(©2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

The definitive version of this paper has been published in 6th IEEE International Workshop on IP Operations and Management (IPOM), 2006, 10.1007\/11908852_3.

in other works.

Algorithmsfor Fast Resilience Analysisin | P Networks

Michael Menth, Jens Milbrandt, and Frank Lehrieder

Department of Distributed Systems, Institute of Computer Science
University of Wirzburg, Am Hubland, D-97074 Wzburg, Germany
Phone: (+49) 931-888 6644, Fax: (+49) 931-888 6632
{ment h, martin, | ehrieder }@ nformatik. uni -wier zburg. de

Abstract. When failures occur in IP networks, the traffic is rerouted over the
next shortest paths and potentially causes overload on the respedtaeTliis
leads to congestion on links and to end-to-end service degradationc@hdye
anticipated by evaluating the bandwidth requirements of the traffic on the links
after rerouting for a set of relevant failure scenao®s this set can be large in
practice, a fast evaluation of the bandwidth requirements is neededs kark,

we propose several optimized algorithms for that objective together witkxa
perimental assessment of their computation time. In particular, we taketde

of the incremental shortest path first (iISPF) algorithm to reduce the wiatign
time.

1 Introduction

In IP networks, traffic is forwarded according to the shdrpegh principle. The OSPF
or the IS-IS protocol [1, 2] signal the topology informatiby the use of link state
advertisements (LSA) through the network such that evederio the network knows
all working links with their associated cost metrics. Basedthis information, each
router can run the shortest path first (SPF) algorithm toutate the least cost paths
and to insert the information about the next hops towardgiasyination in the network
into its routing table. When a node or a link fails, this infation is disseminated by
the routing protocol to all nodes in the network and the dtigted routing tables are
recomputed. This is called rerouting and leads to the ratitor of traffic forwarding
when a failure occurs.

In case of single shortest path (SSP) routing, the routeutzks the well-defined
next hop for the shortest paths towards any destinatiore(gf.7.2.7 in [3]). In case of
equal-cost multipath (ECMP) routing, the router identifadisnext hops on the paths
with equal costs towards any destination and records thetieimouting table. As a
consequence, the traffic is forwarded almost evenly oveofalhese next hops. The
calculation of the shortest paths is quite time consumingesit scales withO(n -
log(n)) whenn is the number of nodes in the network. This has a significapaih
on the restoration time [4]. If a single link or a single rautbanges its cost, joins, or
disappears, only a small fraction of the shortest pathsgdmrThe incremental SPF
(iSPF) algorithm adjusts only those shortest paths thaaffeeted by the change. The
iISPF algorithm is known from the early days of the ARPANET lie seventies and

This work in cooperation with Infosim GmbH & Co.KG was funded by the &&n Ministry
of Economic Affairs. The authors alone are responsible for the coofehe paper.

2 Michael Menth et al.

has been published in [5]. It speeds up the time for the Higield computation of the
shortest paths substantially [6] and it has been implerdergeently in routers, e.g.,
Cisco Systems supports iSPF both for I1S-IS and for OSPF i7[8] the complexity

regarding comparisons of several iISPF algorithms has bempared experimentally
and analytically and another comparison regarding theémnof Dijkstra’s SPF and
the iSPF algorithm is provided in [9].

In this paper, we present and assess algorithms to cal¢biatmk utilization for a
set of relevant failure scenaridsin order to detect potential bottlenecks a priori. This
set is rather large even if it contains only all single andldewlement (link or node)
failures. Therefore, the applied algorithms must be fakeyTcalculate (a) the path
layout for all end-to-end traffic aggregates in differenlufi@ scenarios and based on
them (b) the required bandwidth of all links in the networkcbntrast to the distributed
routing algorithms above, our objective is the computatbrihe well-defined path
layout generated by the distributed calculation of the g information. This is
achieved by the use of destination graphs. To speed up theutation time, we take a
special order of the considered failure scenariaS to allow an incremental update of
the destination graphs and the required bandwidths. Weaalapt the iISPF algorithm
to that context to minimize the computation effort. In pautar, the iISPF is simplified
[10] since it needs to react only to link or node failures bot t© new links or nodes,
or to the change of their costs. We do not implement any opéitian for sorting heaps
in the algorithms that can further speed up the calculatldi. [Our results show that
our new algorithm is significantly faster than a straightfard naive implementation.
Therefore, we recommend their implementation in tools far & priori detection of
overload due to network failures.

