)
Succ(α(l))← {v}

end if
if d(α(l)) = d(v) + cost(l) then
{an equal-cost path is found forα(l)}
Succ(α(l))← Succ(α(l)) ∪ {v}

end if
if α(l) ∈ R then {move visited node toT }
R ← R \ {α(l)}, T ← T ∪ {α(l)}

end if
end for
T ← T \ {v} {shortest path fixed forv}
for all u ∈ Succ(v) do

Pred(u)← Pred(u) ∪ {v}
end for

end while

Algorithm 1: DIJKSTRA: calculates a unidirectional destination graphDGw
s with links

towards the destination.

the destination graphDGw
s to forward the traffic, and the traffic is distributed equally

over all outgoing interfaces to the destinationw. With single shortest path (SSP) rout-
ing, the traffic is only forwarded towards the next hop with the lowest ID within all
equal-cost paths towards the destinationw. This is one choice according to 7.2.7 in
[3]. Algorithm 2 and Algorithm 3 calculate the aggregate-specific rate vectorrv,w

s
for

ECMP and SSP. This vector is first initialized byrv,w
s

= 0 before the algorithms are
called by RATEVECTORX(rv,w

s
, v, w,R(v, w)) with X ∈ {ECMP,SSP}. In case

of ECMP, Algorithm 2 distributes the ratec at the nodev over the links towards the
successorsSuccw

s (v) within the destination graphDGw
s . In case of SSP, Algorithm 3

distributes the traffic from any nodev over the single link towards its successor node
with the lowest node ID in the destination graphDGw

s . If a nodev has failed, the desti-
nation graphDGv

s does not exist and no other destination graphDGx
s containsv. Thus,

the aggregate-specific rate vectorsr
x,v
s

=0 andr
v,x =0 are zero.

The vector of the required link bandwidtĥrs is computed as the sum of all aggregate-
specific rate vectors

r̂s =
∑

v,w∈V:v 6=w

r
v,w
s

. (1)

Algorithms for Fast Resilience Analysis in IP Networks 5

Input: destination graphDGw
s , rate vectorr, nodev, destinationw, ratec

c′ ← c

|Succw

s
(v)|

for all u ∈ Succw
s (v) do

r(l(v, u))← r(l(v, u)) + c′

if u 6= w then
RateV ectorECMP (DGw

s , r, u, w, c′)
end if

end for

Algorithm 2: RATEVECTORECMP: calculates the aggregate-specific rate vectorr in-
duced by a flow fromv to w with ratec for ECMP routing.

Input: destination graphDGw
s , rate vectorr, nodev, destinationw, ratec

u← argminu′∈Succw

s
(v)(ID(u′))

r(l(v, u))← r(l(v, u)) + c
if u 6= w then

RateV ectorSSP (DGw
s , r, u, w, c)

end if

Algorithm 3: RATEVECTORSSP: calculates the aggregate-specific rate vectorr in-
duced by a flow fromv to w with ratec for ECMP routing.

2.2 Incremental Naive Calculation (R1)

The incremental naive method takes advantage of the fact that the set of protected fail-
ure scenariosS contains many similar failure scenarioss′ being a superset of others
(s⊆s′). It saves computation time for the failure-specific destination graphsDGw

s and
allows an incremental calculation of the bandwidth vectorr̂s.

Selective Path Calculation Using Dijkstra’s Algorithm If two failure scenarios and
s′ are similar, most of their destination graphsDGw

s andDGw
s′ do not differ. In partic-

ular, if s is a subset ofs′ (s ⊂ s′), DGw
s′ only differs fromDGw

s if DGw
s contains an

element of the set difference∆s =s′ \ s. Thus, we construct a functionContainsw
s (x)

whenever we build a new destination graphDGw
s . In addition, we arrange all failure

scenarioss∈S hierarchically in such a way that we can take advantage of thecontains-
relationships. An example for such an order is given in Figure 1. As a result, if(s⊂s′)
holds, the destination graphDGw

s′ can be overtaken fromDGw
s unlessContainsw

s (x)
evaluates totrue for anyx∈∆s.

