
Efficient Simulation of Large-Scale P2P Networks:
Compact Data Structures

Andreas Binzenhöfer∗, Tobias Hoßfeld
University of Würzburg

Institute of Computer Science
Germany

Gerald Kunzmann
Technical University of Munich

Institute of Communication Networks
Germany

Kolja Eger
Hamburg University of Technology (TUHH)

Department of Communication Networks
Germany

Abstract

One of the most important design goals of current Peer-
to-Peer (p2p) technology is to be able to offer its service
to an arbitrary large number of users. Discrete event sim-
ulation is often applied to quantitatively and qualitatively
evaluate the performance and scalability of such systems
before they are deployed. However, the number of users,
processes and events which can be simulated is limited by
both the central memory and the time available. In this pa-
per we present compact data structures and event design al-
gorithms, which are intended to be a further step towards ef-
ficient simulation of large scale p2p systems. In particular,
we give guidelines on how to increase the number of peers
which can be simulated and show how to find a good trade-
off between computational time and memory consumption
in large scale p2p simulation.

1 Introduction

The algorithms and methods of Peer-to-Peer (p2p) tech-
nology are often applied to networks and services with
a high demand for scalability. In contrast to the tradi-
tional client/server architecture, an arbitrary large number
of users, called peers, may participate in the network and
use the service without losing any performance. In order
to evaluate such p2p services and their corresponding net-
works, different possibilities like emulation, analytical ap-
proaches, or simulative techniques can be applied.

Planetlab [5], e.g., offers an overlay network testbed
which currently consist of more than 670 worldwide dis-

∗Corresponding author: binzenhoefer@informatik.uni-wuerzburg.de

tributed machines. While it can be used to experiment with
prototypes or to perform a proof-of-concept, it does in gen-
eral not suffice to evaluate new algorithms at a larger scale.
The huge number of peers, the state space, as well as the
interactions and relationships between peers and states also
makes an analytical description intractable. Discrete event
simulation on the other hand is able to incorporate all in-
teractions and parameters and may reflect reality as accu-
rately as possible. Such simulations, however, also require
sufficient memory capacities and exceed the computational
power very fast. It might already be a problem just to keep
the states of the peers in the main memory.

Simulations on packet level, e.g. using ns-2 [13], usually
are too detailed for the evaluation of large overlay networks
and do not capture effects which only happen at a larger
scale. Therefore special p2p simulators like PeerSim [9]
have been developed with extreme scalability and support
for dynamic user behavior in mind. Those simulators can
be used to easily implement and evaluate new algorithms
but do not fully take advantage of the special features of the
individual algorithms. A good overview of current tools to
simulate p2p networks can be found in [3].

In general there are several possibilities to improve the
implementation of a p2p simulation. To speed up the simu-
lation, the computation process can be distributed to a clus-
ter of PCs. Such a distributed simulation engine, which is
able to run millions of instances, is, e.g., presented in [7].
A two step approach to simulate p2p networks on different
layers is introduced in [2]. In the first step the network is
simulated on application level, while a more detailed packet
layer analysis can be done in the second step in order to
consider such parameters as loss and delay. In this paper
we share our own experience and findings gained during

1

c©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redis-

tribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been

published in Workshop on Modeling, Simulation and Optimization of Peer-to-peer environments (MSOP2P) in conjunction with Euromicro (PDP

2007), 2007, 10.1109\/pdp.2007.41.

the simulation of large scale p2p networks. In particular,
we discuss the influence of the event queue, show how to
reduce the amount of necessary memory and point out how
to exploit the special features of events like periodic updates
of routing tables in p2p networks. The main goal of these
efforts is to be able to simulate very large overlay networks
in order to capture effects, which are only visible at a larger
scale.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the term simulation efficiency. In Section 3
we discuss how to apply efficient data structures like a cal-
endar queue to large scale p2p simulations. Section 4 deals
with the design of periodic and dynamic events. The con-
cept of process handlers to improve the state representation
in p2p simulations is described in Section 5. Section 6 con-
cludes the paper and points to associated work.