The paper is structured as follows. Section 2 presentsaewgtimized algorithms
to calculated the bandwidth requirements due to trafficutimg. Section 3 describes
our experimental comparisons of the computation time cfetagorithms. In Section 4
we summarize our work and draw our conclusions.

2 Fast Calculation of Resource Requirementsin Failure Cases

We represent the network as a grapk= (1, £) with V being the set of nodes arid
being the set of edges. A failure scenaris characterized by the sets of its failed nodes
V(s) and links&(s) such that the remaining topology is given 8ys) = (V(s), £(s))
with V(s) = V\V(s) and&(s) = £\E(s). The destination grap®G® is a directed
acyclic graph (DAG) that contains all least cost pathg (g) from any source € V(s)

to the destinationv. To calculate the resource requirements in a special éatase

s, we calculate first the destination grapghg’,’ for all possible destinations € V(s)

and derive then the vectdg eRﬁ{'g' of the required bandwidth on all links depending
on the choice of single shortest path (SSP) or equal-cogipatihi (ECMP) routing.
Vectors are printed bold, i.60,is the zero-vector.

To construct the destination grap®s7;’, we present four different methods with
increasing optimization degree.

(RO)The simplest one uses Dijkstra’s algorithm [12] and redatest entirely.

Algorithms for Fast Resilience Analysis in IP Networks 3

(R1)If the destination graph®g? for a failure scenariz C s’ exist, most of the
destination graph®g? are equal tdGY and do not need to be computed anew.
In this case, the bandwidth vectty can be updated incrementally.

(R2Copy)If a destination grap®G?, changes relatively t®G.’ due to an additionally failed
element,DGY may be computed based on a copyR§? using the iSPF algo-
rithm. In this case, the incremental update of the bandwidttorf is even more
efficient.

(R2)Copying the full destination grapRG’’ may take a long time, therefore, we work
with a single copy ofDGY that is reset for another use if it is not needed anymore
after its modification ta>gG?;.

2.1 Naive Calculation (RO)

The naive method (RO) calculates the path layout using Dglssalgorithm whenever
it is needed and computes the bandwidth vector for each soer®aS from scratch.

Basic Path Calculation Based on Dijkstra’s Algorithm Algorithm 1 calculates the
destination grap®G?’ for a specific destination nodeby assigning the appropriate set
of predecessor nod€3red? (v) and successor nodésicc? (v) to each node € V(s).

The remaining listR contains all nodes without any successors and the tentative
list 7 contains all nodes that can still become successor nodegHer nodes and for
which shorter paths towards the destination can be poskiblyd. The functioni(v)
indicates the distance from any nodéo the destination.

The distance from the nodewith the shortest distance to the destinatioamong
all nodes on the tentative li§t cannot be further diminished. Therefore, its set of suc-
cessors is fixed and can be removed from the tentative |5t Prior to that, the al-
gorithm checks whether can be used to find shorter paths to one of its predecessor
nodes. This is done by looking at all linkswhose destination routes(l) is v. The
source router of such a lirlks denoted byy(7) which is a predecessor nodewtvithin
the graph. If a shorter path can be foundwjighe set of successafsicc(a(1)) is substi-
tuted. If routing viav provides an equal-cost pathis just added to the sétucc(a(l)).

At last the nodev is registered as a predecessor node for all its succesdussinF
formation is required to implement the incremental aldontefficiently. The shortest
paths towards the destinatianare constructed by callingijkstra({w}, V(s) \ {w}
with the initializationd(w) =0 andd(v) = oo for v #w.

Basic Calculation of the Required Bandwidth We calculate now the required band-
width of all links in a special failure scenaridbased on the destination gragh§;

v,w € V. The required link bandwidths can be represented by a végt@rIRio”gl
whereby each of its entridg (/) relates to link.

