Changes resulting from the publishing process, includ-

NOTICE: This is the author’s version of a work accepted for publication by Springer.

Changes may

ing editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document.

The final publication is available at Springer via

have been made to this work since it was submitted for publication in KIVS 2007, 2007.

http://dx.doi.org/10.1007\ /978-3-540-69962-0_2.

Improving the Performance and Robustness of
Kademlia-based Overlay Networks

Andreas Binzenbfer' and Holger Schnabgl

University of Wirzburg
Institute of Computer Science
Germany
{binzenhoefer, schnabe®informatik.uni-wuerzburg.de

Abstract Structured peer-to-peer (p2p) networks are highly distributed systems
with a potential to support business applications. There are numerdesedif
suggestions on how to implement such systems. However, beforep@galys-
tems can become mainstream they need to offer improved efficiemmstreess,

and stability. While Chord is the most researched and best understatithme
nism, the Kademlia algorithm is widely-used in deployed applications. Thiere a
still many open questions concerning the performance of the latter. Ipahis
per we identify the main problems of Kademlia by large scale simulations and
present modifications which help to avoid those problems. This way, evalde

to significantly improve the performance and robustness of Kademsieebap-
plications, especially in times of churn and in unstable states. In particudar, w
show how to increase the stability of the overlay, make searches marerffi

and adapt the maintenance traffic to the current churn rate in a selfiengg

way.

1 Introduction

There is both theoretical and practical evidence that p2waor&s have a potential to
support business applications. They are scalable to a fargder of customers, ro-
bust against denial of service attacks, and do not suffen fisingle point of failure.

Skype [12], a p2p based VoIP application, e.g., servesandliof people every day.
The main task of the underlying p2p network is to support iefficlookups for content

stored in the overlay. The latest generation of p2p netwdhesso called Distributed
Hash Tables (DHTSs), was especially designed to handleaklsih a fast and scalable
way. There are numerous different DHTs proposed in liteeatGAN, Pastry, Chord,

and Kademlia, to name just a few. All those algorithms do haveommon that each

participating peer gets a unique identifier using a hashtimmowhile a distance metric
is defined on these identifiers. In order to maintain the Btgbi the overlay each peer
usually has a very good knowledge about its neighbors ané saiditional pointers to

more distant peers used as shortcuts to guarantee faspledikithe research commu-
nity Chord became the most studied algorithm in the last feary, which is possibly
due to its easy to analyze ring structure. The scalabilif} [2], the behavior under

churn [5] and the overlay stability of Chord [3] are well unsteod.

The majority of deployed overlay networks, however, make ofthe Kademlia
protocol [7]. It replaces the server in the latest eMule rficdiions and is used as a
distributed tracker in the original BitTorrent as well astlie Azureus client [1]. The
latter continuously attracts more than 800.000 simultasesers world wide. Despite
all this there are only few scientific papers evaluating thdgrmance of the Kademlia
algorithm. In [6] the performance of different DHT algoritis including Kademlia is
evaluated and compared. Modifications to support heteemenpeers are introduced
in [4]. Finally in [11] an analysis of the lookup performancéKad, the Kademlia-
based DHT used in eMule, is given. The authors examine thaétgf routing table
accuracy on efficiency and consistency of the lookup opmratnd propose adequate
improvements.

In order to understand the performance of Kademlia in gredgéail, we imple-
mented a detailed discrete event simulator in ANSI-C baseithe algorithm given in
the original paper [7]. In particular, we studied the seatatation, the overlay stability
and the required maintenance traffic. In this paper we pteakerinsights gained dur-
ing our simulations. We will describe the weak points we digred and pinpoint their
root causes. For each problem we will present an optimizatiich eliminates the
disadvantages and makes Kademlia a protocol more feasibbei§iness applications.

The remainder of the paper is structured as follows: In 88@j we recapitulate the
main aspects of the original Kademlia algorithm. A briefagstion of our simulator
and the corresponding user model is given in Section 3. T$wdered problems, their
causes, and the solutions are summarized in Section 4o8écfinally concludes the
paper.

