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Abstract 
Recent research efforts have shown that peer-to-

peer (p2p) mechanisms incorporate a potential that 

goes well beyond simple file sharing. Compared to the 

classic client-server architecture, these systems do not 

suffer from a single point of failure. 

However, there is still the danger that an adversary 

is able to attack a specific subpart of the system. This 

is especially true for structured p2p networks like 

Chord. A well targeted attack could cause disruptions 

in its global ring structure and result in severe perform-

ance degradations, loss of resources or major malfunc-

tions. 

In this paper we introduce a self-protecting ap-

proach to prevent such disruptions before they actually 

happen. However, since it is practically impossible to 

avoid all failures and attacks, we also present self-

repairing algorithms, which are able to automatically 

detect disruptions and initiate appropriate countermea-

sures to reestablish the structure of the overlay. 

1. Introduction 

As the Internet is growing, the drawbacks of the 

classic client server architecture become an increasing 

problem. Current developments in distributed systems 

prove that the p2p paradigm has the potential to over-

come such drawbacks. In contrast to the client server 

relationship, the inherent structure of p2p networks 

naturally resembles the connections between commu-

nicating groups. They are highly scalable since new 

users automatically add new resources to the system. 

Most importantly, they do not suffer from a single 

point of failure. 

In this context, structured p2p networks are particu-

larly appealing to companies in order to enable new 

business applications. Due to the well defined structure 

of the overlay, those systems are able to offer search 

guarantees as well as a limited search time delay [1]. 

However, the functionality of a deployed system heav-

ily depends on the maintenance of its structure. A dis-

ruption of the overlay structure can cause anything 

from a degraded performance or a limited functionality 

up to the point of a total collapse of the system. 

Most structured p2p networks are based on distrib-

uted hash tables (DHT). DHTs store <key, value> pairs 

among participants in a decentralized distributed sys-

tem. The pairs can be looked up efficiently by routing 

the query request to the pair’s owner. Additionally, 

DHTs are designed to be highly scalable and fault-

tolerant. 

The ring structure of the most researched structured 

p2p system Chord [2] is especially vulnerable to at-

tacks since each disruption of the overlay can cause a 

disconnection of the overlay ring. In the worst case the 

network is split into two separate rings, which are not 

aware of each other. Such disconnections cannot only 

be caused by malicious attackers but also by churn, i.e. 

by the frequency at which new users join and leave the 

system. There are different proposals of how to handle 

churn in a structured p2p network [3], however, it is 

impossible to entirely avoid failures in the system. 

To increase the stability of Chord-based p2p sys-

tems, we present a novel self-protecting approach 

which is able to detect possible problems at an early 

stage and to react accordingly. However, while it is 

certainly important to try to prevent attacks and fail-

ures, one cannot entirely avoid them. As experience 

shows, distributed systems will encounter failures and 
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one should design for it. Therefore we additionally aim 

at the recovery from failures rather than at failure-

avoidance alone. Our self-repairing algorithms are able 

to automatically detect disruptions and security prob-

lems and will initiate redundant countermeasures to 

reestablish the structure of the overlay. 

 

The remainder of this paper is structured as fol-

lows. We summarize related work in Section 2. Section 

3 gives a brief overview of Chord with a focus on as-

pects relevant to this paper. Section 4 identifies some 

security issues of the Chord protocol. In Section 5 we 

show how to recover from disruptions in the overlay 

structure and describe an approach of how to try to 

avoid them in Section 6. Section 7 finally concludes 

the paper. 

2. Related Work 

There are different kinds of security concerns in 

DHT-based p2p networks. Most research so far con-

centrates on misbehaving nodes that do not implement 

the protocol correctly or which simply cannot be 

trusted. [4] gives a good overview of security problems 

which are inherent to large p2p systems. The focus is 

on adversary peers which mislead legitimate nodes by 

providing them with false information. The authors 

concentrate on attacks against the routing and against 

the data storage system. 