The rate of the aggregates from a sousde another destinatiow is given by the
entryR (v, w) of the traffic matrixR. This rate together with the path of the aggregate
that can be derived from the destination grdp#i.’ induce the aggregate-specific rate

vectorry'W € (R{) €1, Equal-cost multipath (ECMP) routing uses all suitablépan

4 Michael Menth et al.

Input: tentative list7, remaining listR
while7 # () do
v=argmingct(d(u))
for all {I: w(l) =wv}do
if d(a(l)) > d(v) + cost(l) then
{a shorter path is found far (1)}
d(a(l)) « d(v) + cost(l)
Succ(a(l)) «— {v}
end if
if d(a(l)) = d(v) + cost(l) then
{an equal-cost path is found fes(l) }
Succ(a(l)) «— Succ(a(l)) U {v}
end if
if a(l) € Rthen {move visited node t@ }
R—R\{a(D},\ T —« T U{a()}
end if
end for
T «— T \ {v} {shortest path fixed far}
for all u € Succ(v) do
Pred(u) < Pred(u) U {v}
end for
end while

Algorithm 1: DIJKSTRA: calculates a unidirectional destination grapé;’ with links
towards the destination.

the destination grap®gG.’ to forward the traffic, and the traffic is distributed equally
over all outgoing interfaces to the destinationWith single shortest path (SSP) rout-
ing, the traffic is only forwarded towards the next hop witlke thwest ID within all
equal-cost paths towards the destinationThis is one choice according to 7.2.7 in
[3]. Algorithm 2 and Algorithm 3 calculate the aggregatedfic rate vectory-" for
ECMP and SSP. This vector is first initialized by = 0 before the algorithms are
called by RRTEVECTORX (YW, v, w, R(v,w)) with X € {ECMP,SSP}. In case
of ECMP, Algorithm 2 distributes the rateat the nodev over the links towards the
successorsucc? (v) within the destination grapG? . In case of SSP, Algorithm 3
distributes the traffic from any nodeover the single link towards its successor node
with the lowest node ID in the destination grapl’’. If a nodev has failed, the desti-
nation graphiDG? does not exist and no other destination grajgft containsv. Thus,
the aggregate-specific rate vectefs’ =0 andrY-* =0 are zero.

The vector of the required link bandwidith is computed as the sum of all aggregate-
specific rate vectors

D DR (1)

Algorithms for Fast Resilience Analysis in IP Networks 5

Input: destination grap®G? , rate vectotr, nodev, destinationw, ratec

¢ [Saewm
for all u € Succy (v) do

r(l(v,u)) < r(l(v,u)) +

if u# wthen

RateVectorECMP(DGY ,r,u,w,c)

end if

end for

Algorithm 2: RATEVECTORECMP: calculates the aggregate-specific rate vacihor
duced by a flow fromv to w with ratec for ECMP routing.

Input: destination grap®gG? , rate vectorr, nodev, destinationw, ratec
U — argmin, esuee vy (ID(W'))
r(l(v,u)) — r(l(v,u)) + ¢
if u # wthen
RateVectorSSP(DGY v, u,w,c)
end if

Algorithm 3: RATEVECTORSSP: calculates the aggregate-specific rate vactor
duced by a flow fromv to w with ratec for ECMP routing.

2.2 Incremental Naive Calculation (R1)

The incremental naive method takes advantage of the fetctithaet of protected fail-
ure scenarioss contains many similar failure scenarigsbeing a superset of others
(sCs'). It saves computation time for the failure-specific destomegraphsDG?Y and
allows an incremental calculation of the bandwidth veétor

Selective Path Calculation Using Dijkstra’'s Algorithm If two failure scenarios and
s’ are similar, most of their destination grapR§?y andDG?, do not differ. In partic-
ular, if s is a subset o¥’ (s C s), DG, only differs fromDGY if DGY contains an
element of the set differencé; =5’ \ s. Thus, we construct a functidfiontains? ()
whenever we build a new destination graPy’. In addition, we arrange all failure
scenarios € S hierarchically in such a way that we can take advantage afah&ains-
relationships. An example for such an order is given in FagurAs a result, ifs C s’)
holds, the destination grappG?, can be overtaken frorPGY unlessContains® (x)
evaluates tarue for anyz € A;.