2 Standard Kademlia

Kademlia is a DHT-based p2p mechanism which is used to efflgitocate informa-
tion in an overlay network. A hash table is a data structua¢ #ssociates keys with
values. A distributed hash table (DHT) assigns the respditgiof parts of the value
range of the hash function, i.e. of the address sgade different peers. In order to
retrieve the data, DHTs apply sophisticated routing sclseswech as self-balancing bi-
nary search trees. Each peer stores contact informatiout atloer peers in order to
route query messages.

‘ L] L] L] L] L] L] L] L N) L] ’ e/ 00 L] L] L] ‘
Address iRouting table of peer p
Space S H

d(p.aya[2" 2" d(p.a)0[22"

bucket 1 e o o ° e o o ‘

bucket 7 consists of
peers g with distance

d(p.a)0[2";2"[

bucket 5 n n

Figure 1. Routing table of peep

In Kademlia, the branches of the binary search tree aresepted as buckets, cf.
Figure 1. The collection of buckets form the routing tablacBeti of peerp’s routing
table is a list of peers which have a certain distance to peKademlia uses 160-bit
identifiers for the address space and applies the XOR me#ig,

S ={0;1}" with N = 160 (1)
d: Sx8 —[0;2V],)
(p.q) —poa

This means that buckéin the routing table of pegrcovers all peerg with distance
d(p,q) € [2N~%;2N—+1] cf. Figure 1. In order to keep the size of the routing table
small enough, a bucket has at mésentries and is also referred to as k-bucket. This
results in a maximal number of routing table entries Gf . A more detailed description
of the Kademlia algorithm can be found in [7].

3 Simulator Details

In order to evaluate the different performance aspects afeiddia, we developed a
discrete event simulator according to the algorithms in ;g stated above, for each
0 < 4 < 160 a peer keeps a bucket bfpeers of distance betwe@ —* and2” —*+1
from itself according to the XOR metric. Thereby the routtaple is adapted dynami-
cally. That is, each peer starts with one single bucket ¢ogehe entire address space
and recursively splits the bucket containing the peer’s tvas soon as this bucket
holds more thark entries. This results in an up-to-date routing table refigdhe cur-
rent state of the overlay network as shown in Figure 1. Whenynpaers leave the
system, Kademlia merges the corresponding buckets aogbydi

Furthermore, a peer is able to insert documents into thdayvaetwork. To guar-
antee their availability, each of these documents is statelek closest peers to the
document’s ID. If the document was not received from anofiear for7..., minutes,
the corresponding peer republishes the document, i.endtssihe document to the re-
mainingk — 1 peers of the replication group. When searching for a documerer
recursively sends parallel queries to thelosest peers it knows. The next recursion be-
gins as soon as the peer receiyednswers. This guarantees that a searching peer will
only run into a timeout it — 3+ 1 peers do not answer within one specific search step.
If not stated otherwise, we use the default paraméigrs= 60 minutesp = 3, 3 = 2,
andk = 20.

To model end user behavior, we randomly chose join and lesmt®for each peer.
To be comparable to other studies in literature a peer staliseoand offline for an
exponentially distributed time interval with a meanky,, andE, ¢ y respectively. When
online, the peer issues a search evBy,,.., minutes, where the time between two
searches is also exponentially distributed. Using diffedéstributions mainly changes
the quantitative but not the qualitative statements madigluhe remainder of this
paper. To increase the credibility of our results [8], weude the 95 percent confidence
intervals where appropriate.

4 Improvements

All structured p2p networks have been designed to scaledaya humber of peers in
the overlay. Therefore the real scalability issue of suahtesys is not in terms of system
size but in terms of churn [9]. That is, the frequency at wipelers join and leave the
system has significantly more influence on its robustnessstatdlity than the mere
size of the system itself. In this section we uncover the jerob caused by churn and
show how to avoid them. In each simulation we use a total oD@Qfkers, which we
found to be sufficiently large to capture all important effeegarding the overlay size,
and setf),,, = E,yy, resulting in an average overlay size of 20000 peers. Thesfot
our analysis of the simulation results is on qualitativeaw@dr and not on quantitative
statements.

4.1 Search Efficiency

The success and duration of a search for a document heap&ndeon the correctness
of a peer’s pointers to other peers, i.e. on the correctries® @eer’s routing table. In
Kademlia the most crucial pointers are those tdcitdosest neighbors in the overlay.
We measure the correctness of these pointers using twoetiffeariables:

— Py,: States how many of its currehtclosest neighbors a peer actually holds in its
k-buckets.