[5] also studies attacks aimed at preventing correct 

message delivery in structured peer-to-peer overlays 

and presents defenses to these attacks. A secure routing 

algorithm is proposed which allows tolerating up to 

25% malicious nodes while providing good perform-

ance when the fraction of compromised nodes is small. 
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Figure 1: Successors of peer z 

 

Several security threats like the well known Sybil 

attack [6] are addressed in [7]. Its main focus is on a 

quantitative analysis of routing anomalies that can be 

caused by malicious nodes returning incorrect lookup 

routes. Finally [8] studies what kind of information an 

adversarial node can learn about another node in the 

same network through the simple observation of net-

work traffic. 

In contrast to the above, the main contribution of 

our work is to prevent malicious nodes from destroying 

the structure of the overlay network and to develop 

self-repairing mechanisms to recover the structure in 

case of a disruption. 

3. A brief introduction to Chord 

This section gives a brief overview of Chord with a 

focus on aspects relevant to this paper. A more detailed 

description can be found in [2]. 

In general, a DHT assigns each peer in the overlay 

an m-bit identifier using a hash function such as 

SHA-1. Chord builds a ring topology (clockwise 

marked with numbers from 0 to 2
m
), where the position 

of a peer on this ring is determined by a peers m-bit 

identifier. If the ring structure is lost, the functionality 

of the Chord algorithm can no longer be guaranteed. 

Therefore a peer stores information about its 

r immediate successors on the ring. Figure 1 shows the 

successor list for a peer z and r = 3 successors. It con-

sists of s1, s2, and s3, the three immediate successors 

of peer z. If the immediate successor s1 of peer z goes 

offline, peer z can still contact the next closest peer s2 

of its successor list. As stated in [2],  in an N-node 

system, )(log2 Nr =  peers are sufficient to ensure that 

each peer knows the id of its closest living successor.  

The hash function also assigns keys to data (re-

sources or keywords). According to Chord, a key k is 

assigned to the first node whose identifier is equal to or 

follows (the identifier of) k in the identifier space. This 

node is called the successor of key k. 

A peer could look up another peer or key by pass-

ing the query around the circle using its successor 

pointers. To accelerate searches each peer also main-

tains pointers to other peers, which are used as short-

cuts through the ring. Those pointers are called fingers, 

whereby the i-th finger in a peers finger table contains 

the identity of the first peer that succeeds the nodes 

own id by at least 2
i−1

 on the Chord ring. That is, peer z 

with hash value idz has its fingers pointing to the first 

peers that succeed miid
i

z     to1for    2 1
=+

− , where 

2
m
 is the size of the identifier space. 
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Figure 2: Fingers of peer z 

 

Figure 2 shows fingers f1 to f4 for peer z. Using 

these finger pointers, a lookup requires only about 

)(log2 NO  hops. Searches return a correct answer as 

long as each node knows its correct successor. Fingers 

are only used to speed up lookups. A detailed mathe-

matical analysis of the search delay in Chord rings can 

be found in [1]. 

4. Security Concerns (and Detection) 

Loss of all successors 

Erroneous successors can lead to erroneous look-

ups. In the worst case, they can even cause disruptions 

in the overlay topology. Chords ring structure can 

encounter two different kinds of serious damage. First, 

if a peer loses all of its successors, the ring will break 

open. Second, the ring structure may be split into two 

halves or two separate sub rings. 

In this section we discuss different offensive sce-

narios that result in such overlay disruptions. In par-

ticular, we identify different threats and their impacts. 

Due to churn or a well directed denial of service 

(DoS) attack on at least r successive nodes on the 

Chord ring, peer z, that precedes the affected part of 

the ring, will no longer be able to contact any of its 

successors. In fact, it can be shown, that the probability 

to lose all successors due to churn is not negligible [9]. 