Incremental Calculation of the Required Link Bandwidth 5, Based on Recalcu-
lated Destination Graphs DG’ If the path of the aggregate is the same in the failure
scenarios ands’, ry"" can be used instead of;™ for the calculation of the required
bandwidth vector in Equation (1). The path is the sameciintains only a subset of the
failures ins’ and if all links and nodes i®G.; are working inDG,, too. Algorithm 4
calculates the vector of the required link bandwidths fdufa scenaria’ based on the
one fors. It uses the functioContains? (x) to find all aggregates whose destination

6 Michael Menth et al.

/ jZ \ Level 0

.

o} - {l.o {4} Level 1

{,, |1}/ (S S (R Level 2

Fig. 1. The failure scenariogs< S are organized in a tree structure such that each failure scenario
is a child of one of its subsets.

graphDG? has changed with respectfg?, calculates for these aggregates the new
aggregate-specific rate vecif ™, and updates the vector for required link bandwidth
¢ incrementally.

Input: required bandwidth vectdy, failure scenarios ands’
f‘sl <—f‘5,AS <—S/\S
for all weV do
equal «— true
for all x€ A, do
if Containsy (x) then
equal «— false
end if
end for
if equal #true then
for allveV do
r;"=0
RATEVECTORX(DGY, r)™, v, w, R(v, w))
Ty — Ty —I‘;”w-i-l‘:/w
end for
end if
end for
Output: required bandwidth vectdt,

Algorithm 4: INCREMENTALREQUIREDBANDWIDTH: calculates the required band-
width vectorts, based orfs incrementally.

2.3 Incremental Calculation Based on iSPF (R2Copy)

The incremental method based on iISPF has two advantagesseatp the incremental
naive calculation: it requires less effort to construct & mequired destination graph
DGY and updates the bandwidth veciarby only those aggregates whose path has
changed effectively.

Algorithms for Fast Resilience Analysis in IP Networks 7

Selective Path Calculation Using iSPF When a link! or nodev within a destina-
tion graphDG?Y fails, the new destination grafipdGy, must be constructed anew. The
iISPF achieves that in an efficient way by copying the exissimgilar destination graph
DGY and modifying it instead of computing it entirely from safat The paths from all
nodesv that reach the destination nodeonly via a failed link or node irDG;’ have
then lost connection and must be rerouted. In addition,alkes that contain the failed
network element in their path need to recompute their ratéovefterwards using the
algorithms in Section 2.1.

The recursive Algorithm 5 removes from the destination br&g." all network
elements that have lost connection due to the failure ofl/lenkd adds the disconnected
nodes to the seR. The|.|-operator denotes the cardinality of a set &qd v) is the
link from nodew to nodev.

Input: failed link I, set of disconnected network elemefts

Pred(w(l)) < Pred(w(l)) \ {a()}
Succ(a(l)) «— Succ(a(l)) \ {w(l)}
if [Succ(v)| = 0then {v disconnecte}l

d(v) « 00, R «— R U{v}

for all uw € Pred(v) do

RemoveLink(l(u,v), R)

end for

end if

Algorithm 5: REMOVELINK: removes from the destination gra@hg?y all network
elements that have lost connection due to the failure ofilink

Algorithm 6 removes a node from the destination graph by disconnecting it ex-
plicitly from all its successor nodes and by disconnectimgplicitly from all its prede-
cessor nodes by callingeMoVEL INK (I, R) for all links leading tov. The failed node
v is not added to the set of disconnected nodes since it shotilterreconnected to the
graph. Thus, its path contains then no elements.

Input: failed nodev, set of disconnected network elemefts
R —RU{v},C+—CU{v}
d(v) «— oo
for all u € Succ(v) do
Pred(u) < Pred(u) \ {v}, Succ(v) < Succ(v) \ {u}
end for
for all u € Pred(v) do
RemoveLink(l(u,v), R)
end for

Algorithm 6: REMOVENODE: removes from the destination graffg?’ all network
elements that have lost connection due to the failure of mode

8 Michael Menth et al.

Algorithm 7 reconnects the disconnected working nodeR ihy first connecting
them to the connected structure of the remaining destimgiaphDG?’ and moving
then the freshly connected nodes to the tentativeZlisFinally, DIJKSTRA(T, R) is
called and completes the destination graph, .