— P,: Represents the number of correct peers out okthi®sest neighbors, which a
peer actually returns when asked for.

Ideally a peer would not only know but also return all ofitaeighbors.

900

Downlist modification

N
Q

i——— £800f
2 .| e
S18f Standard IR E 700
@ implementation .-~ %
; 161) § 600 Standard
o A @ implementation
E 2 500¢

- ©

Z14r - P, o

F 2 400/ pownlist

1 ‘ ‘ ‘ r 300. modification ‘ ‘
2 50 100 150 200 0 50 100 150 200
Average online time [min] Average online time [min]
Figure 2. P, and P. in dependence of the Figure 3. Influence of the downlist
churn rate modification on the search efficiency

However, our simulations show that the standard implentientaf Kademlia has
problems withP,.. We setk = 20 and simulated the above described network for differ-
ent churn rates. Figure 2 illustrat®s and P, in dependence of the churn rate. The mean

online/offline time of a peer was variied between 10 and 18@ubais. Even though on
average a peer knows almost all its neighbd?s €lose to 20), it returns significantly
less valid entries when queried®,(as low as 13). The shorter a peer stays online on
average, the less valid peers are returned during a sedretproblem can be tracked
down to the fact that there are still many pointers to offlieens in the corresponding
k-bucket of the peer. The reason is that there is no effenteehanism to get rid of out-
dated k-bucket entries. Offline entries are only elimingt@dnoved to the cache) if a
peer runs into a timeout while trying to contact an offlinerp@epeer which identifies
an offline node, however, keeps that information to itseftfug; it is not unlikely that a
node returns offline contacts as it has very limited possaslto detect offline nodes.
As a result more timeouts occur and searches take longendwassary. Another prob-
lem is that searches are also getting more inaccurate, Wiaismegative effects not
only on the success of a search but also on the redundancy stdhed documents.
The reason is that due to the incorrect search results dogsmal be republished to
less thark peers or to the wrong peers.

Solution - Downlists The primary reason for the above mentioned problem is that so
far only searching peers are able to detect offline nodesniie idea of our solution to
this problem is that a searching peer, which discovers efttintries while performing
a search, should share this information with appropriateropeers. To do so, a peer
maintains a downlist consisting of all peers which it disaad to be offline during its
last search. At the end of the search the correspondingerfithis downlist are sent
to all peers which gave those entries to the searching peiigdis search. These peers
then also remove the received offline entries from their ovimugkets. This mechanism
helps to get rid of offline entries by propagating locallyrgad information to where it
is needed. With each search offline nodes will be eliminated.

The improved stability of the overlay is obviously boughtthg additional band-
width needed to send the downlists. From a logical point efwihowever, it does re-
quire more overhead to keep the overlay stable under highencaates. In this sense,
the additional overhead traffic caused by sending dowriBstelf-organizing as it au-
tomatically adapts to the current churn rate. The more cthere is in the system, the
more downlists are sent.

It should also be mentioned, that without appropriate sgcarrangements a so-
phisticated attacker could misuse the downlist algoritbnexclude a target node by
claiming in its downlist that this specific node had gone o#liHowever, this prob-
lem can be minimized by only removing those nodes which weneadly given to the
searching node during a search or additionally by verifytimg offline status using a
ping message. One could also apply trust or reputation basethanism to exclude
malicious nodes.

Effect on Search Efficiency To compare the downlist modification to the standard im-
plementation we again simulated a scenario with 20000 meesserage and calculated
the 95 percent confidence intervals. Figure 2 proves, tlieaddvnlist modification has
the desired effect o®., the number of correctly returned neighbors. Using dowslis

both P, and P, stay close to the desired value of 20, almost independeriteottir-
rent churn rate. That is, even in times of high churn the btalaf the overlay can be
guaranteed.

This improved correctness of the overlay stability also &g®sitive influence on
the search efficiency. In Figure 3 we plot the average duraifca search against the
average online/offline time of a peer. In this context an kayenop was modeled using
an exponentially distributed random variable with a meaBms. Both curves show
the same general behavior. The longer a peer stays onlinecoage, the shorter is the
duration of a search. However, especially in times of higlrehthe downlist modifi-
cation (lower curve) significantly outperforms the stamldianplementation. The main
reason is that on average a peer runs into more timeouts trggandard implemen-
tation, as it queries more offline peers during a search. Thete on the maintenance
overhead will be discussed in Section 4.3.