After sending several ping messages to these offline or 

attacked nodes, a timer expires and the nodes are re-

moved from z’s successor list.  Consequently, the ring 

structure breaks open as depicted in Figure 3 (r = 3). A 

peer can easily detect such a break in the ring as soon 

as it discovers its list of successors to be empty. 

peer z
s1

s2

s3
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Figure 3: Concurrent failure of p’s successors 

 

As Chord lookups are only performed clockwise, 

the peer is not able to search for its new successor. 

Therefore performing a rejoin if a peer looses all of its 

successors is no feasible solution to this kind of disrup-

tion. 

The consequence of a loss of all successors is a 

transient routing state. That is, some nodes might no 

longer be reachable, while others might not be able to 

forward search queries correctly. 

 

Partitioning of the overlay 
Another threat to the network is a partitioning of 

the overlay structure, i.e. the ring breaks into two or 

more separate overlays [2]. This scenario is likely to 

occur if gateways between physically separated net-

works fail. Chords stabilization mechanism updates all 

erroneous successor pointers. After a certain mean time 

to repair two or more consistent sub rings emerge. 

Lookups can still be performed correctly in all new 

Chord rings, but due to the partitioning, not all data 

stored in the original overlay will still be available in 

all sub parts. A company running a global DHT appli-

cation, for example, will no longer be able to access all 

data stored in the DHT, if one plants access point fails. 

Running a DoS attack on nodes that have a critical 

location in the physical network is sufficient to damage 

the whole network. 

In mobile ad-hoc networks (MANETs), network 

splits are even a common issue. The overlay is likely to 

be partitioned due to frequent and fast node movement, 

node failures and MANETs that are out of each others 

range. Successive splits without any countermeasures 

finally result in many sparely populated subnets. 

 

 



There exist mechanisms (c.f. Section 6) that reduce 

the risk of a ring split, but are not able to avoid them 

entirely. Moreover, the above examples clearly indi-

cate that the overlay protocol must be able to recover 

from a partitioned network. Therefore, we introduce 

some efficient mechanisms that are able to detect and 

merge sub rings in Section 5. 

5. Recovery 

Recovery from a partitioning of the overlay 

If an overlay is split into several partitions, but the 

nodes are still connected in the physical network, it is 

likely that there are still fingers in each partition that 

point to nodes in other parts of the network. Lookups 

will pass through different sub rings and in the end 

return an erroneous result. Nodes can use their finger 

entries and information gathered during lookups to 

learn about nodes in other partitions. By inserting all 

other appropriate nodes into their own successor list, 

the separate rings will merge automatically. 

However, in scenarios where no physical connec-

tions between separate sub rings exist, as pictured in 

the previous section,  the partitions cannot be merged. 

Fingers pointing to nodes in other parts cannot be con-

tacted and the algorithm that updates the node’s fingers 

removes these entries after a while. If the physical 

connection between two rings is re-established, nodes 

will not learn about the other ring by themselves. 

A simple approach is to run a periodic rejoin at 

every node. In doing so, each node starts a lookup for 

its direct successor via the bootstrap service. It makes 

no difference if the bootstrap mechanism is a local or 

remote cache of available nodes or a single server. The 

proceeding is the same as with a node that joins the 

network. If the bootstrap service by chance returns a 

node from another partition, this information can be 

used to merge both rings. In our simulation environ-

ment we observed that two rings merge within a few 

minutes if at least one node learns about any node in 

the other ring. The main drawback of this approach is 

that each node periodically has to perform a rejoin 

operation and therefore stresses the bootstrap service. 

The shorter the rejoin period, the faster two different 

rings can be detected, but the more the bootstrap 

mechanism is stressed. Therefore, this algorithm will 

not scale for huge overlay networks. 

In a more efficient variant of this mechanism only 

one well-defined peer in each ring, e.g. the peer with 

the smallest ID sends a periodic message to the boot-

strap server. A peer assumes it is the responsible peer if 

its predecessor has a higher ID than the node itself. The 

bootstrap server notices separate rings as soon as it 

receives messages from different peers. By informing 

all involved peers, a merging process can be started. As 

only one peer per ring sends periodic messages this 

variant is highly scalable. Also, the frequency of per-

forming this algorithm can be increased significantly 

resulting in a much faster detection of sub rings. 