Input: set of disconnected working nod&s
for all v € R do
for all {I: «(l) = v} do
if dlw(l)) < cothen {w(l) has a path taw}
if d(w(l)) + cost(l) < d(v) then
{a shorter path from to w is found}
if d(v) = oo then
{movev from remaining to tentative lit
R—R\{v}h, T —TU{v}
end if
d(v) — d(w(l)) + cost(l), Succ(v) — {w}
dseif d(w(l)) + cost(l) = d(v) then
{an equal-cost path teis found}
Suce(v) — Suce(v) U {w}
end if
end if
end for
end for
Dijkstra(T,R)

Algorithm 7: RECONNECTNODES. reconnects the disconnected working node®in
to the destination grapRgG? .

Incremental Calculation of the Required Link Bandwidth 5, Based on Recalcu-
lated Destination Graphs DGY The iSPF limits the overhead to reroute paths that
are affected by a link or a node failure. In addition, the @msental update of the re-
quired link bandwidth can be limited to those nodes withireatihation graph whose
ECMP paths have changed. We find them by identifying the éatlipredecessor nodes
of a failed link or node within the base destination grdap&.’. Algorithm 8 collects
all predecessor nodes of the nodeecursively and stores them in the getAt the
beginning of the algorithm, the set of collected nodes istgne. C = (. If a nodev
fails, we collect @LLECTINDIRECTPREDECESSORv, C) and if a link! fails, we col-
lect COLLECTINDIRECTPREDECESSOR«(!),C). Finally, the seC contains all nodes
that have a changed path layouttg;, compared tdG;’. As a consequence, the in-
cremental update of the bandwidth vedtgiin Algorithm 4 can be limited to the nodes
inC.

Algorithms for Fast Resilience Analysis in IP Networks 9

Input: nodew, set of indirect predecessals
for all uw € Pred(v) do
if u ¢ Cthen
C — CU{u}
COLLECTINDIRECTPREDECESSORSy,C)
end if
end for

Algorithm 8: COLLECTINDIRECTPREDECESSORScollects in the se€ all indirect
predecessor nodes of node

2.4 Incremental Calculation Based on iSPF with Reduced Copy Overhead (R2)

We discuss some implementation issues regarding an efficiemory management
which finally leads to the improved version R2 with respedR&Lopy.

When the bandwidth requirements of many failure scenariesamputed, many
destination graph®g? are sequentially constructed and evaluated. Deleting auch
graph after its analysis and constructing a new, similarreqeires quite an effort for
memory allocation, which should be avoided if possible. fh&e calculation in Sec-
tion 2.1 recomputes all graphs from scratch. ThereforesétgPred(v) and Succ(v)
of the old destination grapPPGy may be emptied and the new destination gragt’
may be constructed reusing the nodes from the old destimgtaphDG?’. The incre-
mental naive calculation in Section 2.2 recomputes all lyggdpG ;. from scratch that
have changed with regard to a predecessor destination r@fihThe overall analysis
traverses all failure scenarios of interéstecursively along a tree structure (cf. Fig-
ure 1). Thus, the destination graph for a specific destinationay change for each of
the failure scenariosy C s; C ... C s,. Therefore, a complete set of nodes must be
available on each level of the tree to construct the degtimgraph.

The incremental calculation based on the iSPF algorithne@ti®n 2.4 requires not
only a new set of nodes but a copy of the destination gfagl that serves as a base
for the construction of the destination graPy’) using iISPF. Whe®G?’ is not needed
anymore, only the setBred(v) andSucc(v) of those nodes need to be reset that have
been changed relative to the oneldgy. This saves the entire deletion of the current
connectivity ofDG?, and generating a new copy DG

3 Comparison of Experimental Computation Times

We implemented the above presented algorithms in 0806 and test the computa-
tion time experimentally on a standard PC Pentium M, 1.86 @itz 1 GB RAM and
WinXP Pro SP2. We use random topologies in our study for wthiehmost important
network characteristics are the network size in terms oésaé-= |V| and linksm = |£].
They define the average node degfgg, = 27—:” that indicates the average number of
adjacent links of a node and is thereby an indirect measutbdametwork connectivity.
We use the topology generator from Section 4.4.2 in [13] tutrob the minimum and
the maximum node degreéeg,;,, andd,, ... which are limited by the maximum deviation
omer of the node degrees from their average value. It generatesected networks and

dev

avoids loops and parallels.