4.2 Overlay stability

When peers join and leave the overlay network, the neighbimters of a peer have

to be updated accordingly. As mentioned above, the dowmidgtification greatly im-
proves the correctness of tleclosest neighbors of a peer. To understand this effect
in more detail, we have a closer look at a single simulation ¥We consider a mean
online/offline time of 60 minutes and an average of 20000p&®@rboth the standard
implementation and the downlist modification.

20
Dph Dph """ D c—>-v-v—r-1list and Force-k
o 15k IPr o 15k IPr 919.9 modification
2 2 s | A L agmmer
<% o) [} Downlist
5 10k;Standard ‘5 10k; Downlists 51908 modification only
] Implementation b 5
o Qo Re)
€ £ IS
2 sk 2 sk Sq97 [—p
h
r
070 20 91 20 9% 50 100 150 200
number of entries number of entries Average online time [min]
Figure 4. P, and P, for the standard Figure 5. Effect of Forcek under churn

implementation and the downlist modification

Figure 4 illustrates the distribution d%, and P, in both scenarios. As can be seen
in the left part of the figure, almost all peers know more th@rof their 20 closest
neighbors using the standard implementation. Howevernthmber of correctly re-
turned peerd>. is significantly smaller for most peers. This problem is gye@educed
by the downlist modification as can be seen in the right pathefigure. In this case,
the number of known and the number of returned peers are aqgoal to each other.
Yet, there are still some peers, which do not know all of tBiclosest neighbors. This

is in part due to the churn in the overlay network. Howevenuations without churn
produce results, which are comparable to those shown inghepart of Figure 4. The
cause of this problem can be summarized as followsB,gbe the k-bucket of peer p,
which includes the ID of peer p itself arig}; the brother of3,, in the binary tree whose
leaves represent the k-buckets as shown in Figure 6. Themdieg to the Kademlia
algorithm bucketB,, is the only bucket which will be split. However, if only < &
of the actualk closest contacts fall into this bucket, then= k& — e of these contacts
theoretically belong into its brothes;.

contains peer p

Figure 6. B, and its brothe3;; in the Kademlia routing table

Now, if this bucket is full it cannot be split. Thus, if sometbe v contacts are not
already in the bucket, it is very unlikely that the peer wilert them into its buckets.
The reason is, that a new contact will be dropped in case #s tecently seen entry
of B responds to a ping message. Since in a scenario without eliysaers always
answer to ping messages, new contacts will never be inseitef;, even though they
might be among thé closest neighbors of the peer. In the original paper it igested
to split additional buckets in which the peer's own ID doesneside in order to avoid
this problem. However, this has two major drawbacks. At fitsis a very complex
process, which is vulnerable to implementation errorso8ely, it involves a great deal
of additional overhead caused by bucket refreshes and sadsaforth. In the next
section, we therefore develop a simple solution, which dmtgequire any additional
overhead.

Solution - Forcek As stated above, it is possible, that a peer does not knowf all o
its k closest neighbors, even in times of no churn. To solve thiblpm, we need
to find a way to force a peer to always accept peers belongiogAp in case they
are amongst ité closest neighbors. Suppose a node receives a new contach, ish
among itsk closest neighbors and which fits into the already full budkgt So far,
the new contact would have been dropped in case the leasitlseseen entry of3;
responded to a ping message. Compared to this, the Faradification ensures that
such a contact will automatically be inserted into the btickeorder to decide which
of the old contacts will be replaced, one could keep sendimg messages and remove
the first peer, which does not respond. However, this agaoivias additional overhead
in terms of bandwidth. A faster and passive way is to put dliesof B;, which are not

among thek closest peers into a ligtand drop the peer which is the least useful. This
could be the peer which is most likely to be offline or the pebrcl has the greatest
distance according to the XOR metric.