 

Recovery from loss of all successors 
If the ring breaks due to a failure of r successive 

nodes the peer preceding the disrupted part of the ring 

is not able to contact any of its successors. As dis-

cussed in the previous section a standard lookup for the 

nodes successor will also not return any result. We 

present a modified search algorithm that is capable of 

performing lookups regardless of disruptions. The key 

functionality is an algorithm that redirects a lookup 

request in counterclockwise direction if the lookup 

skipped one or more nodes. We call this method redi-

rection mechanism. It can also be used in normal op-

eration if a lookup request skips the keys correct suc-

cessor and is received by the wrong succeeding peer. 

As soon as a peer recognizes that a search overshot its 

target, it applies our redirection mechanism. 

A node y can easily detect that a lookup did over-

shoot the correct successor, if it receives a lookup 

message for a key k located between the initiator of the 

lookup and itself, but node y is not k’s successor. Us-

ing its predecessor, node y is able to redirect the mes-

sage towards the correct successor. The message may 

also be redirected over several nodes until the correct 

node is reached. 

In case of an open ring the node preceding the dis-

ruption can use the redirection mechanism to repair the 

overlay disruption. It simply sends a lookup message 

for its own ID+1 to the closest available finger. In 

general, this is the smallest finger that is situated out-

side the nodes former successor list. As shown in 

Figure 4, this node will then redirect the message in 

counterclockwise direction until the message arrives at 

the other end of the disruption. This peer no longer 

possesses a valid predecessor as all of its preceding 

peers have failed. Therefore, it assumes that the initia-

tor of the message is its new predecessor. For the same 

reason it assumes that it is responsible for the searched 

ID and answers the lookup. The initiator of the mes-

sage inserts the sender of the request in its successor 

list and initializes a stabilization procedure with its 

new successor. The disruption is repaired and correct 

routing is reestablished. 
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Figure 4: Automatic disruption recovery, ini-

tialized at the beginning of the break 
 

If a peer also stored enough predecessors (i.e. main-

tained a symmetric neighbor list) a similar recovery 

mechanism could be used by the peer at the end of the 

disruption. A symmetric neighbor list consisting of  r 

successors and r predecessors is also useful in achiev-

ing a more stable overlay [10, 11] and a more efficient 

replication algorithm. In the following we therefore 

assume symmetric neighbor lists. 

Then, a node that has lost all of its predecessors ini-

tiates a lookup for its own ID (see Figure 5). The 

lookup will traverse the ring until it arrives at the node 

at the beginning of the disruption. If this node is not 

yet aware of the disruption it tries to forward the 

lookup message to one of its successors. As all succes-

sors have failed, the node will receive no acknowledg-

ments and after a certain while delete all successors 

from its list. A node that is aware of the disruption, as 

it has lost all successors, inserts the sender of the 

lookup message into its own list of neighbors. It then 

forwards the lookup to its new successor and starts 

stabilizing with it. 

If both nodes at the edges of the rings broken part 

run a recovery algorithm the disruption is detected 

faster and can be repaired with higher probability. In 

the worst case one redundant lookup message is routed 

through the ring. 

Note that if symmetrical routing [12] is applied, the 

redirection mechanisms is no longer necessary. Both 

nodes at the edges of the disruption can initiate a sym-

metrical lookup for their own ID. 

 

Recovery using token based stabilization 
[11] proposes a Token Ring [13] like algorithm that 

replaces Chord’s stabilization messages by tokens, 

which are sent in both directions around the ring. This 

way, a more stable overlay can be achieved. In normal 
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Figure 5: Automatic disruption recovery, ini-

tialized at the end of the break 
 

operation nodes are in the state repeat, i.e. they for-

ward all incoming tokens to the next node on the ring. 