10 Michael Menth et al.

3.1 Comparison of Computation Times

We consider networks of different sizes with an average dedeeeleg,., € {3, 4, 5,6}
and a maximum deviation from the average node degréegdt’” < {1, 2, 3}. We ran-
domly generate 5 networks of each combination. Figuresa&t{d)2(b) show the time
for the computation of the ECMP routing and the link load fihfres of single network
elements and for failures of up to two network elements,eetygely. The computation
time is given in seconds for the naive method (R0O) dependimthe network size in
nodes. The x-axes of both figures have a different scale sireealculation of the
double failure scenarios is very time-consuming. We fit tkgeeimental computation
time of RO by a function of the forn®(n*) and derivek from an approximation that
minimizes the sum of the squared deviations from the expariad results. In the sin-
gle failure case, the experimental computation time grqugs@imately likeO (n3-3)
(dashed line) with the number of nodesn the network which results from @(n?)
worst case runtime of the Dijkstra algorithm and@n) number of considered failure
scenarios ((’”5’”) +(™™)). In the double failure case, we observe a growths of about
O(n®**) which is due to a larger number of failure scenari@s(™)+("*™)+("4™)).
This is the practical runtime of the program for small netwiostances and all software
overhead while the theoretical runtime of the mere algorith bounded by (n*).

The computation time for the incremental naive method is¢meed relative to
the one for RO. Surprisingly, the incremental naive mett®t) takes about the same
time as the naive method (RO). Data structures for the impigation of the function
Contains? (x) must be updated whenever the destination g@glf is reconstructed
by R1. This makes the algorithm more complex. In additioe, destination graphs
contain often more than the minimum numbemof 1 links since equal-cost paths fre-
guently occur due to our hop metric assumption, and must Batad in more thaﬁ;l—l
of all cases. As a consequence, the savings of destinataph gralculations of R1 are
too small to achieve a considerable speedup for its comipaottime compared to the
one of RO. This is different for the incremental calculatlmsed on iISPF (R2) which
requires only 10% of the computation time of RO. This holdy,ahthe data structures
are reused. If the data structures are copied (R2Copy),illvesssignificant savings of
up to 75%, but compared to (R2), the computation time takasstimes longer in large
networks. The confidence intervals in both figures are basea e@onfidence level of
95% to guarantee that the results from our experiments &ieisntly accurate.

3.2 Sensitivity Analysis Regarding Network Connectivity

To underline the above observations, we conduct a semgitivialysis of the compu-
tation time regarding the average node degigg of the networks. Figures 3(a) and
3(b) show the relative computation time of R1 and R2 comp&vdR0 separately for
networks with different node degrees. The curves for botraRd R2 show that net-
works with a large node degree likg,, =6 lead to larger time savings than networks
with small node degrees likg,,, = 3. Networks with a large average node degree have
more links than those with a small one, but their destinagjcaphs contain approxi-
mately the same number of links singe—1) links already form a spanning tree. As a
consequence, in networks with the same number of nodes buger Inumber of links

Algorithms for Fast Resilience Analysis in IP Networks

140

RO

00 |
80 |
60 |

4075 ¢

Computation time for RO (s)

20 +

.o R1/RQ ~—=--1
120+ | R2Copy/RO +
L _ R2/RO -

o wa]

20 30 40 50 60 70 80
Network size (nodes)

90

9 0.8

1 06

1 04

1 0.2

0

100

(a) Single link or node failures.

Fig. 2. Comparison of the computation time of the naive calculation (R0), the irem&hnaive
calculation (R1), the incremental calculation based on iSPF with (R2) andutitiopy reduction

(R2Copy).

0¥ 01 8AIR[aI awn uonendwo)

200

RO
180 + ~ R1/RQ +-#--1
i R2Copy/RO +

R2/RO +

down

160 &
140

120 - /1 o8

100

o 106
60 |- 104

40 -

Computation time for RO (s)

102

0¥ 01 8AIR[aI awn uonendwo)

20

10 15 20 25 30
Network size (nodes)

(b) Single and double link or node failures.