2 Categories of Simulation Efficiency

One of the most significant characteristics of a large
scale P2P simulation is its enormous complexity. For a
network of n peers the number of possible end-to-end con-
nections is already in O(n2). The huge number of events,
interactions and peer states further increases this complex-
ity. Only efficient algorithms and data structures will make
fast simulations possible. In this context the running time
of the simulation and the required random access memory
becomes particularly important. While, to some extent, it is
possible to optimize both at the same time, there is usually a
trade-off between running time and required memory. The
following three factors have the most noticeable influence
on this trade-off:

• Efficiency of the event queue;

• Internal representation of a state;

• Design of events in the simulation.

Depending on the investigated problem different kinds
of optimization might be preferable. Figure 1 visualizes the
arising possibilities. Obviously, the worst case is a com-
pletely unoptimized simulation as shown at the bottom of
the figure. An efficient implementation of the event queue
on the other hand provides an advantage independent of the
kind of simulation. In case each peer has to memorize a
huge state space, like e.g. the fragmentation of files in
eDonkey networks, the optimization of the state represen-
tation is especially crucial. If, however, each peer produces
a large amount of events, the way events are designed can
become the determining factor. In structured P2P networks,
e.g., a peer has to maintain events for the stabilization of the
overlay, the maintenance of the redundancy, searches and
the like. A highly optimized solution as shown on top of

0

50

100

0

50

100
0

20

40

60

80

100

Event EfficiencyState Efficiency

Q
u

eu
e

E
ff

ic
ie

n
cy Calendar

Queue

Unoptimized
Simulation

Optimized
States Optimized

Events

Optimized
Simulation

Calendar Queue with
Optimized States Calendar Queue with

Optimized Events

Figure 1. Different categories of simulation
efficiency.

Figure 1 incorporates an efficient design of events, a mem-
ory saving representation of states and a fast event queue.
In the following, we will therefore discuss how to optimize
large scale P2P simulations with respect to all three factors.
Section 3 discusses the advantages and disadvantages of a
special priority queue when applied to the P2P environment.
We will present possibilities to adapt the queue to the spe-
cific features of a P2P system. Since the performance of the
queue depends on the number of events and their temporal
distribution, we point out the importance of event design
algorithms in Section 4. Using Kademlia bucket refreshes,
we will show how to model periodic and dynamic events ef-
ficiently. In Section 5 we will introduce a novel approach to
reduce the memory required for the representation of states.
The concept of a process handler illustrates how to avoid the
redundancy of parallel processes as they frequently occur in
large scale P2P systems.

3 Compact Data Structures

A simulative study of the scalability of highly distributed
P2P networks automatically involves an immense amount
of almost simultaneous events. Due to the large number of
peers, a few local events per peer already result in a large
number of global events. All these events have to be stored
in the event queue. Especially in structured P2P networks
each peer generates a number of periodic events. In or-
der to guarantee a stable overlay and a consistent view of
the data, most P2P algorithms involve periodic maintenance
overhead. Chord [11], e.g., uses a periodic stabilize proce-
dure to maintain the ring structure of its overlay as well as a
periodic republish mechanism to ensure the redundancy of
stored resources. Moreover, since structured P2P networks
are mainly used as information mediators, a simulation usu-

2

ally involves a great number of possibly parallel searches.
The choice of an efficient data structure for the event queue
is therefore especially vital to the performance of large scale
P2P simulations.

In order to be able to compare two different data struc-
tures to each other we need an appropriate measure. The
most common measure in this context is the so called ”hold
time”. It is defined as the time it takes to perform a dequeue
operation immediately followed by an enqueue operation.
Note that the size of the event queue is the same before and
after the hold operation. It is easy to see that different data
structures have different hold times. A simple sorted list,
e.g., has a hold time of O(n), where n is the current size of
the event queue. While dequeue operations can be done in
O(1) (simply take the first element of the list), an average
enqueue operation takes O(n) steps, since the event has to
be inserted into the list according to its time stamp. Struc-
tures like trees and heaps have an improved hold time of
O(log(n)).

An optimal solution is a data structure with a hold time
of O(1) independent of the size of the current event queue.
Ideally, this hold time can be achieved without the need for
additional computer memory. In the following we therefore
summarize the main idea of a calendar queue [4], a queue
with a hold time of O(1).