Incremental Calculation of the Required Link Bandwidth r̂s′ Based on Recalcu-
lated Destination Graphs DGw

s
If the path of the aggregate is the same in the failure

scenarios ands′, rv,w
s

can be used instead ofr
v,w
s
′ for the calculation of the required

bandwidth vector in Equation (1). The path is the same ifs contains only a subset of the
failures ins′ and if all links and nodes inDGw

s are working inDGw
s′ , too. Algorithm 4

calculates the vector of the required link bandwidths for failure scenarios′ based on the
one fors. It uses the functionContainsw

s (x) to find all aggregates whose destination

6 Michael Menth et al.

Fig. 1. The failure scenarioss∈S are organized in a tree structure such that each failure scenario
is a child of one of its subsets.

graphDGw
s′ has changed with respect toDGw

s , calculates for these aggregates the new
aggregate-specific rate vectorr

v,w
s
′ , and updates the vector for required link bandwidth

r̂s′ incrementally.

Input: required bandwidth vector̂rs, failure scenarioss ands′

r̂
s
′ ← r̂s, ∆s ← s′ \ s

for all w∈V do
equal← true
for all x∈∆s do

if Containsw
s (x) then

equal← false
end if

end for
if equal 6= true then

for all v∈V do
r
v,w

s
′ =0

RATEVECTORX(DGw
s , rv,w

s
′ , v, w,R(v, w))

r̂
s
′ ← r̂

s
′−r

v,w
s

+r
v,w

s
′

end for
end if

end for
Output: required bandwidth vector̂r

s
′

Algorithm 4: INCREMENTALREQUIREDBANDWIDTH : calculates the required band-
width vector̂rs′ based on̂rs incrementally.

2.3 Incremental Calculation Based on iSPF (R2Copy)

The incremental method based on iSPF has two advantages compared to the incremental
naive calculation: it requires less effort to construct a new required destination graph
DGw

s and updates the bandwidth vectorr̂s by only those aggregates whose path has
changed effectively.

Algorithms for Fast Resilience Analysis in IP Networks 7

Selective Path Calculation Using iSPF When a linkl or nodev within a destina-
tion graphDGw

s fails, the new destination graphDGw
s′ must be constructed anew. The

iSPF achieves that in an efficient way by copying the existing, similar destination graph
DGw

s and modifying it instead of computing it entirely from scratch. The paths from all
nodesv that reach the destination nodew only via a failed link or node inDGw

s have
then lost connection and must be rerouted. In addition, all nodes that contain the failed
network element in their path need to recompute their rate vector afterwards using the
algorithms in Section 2.1.

The recursive Algorithm 5 removes from the destination graph DGw
s all network

elements that have lost connection due to the failure of linkl and adds the disconnected
nodes to the setR. The |.|-operator denotes the cardinality of a set andl(u, v) is the
link from nodeu to nodev.

Input: failed link l, set of disconnected network elementsR
Pred(ω(l))← Pred(ω(l)) \ {α(l)}
Succ(α(l))← Succ(α(l)) \ {ω(l)}
if |Succ(v)| = 0 then {v disconnected}

d(v)←∞,R ← R∪ {v}
for all u ∈ Pred(v) do

RemoveLink(l(u, v),R)
end for

end if

Algorithm 5: REMOVEL INK : removes from the destination graphDGw
s all network

elements that have lost connection due to the failure of linkl.

Algorithm 6 removes a nodev from the destination graph by disconnecting it ex-
plicitly from all its successor nodes and by disconnecting it implicitly from all its prede-
cessor nodes by calling REMOVEL INK(l,R) for all links leading tov. The failed node
v is not added to the set of disconnected nodes since it should not be reconnected to the
graph. Thus, its path contains then no elements.

Input: failed nodev, set of disconnected network elementsR
R ← R∪ {v}, C ← C ∪ {v}
d(v)←∞
for all u ∈ Succ(v) do

Pred(u)← Pred(u) \ {v}, Succ(v)← Succ(v) \ {u}
end for
for all u ∈ Pred(v) do

RemoveLink(l(u, v),R)
end for

Algorithm 6: REMOVENODE: removes from the destination graphDGw
s all network

elements that have lost connection due to the failure of nodev.

8 Michael Menth et al.

Algorithm 7 reconnects the disconnected working nodes inR by first connecting
them to the connected structure of the remaining destination graphDGw

s and moving
then the freshly connected nodes to the tentative listT . Finally, DIJKSTRA(T ,R) is
called and completes the destination graphDGw

s .