11

it is less likely that a destination graph is affected by & Failure. Thus, they offer an
increased savings potential for destination graph caicuns. However, if the average
node degree and the network size are small, the optimizatiethod R1 can lead to
clearly increased computation time and becomes countduptive. These findings are
very well visible if up to two network elements fail. For R2 wbserve basically the
same phenomenon, but its computation time is mostly linte2D% or less of the one
for RO. Hence, the proposed method R2 effectively reducesdmputation time for
programs that analyze the network resilience.

0.6

04

Computation time relative to RO

’ deg?%=5 o
R1 degayo=6 o
. |

20 30 40 50 60 70
Network size (nodes)

80

90

(a) Single link or node failures.

100

Computation time relative to RO

10 1‘5 2‘0 2‘5 30
Network size (nodes)
(b) Single and double link or node failures.

Fig. 3. Comparison of the computation time of the incremental naive calculatioh dRd the
incremental calculation based on iSPF with copy reduction (R2) dependitige node degree

of the networks.

12 Michael Menth et al.

4 Conclusion

In this work we have presented a simple and a complex optanizethod to speed
up the calculation of the (re-)routing and the link load inetwork for a large set
of different failure scenarios. The reference model for performance comparison
is Dijkstra’s shortest path first algorithm (R0). The simpiethod (R1) just skips the
recalculation of a destination graph if it does not contaia failed network element.
However, this achieves hardly any speedup. The complexadefR2) is based on
an incremental shortest path first calculation and on a ghrefise strategy for data
structures. It reduces the computation time to 10% whildeut the reuse strategy,
the computation time is decreased to 25%. Hence, compuigrams for the analysis
of the network resilience should implement the complex metith a careful reuse
strategy for data structures as it considerably accekethtecalculation of the routing
and the traffic distribution for a large set of failure cases.

References

Iy

. Moy, J.: RFC2328: OSPF Version 2 (1998)

ISO: 1SO 10589: Intermediate System to Intermediate System RouticitaBge Protocol
for Use in Conjunction with the Protocol for Providing the Connectionlessi®INetwork
Service (1992)

3. Oran, D.: RFC1142: OSI IS-IS Intra-Domain Routing ProtocoB()9

4. lannaccone, G., Chuah, C.N., Bhattacharyya, S., Diot, C.silsiéty of IP Restoration in
a Tier-1 Backbone. IEEE Network Magazine (Special Issue on Riotedrestoration and
Disaster Recovery) (2004)

5. McQuilan, J.M., Richer, I., Rosen, E.C.: The New Routing Algorittemthe ARPANET.
IEEE Transactions on Communicatia2&(1980)

6. Francois, P., Filsfils, C., Evans, J., Bonaventure, O.: Achie8inlg-Second IGP Conver-
gence in Large IP Networks. ACM SIGCOMM Computer Communicationgid®e 35
(2005) 35 -44

7. Vasseur, J.P., Pickavet, M., Demeester, P.: Network Recoleegin. Morgan Kaufmann /
Elsevier (2004)

8. Narvaez, P.: Routing Reconfiguration in IP Networks. PhD thesisshtahusetts Institut of
Technology (MIT) (2000)

9. El-Sayed, H., Ahmed, M., Jaseemuddin, M., Petriu, D.: A Fraonkfor Performance Char-
acterization and Enhancement of the OSPF Routing Protocol. In: IAShEDnational
Conference on Internet and Multimedia Systems and Applications (B®A), Grindel-
wald, Switzerland (2005)

10. Nelakuditi, S., Lee, S., Yu, Y., Zhang, Z.L.: Failure InsensiRaiting for Ensuring Service
Availability. In: IEEE International Workshop on Quality of Service (IW&o (2003)

11. Buriol, L., Resende, M., Thorup, M.: Speeding up Dynamic &svPath Algorithms. Tech-
nical Report TD-5RJ8B, AT&T Labs Research (2003)

12. Disjkstra, E.W.: A Note on Two Problems in Connexion with GraphsmBlische Mathe-
matik 1 (1959) 269 — 271

13. Menth, M.: Efficient Admission Control and Routing in Resilient Comination Networks.

PhD thesis, University of \Wzburg, Faculty of Computer Science, Am Hubland (2004)

n