3.1 Calendar Queue

In any discrete event simulation the hold time of the
event queue is extremely important as up to 40 percent of
the execution time can be spent enqueuing and dequeuing
events [12]. There are numerous proposals to realize ef-
ficient priority queues [10]. In this section we show how
a basic calendar queue [4] with a hold time of O(1) oper-
ates. The main advantage besides the hold time is that it is
a simple and intuitive data structure. It basically works like
a regular desktop calendar. To schedule a future event (en-
queue operation), one simply turns to the current day and
writes down a corresponding note. In order to find the next
pending event (dequeue operation), one starts with the cur-
rent day and moves from day to day in the calendar until he
finds a non-empty calendar day. This procedure describes
exactly the way a calendar queue works, except that a year
in the calendar queue has a total of Nd days and each of
these days consists of Td time units. The year is realized as
an array of size Nd. Technically, a year therefore consists of
Ty = Nd ·Td time units. To cope with the situation of more
than one event on one day, multiple entries can be stored per
day using a simple data structure like a linked list. This list
contains all events for that specific day.

Figure 2 illustrates a simple example of a calendar queue.
There are three events on day 1, two events on day 3 and
five events on day Nd, the last day of the year. This day

Day 1 Day 2 Day 3 Day N
d

Scheduled for:

current year

next year

year after

next year
**

**

Figure 2. A simple calendar queue.

also demonstrates that the data structure used for multiple
events on one day is not limited to a linked list. In this
example we use a tree like structure for day Nd. Also, note
that there does not necessarily have to be an event on each
day. There is, e.g., no event scheduled on day 2. To insert
a new event into the calendar queue the time stamp of the
event is used to calculate the corresponding day on which it
should be scheduled. The index of the corresponding day in
the array is computed as

index =

⌊
timestamp

Td

⌋
+ 1 (mod Nd),

where timestamp represents the time at which the event is
due and the starting index of the array is 1. The event is then
added to the corresponding position in the list at this specific
day. For events with a time stamp scheduled after day Nd

a division modulo Nd is performed to determine the day
on the corresponding year. The events marked with a cross
could, e.g., be scheduled for next year and the event with the
star for the year after next year. To dequeue the next event in
line one starts at the array entry corresponding to the current
simulation time and moves through the calendar until the
first event is found. Thereby events which are scheduled for
one of the following years are skipped. Once the final day
of the year, day Nd, is reached, the year will be incremented
by one and the dequeuing process is resumed at day 1.

Figure 3. A day with too many events in-
creases the enqueue time.

To achieve a hold time of O(1), the parameters Nd and
Td have to be chosen in such a way, that there are only a

3

few events per day and the majority of events lies within
one year. If a day is too long or the number of days is much
smaller than the number of events, there will be a large num-
ber of events on each day as shown by the overloaded day in
Figure 3. Thus, the enqueue time will be excessive because
of the time needed to insert an event into the corresponding
data structure (cf. the heap in the figure). If, on the other
hand, the number of days is much larger than the number of
events (cf. Figure 4), the dequeue time will raise, as a lot of
days without any event have to be examined until the next
event is finally found.

Figure 4. Too many days increase the de-
queue time.

In most P2P simulations, the event distribution is not
skewed and does not change significantly over time due to
periodic events of the participating peers and the like. In
this case, it is easy to predict the number of events per time
unit. The length of a day can then be set to a fixed value
in such a way that there are few, say about three, events
per day and the number of days in such a way that most of
the events fall within one year. If, however, the distribution
of events is skewed or frequently changes over time, it be-
comes necessary to dynamically adapt the length of a day
and the number of days in a year [1]. An efficient way to
restructure the calendar queue on the fly can be found in
[12].

3.2 Calendar Queue in P2P Simulations

To study P2P specific effects on the calendar queue, we
simulate a Kademlia [8] based network consisting of an av-
erage of 20000 peers. To generate movement (also known
as churn) in the overlay, each participating peer has an ex-
ponentially distributed online time with an average of 60
minutes. New peers join according to a Poisson arrival pro-
cess in such a way that the average number of peers stays at
20000. The simulator is written in ANSI-C to be as close to
the hardware as possible. Based on previous experiences we
use a calendar queue with Nd = 4096 days where each day
is of length Td = 100ms. Figure 5 represents a snapshot of
the calendar queue, showing all 4096 days on the x-axis and
the corresponding number of events scheduled at each day
on the y-axis.