A node that is situated at one end of a broken ring does 

no longer receive token messages from the disrupted 

part of the ring. Therefore, it changes to the state active 

monitor and starts generating periodic tokens. All to-

kens contain ID and IP address of its initiator. Ac-

knowledgements prevent tokens from being lost as 

nodes fail. The token is passed through the ring until it 

reaches the peer at the other end of the broken part. 

There, the information about the tokens initiator can be 

used to repair the ring disruption. The initiator is in-

serted into the empty neighbor list and a stabilization 

process is initiated. However, this algorithm does not 

scale with the ring size as the token is forwarded from 

node to node, requiring N times the average transmis-

sion time to circulate the ring. 

6. Avoidance 

Regarding the correctness of the Chord overlay, we 

observed that the probability of disruptions can no-

ticeably be reduced by some simple modifications to 

Chord’s stabilization algorithm. 

To avoid a disruption in the ring structure, nodes 

should prevent an empty successor list. If the number 

of entries reaches a critical minimum, nodes can fill 

their successor list with any active node they known 

(e.g. finger entries) or learn about (e.g. from received 

messages). The redirection mechanism will still guar-

antee correct lookups. 

To increase the correctness of the overlay structure 

nodes can also decrease their stabilization period. The 

more often stabilization messages are sent, the more 

up-to-date the neighbor entries. We suggest an adap-

tive mechanism that increases the stabilization period if 



the number of known successors shrinks or if the over-

lay structure is measured to be more dynamic. Addi-

tionally the size of the neighbor list can be adjusted 

adaptively to the current churn rate in the network. 

However, the more often stabilization messages are 

sent and the more successors are included in the mes-

sages, the more bandwidth is required. Nodes should 

pay attention to their current resource usage to avoid 

performing a DoS attack on themselves.  

Most importantly, we stress that nodes should make 

use of all information they can gather about other 

nodes. They should check whether the sender of any 

message they receive fits in the list of neighbors or 

fingers. If the sender of the message is already part of a 

list, update the time last seen for this entry. Therefore, 

a node learns about new nodes without the need to wait 

for the next stabilization. Additionally, the necessary 

bandwidth for checking for the correctness of the fin-

ger entries can be reduced. Fingers with a very recent 

time last seen are skipped when fingers are updated. 

We also suggest sending information about nodes 

that have failed to all neighbored nodes. Therefore, 

nodes can replace failed neighbors must faster. Yet, we 

dissuade from blindly trusting in information received 

from other nodes, as this information may be incorrect. 

So, nodes should verify the information, e.g., by send-

ing a ping message to the responsible node. If recursive 

routing is applied, nodes exchange a lot of messages 

with their successors and fingers. Therefore, nodes are 

aware of failed contacts much faster. 

Finally, we recommend using a symmetrical Chord 

variant with symmetrical neighbor lists [10] and sym-

metrical routing [12]. Additional symmetrical fingers 

can be achieved by exploiting the existing overhead 

[14]. Symmetrical routing enables nodes to search in 

both directions, so a simple disruption in the ring can 

be avoided.  

7. Conclusion 

Disruptions in structured p2p overlays cannot only 

be caused by well targeted attacks against specific 

nodes but also by churn, i.e. by the dynamic behavior 

of the participating peers. 

In this paper we presented efficient mechanisms to 

actively prevent the loss of the overlay structure in 

both scenarios. Using some simple modifications to the 

standard algorithm a peer is able to exploit the existing 

overlay traffic to improve the stability of the overlay. 

We also introduced a self-repairing mechanism, 

which is able to detect a disruption in the overlay net-

work and to apply appropriate countermeasures. The 

algorithm was designed to be redundant in order to 

speed up the healing process and to improve its success 

rate. 

Finally, we introduced a scalable solution to detect 

the existence of disjoint overlay partitions and showed 

how to automatically recombine them. Applying our 

modifications to a Chord-based p2p system can greatly 

improve its security and robustness. 
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