Input: set of disconnected working nodesR
for all v ∈ R do

for all {l : α(l) = v} do
if d(ω(l)) <∞ then {ω(l) has a path tow}

if d(ω(l)) + cost(l) < d(v) then
{a shorter path fromv to w is found}
if d(v) =∞ then
{movev from remaining to tentative list}
R ← R \ {v}, T ← T ∪ {v}

end if
d(v)← d(ω(l)) + cost(l), Succ(v)← {w}

else if d(ω(l)) + cost(l) = d(v) then
{an equal-cost path tov is found}
Succ(v)← Succ(v) ∪ {w}

end if
end if

end for
end for
Dijkstra(T ,R)

Algorithm 7: RECONNECTNODES: reconnects the disconnected working nodes inR
to the destination graphDGw

s .

Incremental Calculation of the Required Link Bandwidth r̂s′ Based on Recalcu-
lated Destination Graphs DGw

s
The iSPF limits the overhead to reroute paths that

are affected by a link or a node failure. In addition, the incremental update of the re-
quired link bandwidth can be limited to those nodes within a destination graph whose
ECMP paths have changed. We find them by identifying the indirect predecessor nodes
of a failed link or node within the base destination graphDGw

s . Algorithm 8 collects
all predecessor nodes of the nodev recursively and stores them in the setC. At the
beginning of the algorithm, the set of collected nodes is empty, i.e.C = ∅. If a nodev

fails, we collect COLLECTINDIRECTPREDECESSOR(v, C) and if a link l fails, we col-
lect COLLECTINDIRECTPREDECESSOR(α(l), C). Finally, the setC contains all nodes
that have a changed path layout inDGw

s′ compared toDGw
s . As a consequence, the in-

cremental update of the bandwidth vectorr̂s in Algorithm 4 can be limited to the nodes
in C.

Algorithms for Fast Resilience Analysis in IP Networks 9

Input: nodev, set of indirect predecessorsC
for all u ∈ Pred(v) do

if u /∈ C then
C ← C ∪ {u}
COLLECTINDIRECTPREDECESSORS(u,C)

end if
end for

Algorithm 8: COLLECTINDIRECTPREDECESSORS: collects in the setC all indirect
predecessor nodes of nodev.

2.4 Incremental Calculation Based on iSPF with Reduced Copy Overhead (R2)

We discuss some implementation issues regarding an efficient memory management
which finally leads to the improved version R2 with respect toR2Copy.

When the bandwidth requirements of many failure scenarios are computed, many
destination graphsDGw

s are sequentially constructed and evaluated. Deleting sucha
graph after its analysis and constructing a new, similar onerequires quite an effort for
memory allocation, which should be avoided if possible. Thenaive calculation in Sec-
tion 2.1 recomputes all graphs from scratch. Therefore, thesetsPred(v) andSucc(v)
of the old destination graphDGw

s may be emptied and the new destination graphDGw
s′

may be constructed reusing the nodes from the old destination graphDGw
s . The incre-

mental naive calculation in Section 2.2 recomputes all graphsDGw
s′ from scratch that

have changed with regard to a predecessor destination graphDGw
s . The overall analysis

traverses all failure scenarios of interestS recursively along a tree structure (cf. Fig-
ure 1). Thus, the destination graph for a specific destination w may change for each of
the failure scenarioss0 ⊂ s1 ⊂ ... ⊂ sn. Therefore, a complete set of nodes must be
available on each level of the tree to construct the destination graph.

The incremental calculation based on the iSPF algorithm in Section 2.4 requires not
only a new set of nodes but a copy of the destination graphDGw

s that serves as a base
for the construction of the destination graphDGw

s′ using iSPF. WhenDGw
s′ is not needed

anymore, only the setsPred(v) andSucc(v) of those nodes need to be reset that have
been changed relative to the one inDGw

s . This saves the entire deletion of the current
connectivity ofDGw

s′ and generating a new copy ofDGw
s .