The spike in the figure corresponds to the day on which
the snapshot was taken (day 1793 of the current year). All
events to the left of this day are scheduled for one of the
following years. All events to the right of the current day
either take place this year or on one of the following years.
There are two important details which can be derived from

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

Day of the year (100ms each)

N
u

m
b

er
 o

f
ev

en
ts

Spike at current
day of the year

Figure 5. Snapshot of a calendar queue with
Nd = 4096 and Td = 100ms.

the figure. On the one hand there are too many events on
a single day in general. On the other hand, there is a huge
number of events scheduled for the current day. In general
we can distinguish three different kind of events in a P2P
simulation:

• Events that take place in the near future, especially
those scheduled after one single overlay hop (short
time scale).

• Periodic events, like the stabilize mechanism in Chord.

• Events that take place in a more distant future, like
timeouts or bucket refreshes in Kademlia (large time
scale).

In our case the events of the first category are responsible
for the spike at the current day, since we use an average net-
work transmission time of 50ms in the corresponding sim-
ulation while the length of a day is set to 100ms. The in-
tuitive solution to avoid this spike would be to shorten the
length of a day. However, as long as the total number of
days remains unaltered, the average number of events per
day will remain unaltered as well. Therefore the idea is to
shorten the length of a day, while simultaneously increasing
the total number of days. From a global point of view there
are quiet a number of events at each millisecond in a large
P2P network. We therefore decided to first of all shorten
the length of a day to just 1ms. The danger in increasing the
total number of days Nd is that there might be many days
without any event. Since the average number of events per
day in Figure 5 is approximately 25 we decided to increase
the total number of days to 4096 · 8 = 32768, resulting in
a new average of about 3 events per day. The results of the
new run with 32768 days and a length of 1ms per day are
illustrated in Figure 6.

4

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

10

12

14

16

Day of the year (1ms each)

N
u

m
b

er
 o

f
ev

en
ts

Figure 6. Snapshot of a calendar queue with
Nd = 32768 and Td = 1ms.

As expected, there are approximately 3 events per day
now and no burst of events at the current day. Furthermore,
periodic and more distant events are equally distributed
among all days of the calendar queue. The corresponding
values for the parameters Td and Nd therefore provide a pri-
ority queue with a hold time of approximately O(1).

In some situations, however, the adaptation of the param-
eters is not that easy. For example, an often used method in
large scale simulations is to pre-calculate events which cor-
respond to the behavior of the user. That is, events like joins,
searches, or leaves, which are triggered by the user and are
independent of the applied P2P algorithm, are calculated
before the simulation and written to a file. This file is then
used as input at the beginning of the simulation. There are
some advantages to this approach:

• The event file can be given to different simulators in
order to achieve a better comparability of the corre-
sponding results.

• It becomes possible to implement new user models
without having to change the simulator in any way.

• Log files and traces of emulations and applications can
easily be translated into input files for the simulator.

• The simulation time is slightly reduced due to the pre-
calculated events.

However there is a big disadvantage in terms of perfor-
mance of the event queue. Since all user specific events are
put into the event queue at the start of the simulation, the
number of events per day increases significantly. Figure 7
illustrates this problem in detail. For the sake of clarity we
plotted the moving average with a window size of 40.

0.5 1 1.5 2 2.5 3 3.5
x 10

4

0

5

10

15

20

25

30

35

40

45

Day of the year (1ms each)

N
u

m
b

er
 o

f
ev

en
ts

All events

User specific events

Simulation events

Figure 7. Composition of the events in the
calendar queue.

The top most curve shows the distribution of all events
in the event queue. The events can be split into those read
from the input file (user specific events) and those gener-
ated during the simulation (simulation events). In this case
the increased number of events per day is obviously gen-
erated by user specific events. The enqueue time of an
event will therefore no longer be in O(1) since there are
too many events per day now. A solution to this problem is
to maintain two different queues for the two different kind
of events. A regular calendar queue for events generated
by the simulation and a simple sorted list for the user spe-
cific events. With the parameters used in Figure 7 the cal-
endar queue offers a hold time of O(1) for events generated
by the simulation. Since user specific events are already
sorted in the file, the enqueue operations into the sorted list
at the beginning of the simulation can also be done in O(1).
There are no more enqueue operations into this queue dur-
ing the simulation and dequeue operations can be done in
O(1) as well. To guarantee the functionality of the double
queue concept the dequeue operation is slightly modified.
The simulator simply compares the next scheduled events
of both queues and executes the one with the smaller time
stamp. This way, the advantages mentioned above persist
while the management of events remains in O(1).

4 Event Design Algorithms

The previously discussed performance of the event
queue is not the only factor, which influences the efficiency
of large scale simulations. It is almost equally important
that the design of events utilizes the specific features of the
queue. The time needed to delete or move events in the
queue might, e.g., play a decisive role. In P2P simulations,

5

it is often necessary to erase timeout events or to reorga-
nize a large amount of events in the queue. We therefore
discuss some possibilities to avoid the corresponding prob-
lems and show how to enhance the performance of a large
scale simulation using event design algorithms, which are
well adapted to queues of discrete event simulation.

4.1 Periodic Events

As long as there are only enqueue and dequeue opera-
tions on the queue, the performance of the calendar queue
is known to be in O(1). However, sometimes there is a need
to delete events from the queue, just like a date in real life
might get canceled. A possible reason could be a timeout
event which is no longer needed or has to be moved to an-
other date. The same is true for already scheduled periodic
events of a peer which goes offline. The most obvious way
to cope with obsolete events is to search for the event in
the queue and delete it. If this has to be done frequently,
however, the performance of the event queue degrades sig-
nificantly. In the worst case the entire calendar has to be
searched with a running time of O(n). This process can
be sped up by investing some computer memory. For time-
outs, e.g., a peer can store a flag indicating whether a search
is already done or not. If so, the timeout event can be dis-
carded when being dequeued. Periodic events could also
check whether the corresponding peer is still online. Other-
wise the periodic event will be discarded as well and started
again the next time the peer goes online. If, however, it
is possible for a peer to go offline and online before the
next call of the periodic event, the peer ends up having two
periodic events instead of just one. Again, investing some
computer memory can solve this problem. For each of its
periodic events, the peer stores a flag stating whether an in-
stance of this periodic event is scheduled or not. When a
peer goes online again, the flag has republish = 1 might,
e.g., prevent it from starting a second instance of its peri-
odic republish procedure. This trade-off between computer
memory and simulation running time is not always this easy
to solve. Therefore, the following section discusses how to
handle dynamic events efficiently.

4.2 Dynamic Events

Dynamic events frequently have to be moved in the event
queue or might become obsolete in the course of the simu-
lation. To be able to maintain the performance of the event
queue it is especially important to find a smart design for
those dynamic events. An interesting example in this con-
text is the bucket refresh algorithm in Kademlia-based P2P
networks. A peer in a Kademlia network maintains approx-
imately log2(n) different buckets, where n is the current
number of peers in the overlay network. Each of these buck-

4380

3960 5820

peer X

bucket 1

bucket 2 bucket 3

Figure 8. The next refresh times of three ex-
emplary Kademlia buckets.

ets has to be refreshed as soon as it has not been used for
one hour. To guarantee this refresh, a peer maintains a timer
for each of its buckets. The timer is reset to one hour every
time the peer uses the corresponding bucket, e.g. if it issues
a search for a peer or a resource which fits into this bucket.

Figure 8 shows three exemplary buckets for a peer X
and the next time they will be refreshed. The next bucket
which has to be refreshed is bucket 2 at simulation time
3960. The last bucket to be refreshed is bucket 3 at simula-
tion time 5820. This example can be used to show how to
develop a good event design step by step. Assuming we do
not want to invest any computer memory, we have to move
a bucket refresh event in the queue every time a peer uses
the corresponding bucket as illustrated in Figure 9. That is,
each time a peer uses one of its buckets for searches and
the like, we have to delete the old bucket refresh entry from
the queue and add a new entry at the time when the new
refresh is due. This, however, drastically increases the exe-
cution time, since deleting an event from a calendar queue
requires O(n) steps.

bucket i

Figure 9. Refresh event moved every time the
peer uses the bucket.