3 Comparison of Experimental Computation Times
We implemented the above presented algorithms in Java1.5.0 06 and test the computa-
tion time experimentally on a standard PC Pentium M, 1.86 GHzwith 1 GB RAM and
WinXP Pro SP2. We use random topologies in our study for whichthe most important
network characteristics are the network size in terms of nodesn= |V| and linksm= |E|.
They define the average node degreeδavg = 2·m

n
that indicates the average number of

adjacent links of a node and is thereby an indirect measure for the network connectivity.
We use the topology generator from Section 4.4.2 in [13] to control the minimum and
the maximum node degreeδmin andδmax which are limited by the maximum deviation
δmax
dev of the node degrees from their average value. It generates connected networks and

avoids loops and parallels.

10 Michael Menth et al.

3.1 Comparison of Computation Times

We consider networks of different sizes with an average nodedegreedegavg ∈{3, 4, 5, 6}
and a maximum deviation from the average node degree ofdegmax

dev ∈ {1, 2, 3}. We ran-
domly generate 5 networks of each combination. Figures 2(a)and 2(b) show the time
for the computation of the ECMP routing and the link load for failures of single network
elements and for failures of up to two network elements, respectively. The computation
time is given in seconds for the naive method (R0) depending on the network size in
nodes. The x-axes of both figures have a different scale sincethe calculation of the
double failure scenarios is very time-consuming. We fit the experimental computation
time of R0 by a function of the formO(nk) and derivek from an approximation that
minimizes the sum of the squared deviations from the experimental results. In the sin-
gle failure case, the experimental computation time grows approximately likeO(n3.36)
(dashed line) with the number of nodesn in the network which results from aO(n2)
worst case runtime of the Dijkstra algorithm and anO(n) number of considered failure
scenarios (

(

n+m

0

)

+
(

n+m

1

)

). In the double failure case, we observe a growths of about
O(n5.44) which is due to a larger number of failure scenarios (

(

n+m

0

)

+
(

n+m

1

)

+
(

n+m

2

)

).
This is the practical runtime of the program for small network instances and all software
overhead while the theoretical runtime of the mere algorithm is bounded byO(n4).

The computation time for the incremental naive method is presented relative to
the one for R0. Surprisingly, the incremental naive method (R1) takes about the same
time as the naive method (R0). Data structures for the implementation of the function
Containsw

s (x) must be updated whenever the destination graphDGw
s is reconstructed

by R1. This makes the algorithm more complex. In addition, the destination graphs
contain often more than the minimum number ofn−1 links since equal-cost paths fre-
quently occur due to our hop metric assumption, and must be updated in more thann−1

m

of all cases. As a consequence, the savings of destination graph calculations of R1 are
too small to achieve a considerable speedup for its computation time compared to the
one of R0. This is different for the incremental calculationbased on iSPF (R2) which
requires only 10% of the computation time of R0. This holds only, if the data structures
are reused. If the data structures are copied (R2Copy), we still se significant savings of
up to 75%, but compared to (R2), the computation time takes four times longer in large
networks. The confidence intervals in both figures are based on a confidence level of
95% to guarantee that the results from our experiments are sufficiently accurate.

3.2 Sensitivity Analysis Regarding Network Connectivity

To underline the above observations, we conduct a sensitivity analysis of the compu-
tation time regarding the average node degreeδavg of the networks. Figures 3(a) and
3(b) show the relative computation time of R1 and R2 comparedto R0 separately for
networks with different node degrees. The curves for both R1and R2 show that net-
works with a large node degree likeδavg =6 lead to larger time savings than networks
with small node degrees likeδavg =3. Networks with a large average node degree have
more links than those with a small one, but their destinationgraphs contain approxi-
mately the same number of links since(n−1) links already form a spanning tree. As a
consequence, in networks with the same number of nodes but a larger number of links

Algorithms for Fast Resilience Analysis in IP Networks 11

 0

 20

 40

 60

 80

 100

 120

 140

 20 30 40 50 60 70 80 90 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
om

pu
ta

tio
n

tim
e

fo
r

R
0

(s
)

C
om

putation tim
e relative to R

0

Network size (nodes)

R0
R1/R0

R2Copy/R0
R2/R0

(a) Single link or node failures.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

C
om

pu
ta

tio
n

tim
e

fo
r

R
0

(s
)

C
om

putation tim
e relative to R

0

Network size (nodes)

R0
R1/R0

R2Copy/R0
R2/R0

(b) Single and double link or node failures.