To reduce the running time, we should therefore invest
some computer memory. For each bucket of a peer, we
could store the time stamp of its next refresh. These time
stamps are updated every time a peer uses the corresponding
bucket and additionally a new refresh event is inserted into
the event queue. Instead of removing the obsolete events
from the queue, however, they are simply skipped when be-
ing dequeued as indicated by the dotted arrows in Figure
10. That is, every time a refresh event is dequeued, we can
compare its time stamp to the time stamp of the next re-
fresh as stored by the peer. A refresh is only executed if the
two time stamps match, otherwise the event is obsolete and

6

discarded.

bucket i

Figure 10. Obsolete refresh events are being
skipped.

This solution, however, requires more computer mem-
ory than actually necessary. Especially if there are a lot of
searches and consequently a lot of obsolete refresh events.
A more sophisticated solution would be to again memorize
the time of the next refresh at the peer, while only using one
single event per bucket. Each time the peer uses a bucket,
the time stamp of the next refresh is updated locally at the
peer. However, there is no new event inserted into the event
queue nor is any old entry moved in the event queue. When
a refresh event is dequeued its time stamp is compared to
the time stamp of the next refresh as stored locally at the
peer. If the time stamps match, the refresh is performed
otherwise the refresh event is re-inserted at the time of the
next bucket refresh as indicated in Figure 11. This way,
the memory needed to store the obsolete refresh events can
be avoided entirely. The problem, however, is that there is
still one event for each bucket of each peer. In a Kadem-
lia network of size n, each peer maintains log2(n) buckets
on average. This still leaves us with a total of log2(n) · n
refresh events in the event queue. For a peer population of
100000 peers, this adds up to about 1.7 million events!

bucket i

Figure 11. Obsolete refresh events are com-
pletely avoided.

Considering that bucket refreshes can only be moved for-
ward in time, we can develop an optimized solution in terms
of required memory. As before, we memorize the time of
the next refresh for each bucket locally at the peer. This
time, however, we only use one single refresh event for the
entire peer. This refresh event is scheduled at the minimum
of the next refresh times of all buckets of the peer. When
dequeued, it calculates the current minimum of all bucket
refresh times and compares it to its own time stamp. Note,
that there are only two possibilities. Either its time stamp
is smaller then the current minimum or the two time stamps
match. In case of a match the event triggers the refresh of
the corresponding bucket. Otherwise, it sets its own time
stamp to the current minimum and is re-inserted into the
event queue at that specific time as illustrated in Figure 12.

bucket 1

bucket 2

bucket 3

current

minimum

Figure 12. Refresh event scheduled at mini-
mum next refresh times of all buckets.

Since this procedure takes exactly one hold time, it can be
done in O(1) for the calendar queue. As an example, con-
sider a refresh event with a time stamp smaller then the cur-
rent minimum in Figure 8. Comparing its own time stamp,
say 3700, to the current minimum 3960 (bucket 2), it rec-
ognizes that the refresh it was scheduled for became obso-
lete. It therefore re-enqueues itself into the calendar queue
at time 3960. If none of the buckets is used by the peer,
before the refresh event is dequeued again, bucket 2 will be
refreshed. The new refresh time of bucket 2 will be set to
3960s+ 3600s = 7560s and the refresh event is scheduled
at the current minimum 4380.

5 State Representation

To achieve scalability for large scale p2p simulations,
the cost to represent a peer or a resource must be as low
as possible in terms of computational complexity and mem-
ory consumption. Therefore, a simplified and compact state
representation is essential. In this section we introduce the
concept of a process handler, a mechanism, which can be
used to reduce the amount of computer memory needed to
represent the state of a distributed process.

In large scale p2p simulations computer memory is al-
most as equal a problem as running time. Due to the
highly distributed nature of such systems, however, there
are many processes that involve more than one peer. To
model those processes each of the participating peers has
to store some representation of the process. The resulting
copies of the process description at the individual peers are
usually highly redundant. We therefore introduce the con-
cept of a process handler to reduce the amount of computer
memory needed to represent a distributed process.

A process handler is a well defined part of the computer
memory, where redundant information about a distributed
process is stored. Each event or peer participating in the
process stores a pointer to the process handler. The process
handler includes a variable Ra which determines the num-
ber of remaining accesses, i.e. the number of events or peers
still pointing to it. Figure 13 shows a process handler with
Ra = 3 remaining accesses, as there are still three events

7

Day 1 Day 2 Day 3 Day N
d

process handler

R
a
= 3

xyz = 48

Figure 13. Example of a process handler with
3 remaining accesses.

pointing to it. Each time an event does no longer partici-
pate in the process, it decreases the Ra counter by one and
deletes its pointer to the process handler. An event, which
uses the process handler for the first time accordingly in-
creases the Ra counter by one and stores a pointer to the
handler. The last event pointing to the process handler fi-
nally frees the memory as soon as it terminates the process.
From a global point of view, there are, e.g., many distributed
searches in a large scale structured P2P network. Thereby,
each search process could be modeled using a search han-
dler. The search handler could store redundant information
like the source and the destination of the search, the global
timeout of the search, and the number of already received
answers.

6 Conclusion and Associated Work

Many properties of highly distributed p2p systems only
become observable when the number of participating peers
is sufficiently large. In this paper we investigated different
possibilities to make the simulation of large scale p2p sys-
tems feasible. We showed how to adapt the parameters of
a particular event queue to the special features of a p2p en-
vironment. We also discussed how to approach the trade
off between running time and memory consumption. Us-
ing a sophisticated design for periodic and dynamic events,
both of which are common to p2p systems, we were able to
reduce the amount of required memory while still maintain-
ing the same functionality. Finally, we exploited the redun-
dancy of distributed processes which include more than one
peer. The concept of a process handler avoids the use of un-
necessary memory by managing the shared information of
parallel processes.

The simulation of p2p overlay networks is a very com-
plex task which includes numerous other aspects which we
could not regard here. This paper only represents a part of
our work dealing with the efficient simulation of p2p net-
works. The corresponding technical report [6] addresses
many other questions like whether to simulate on packet or

on application level, how to model bandwidth in fileshar-
ing systems or how to simulate realistic delays for O(n2)
end-to-end connections.

Acknowledgments

The authors would like to thank Prof. Phuoc Tran-Gia,
Prof. Jörg Eberspächer, and Prof. Ulrich Killat for enabling
and supporting this work. Furthermore, we would like to
thank Robert Henjes and Holger Schnabel for the numer-
ous remarks and ideas, as well as their help and support in
implementing the various algorithms.

References

[1] J. Ahn and S. Oh. Dynamic calendar queue. In SS ’99:
Proceedings of the Thirty-Second Annual Simulation Sym-
posium, page 20, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[2] H. Birck, O. Heckmann, and R. Steinmetz. The Two-Step
P2P Simulation Approach. Journal of Communication Soft-
ware and Systems (JCOMSS), 1(1):4–12, Sept. 2005.

[3] A. Brown and M. Kolberg. Tools for peer-to-peer network
simulation. Internet-Draft Version 00, IETF, January 2006.

[4] R. Brown. Calendar queues: a fast 0(1) priority queue im-
plementation for the simulation event set problem. Commun.
ACM, 31(10):1220–1227, 1988.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3):00–00, July 2003.

[6] T. Hoßfeld, A. Binzenhöfer, D. Schlosser, K. Eger,
J. Oberender, I. Dedinski, and G. Kunzmann. Towards ef-
ficient simulation of large scale p2p networks. Technical
Report 371, University of Würzburg, October 2005.

[7] S. Lin, A. Pan, R. Guo, and Z. Zhang. Simulating large-
scale p2p systems with the wids toolkit. In MASCOTS
’05: Proceedings of the 13th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 415–424, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[8] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In IPTPS 2002,
MIT Faculty Club, Cambridge, MA, USA, March 2002.

[9] PeerSim: A Peer-to-Peer Simulator.
http://peersim.sourceforge.net/.

[10] R. Rönngren and R. Ayani. A comparative study of paral-
lel and sequential priority queue algorithms. ACM Trans.
Model. Comput. Simul., 7(2):157–209, 1997.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In ACM SIGCOMM 2001, San
Diego, CA, August 2001.

[12] K. L. Tan and L.-J. Thng. Snoopy calendar queue. In WSC
’00: Proceedings of the 32nd conference on Winter simula-
tion, pages 487–495, San Diego, CA, USA, 2000. Society
for Computer Simulation International.

[13] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

8