Fig. 2. Comparison of the computation time of the naive calculation (R0), the incremental naive
calculation (R1), the incremental calculation based on iSPF with (R2) and without copy reduction
(R2Copy).

it is less likely that a destination graph is affected by a link failure. Thus, they offer an
increased savings potential for destination graph calculations. However, if the average
node degree and the network size are small, the optimizationmethod R1 can lead to
clearly increased computation time and becomes counterproductive. These findings are
very well visible if up to two network elements fail. For R2 weobserve basically the
same phenomenon, but its computation time is mostly limitedto 20% or less of the one
for R0. Hence, the proposed method R2 effectively reduces the computation time for
programs that analyze the network resilience.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 R

0

Network size (nodes)

R2

R1

degavg=3
degavg=4
degavg=5
degavg=6

(a) Single link or node failures.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 15 20 25 30

C
om

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 R

0

Network size (nodes)

R1

R2

degavg=3
degavg=4
degavg=5
degavg=6

(b) Single and double link or node failures.

Fig. 3. Comparison of the computation time of the incremental naive calculation (R1) and the
incremental calculation based on iSPF with copy reduction (R2) dependingon the node degree
of the networks.

12 Michael Menth et al.

4 Conclusion

In this work we have presented a simple and a complex optimized method to speed
up the calculation of the (re-)routing and the link load in a network for a large set
of different failure scenarios. The reference model for ourperformance comparison
is Dijkstra’s shortest path first algorithm (R0). The simplemethod (R1) just skips the
recalculation of a destination graph if it does not contain the failed network element.
However, this achieves hardly any speedup. The complex method (R2) is based on
an incremental shortest path first calculation and on a careful reuse strategy for data
structures. It reduces the computation time to 10% while without the reuse strategy,
the computation time is decreased to 25%. Hence, computer programs for the analysis
of the network resilience should implement the complex method with a careful reuse
strategy for data structures as it considerably accelerates the calculation of the routing
and the traffic distribution for a large set of failure cases.

References

1. Moy, J.: RFC2328: OSPF Version 2 (1998)
2. ISO: ISO 10589: Intermediate System to Intermediate System Routing Exchange Protocol

for Use in Conjunction with the Protocol for Providing the Connectionless-Mode Network
Service (1992)

3. Oran, D.: RFC1142: OSI IS-IS Intra-Domain Routing Protocol (1990)
4. Iannaccone, G., Chuah, C.N., Bhattacharyya, S., Diot, C.: Feasibility of IP Restoration in

a Tier-1 Backbone. IEEE Network Magazine (Special Issue on Protection, Restoration and
Disaster Recovery) (2004)

5. McQuilan, J.M., Richer, I., Rosen, E.C.: The New Routing Algorithmfor the ARPANET.
IEEE Transactions on Communications28 (1980)

6. Francois, P., Filsfils, C., Evans, J., Bonaventure, O.: AchievingSub-Second IGP Conver-
gence in Large IP Networks. ACM SIGCOMM Computer Communications Review 35
(2005) 35 – 44

7. Vasseur, J.P., Pickavet, M., Demeester, P.: Network Recovery. 1. edn. Morgan Kaufmann /
Elsevier (2004)

8. Narvaez, P.: Routing Reconfiguration in IP Networks. PhD thesis, Massachusetts Institut of
Technology (MIT) (2000)

9. El-Sayed, H., Ahmed, M., Jaseemuddin, M., Petriu, D.: A Framework for Performance Char-
acterization and Enhancement of the OSPF Routing Protocol. In: IASTEDInternational
Conference on Internet and Multimedia Systems and Applications (EuroIMSA), Grindel-
wald, Switzerland (2005)

10. Nelakuditi, S., Lee, S., Yu, Y., Zhang, Z.L.: Failure InsensitiveRouting for Ensuring Service
Availability. In: IEEE International Workshop on Quality of Service (IWQoS). (2003)

11. Buriol, L., Resende, M., Thorup, M.: Speeding up Dynamic Shortest Path Algorithms. Tech-
nical Report TD-5RJ8B, AT&T Labs Research (2003)

12. Disjkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathe-
matik 1 (1959) 269 – 271

13. Menth, M.: Efficient Admission Control and Routing in Resilient Communication Networks.
PhD thesis, University of Ẅurzburg, Faculty of Computer Science, Am Hubland (2004)