In our implementation, we decided to consider a mixture dhbfactors. Each of
the entries of list [is assigned a specific score

Se =te +de 3)

and the one with the highest score will be dropped. Thergbis intended to be a
measure for the likelihood of peerto be offline andl. for the distance of peer to
peerp. The exact values df andd, are obtained by taking the index of the position of
the corresponding peer in the list, as if it was sorted asogrg the time least recently
seen or by the peer’s distance respectively. That is,isfthe least recently seen peer
(te = 1) and has the third closest distance to peéd. = 3) it is assigned a score of
Se = 4.

Effect on Stability We investigated the impact of the Forkemodification on the
stability of the overlay network in various simulations.deenarios without churn, all
peers finally know and return all of théirclosest neighbors. The corresponding figures
show lines parallel to the x-axis at a valuekof= 20. It is therefore more interesting to
regard the overlay stability during churn phases.

w

N
a

Total
traffic

N

Republish
traffic

H
o
PDF

L=

Join traffic

o
a

Downlist traffic

Sent packets per peer per second

% 50 100 150 200 g 60 61
Average online time [min] Time stamp of next republish event
Figure 7. The maintenance traffic of a Figure 8. PDF of I,..,, for different
peer split into its components values ofx

In Figure 5, we plot the average online time of a peer agaimshumber of known
and returned neighbors using the same simulation scenafi@fare. The two lower
curves correspond to our previous results using the doimmlggification. The two
upper curves represent the Fofcerodification in combination with the downlist mod-
ification. It can be seen that the Forkealgorithm also improves the stability of the
overlay in times of churn. While the appearance of the curvesniilar, there are more
neighbors known (solid lines) and returned (dashed linegjaenpared to using only
the downlist modification. Even if a peer stays online foryobd minutes on average,

it will know about 19.9 out of 20 neighbors and return morenthi8.8 correct entries.
By improving the correctness of the neighbors, the Fdroeedification also increases
the search success rate and the redundancy of stored dasumen

4.3 Redundancy Overhead

The bandwidth required to maintain a stable overlay and smenthe persistence of
stored documents directly reflects the costs for a peer tejpate in the network. We

simulated a network with 20000 peers on average and rectindeal’erage number of
packets per second sent by a peer while it was online. Figilhesfrates the average
traffic per peer in dependence of the average online time @fea in addition to the

total traffic, the figure also shows its three main componehts join, the republish,

and the downlist traffic.

SinceF,.q.ch, the average time between two searches of a peer, was sefrtm15
utes, the search traffic per peer per second can be negladfed scenario and is thus
not shown in the figure. The same is true for the traffic caugduibket refreshes, since
a specific bucket is only refreshed if it has not been usedf@rdire hour. The Forck-
algorithm is performed locally and does thus also not predauryy additional overhead.

It can be seen in the figure that the downlist traffic autonadlti@dapts itself to the
current churn rate. The more frequently the peers join aadkel¢he system, the more
downlist traffic is produced by a peer on average. In gentéralsmall amount of band-
width needed to distribute the downlists is also easily censated by the improved
stability of the overlay. The major part of the traffic is cadsvhen joining the net-
work and republishing documents. It is obvious that the ayeramount of join traffic
increases if a peer stays online for a shorter period of tifhe.join traffic cannot and
should not be avoided as it is necessary for a peer to makikitgevn when it joins the
network. Moreover, the join traffic already shows a selfamiging behavior. The more
churn there is in the system, the more joins there are in &otdithe more overhead is
produced to compensate the problems caused by the churn.

At first, the run of the curve representing the republisHitaeems to be counter-
intuitive. The less churn there is in the system, the morebkgh traffic is sent by a
peer on average. However, the reason becomes obvious, thkeg into account that
the longer a peer stays online on average, the more liketéttpat there are republish
events. In fact, the probability that a peer stays onlinddoger than 60 minutes given
the corresponding average online tirAg,, resembles the run of the republish curve.
The reason why the total amount of republish traffic excebdsémaining traffic so
significantly is as follows: Each document is stored atitlwtosest nodes to its ID, the
so called replication group. To compensate for nodes lgattie network, each peer
sends the document to all other peers of the replicationpifatihas not received the
document from any other peer fét.., = 60 minutes. The idea behind this republish
mechanism is that one peer republishes the document antheil eers reset their re-
publish timers accordingly. Since the republishing peadsehe document to all peers
of the replication group simultaneously, the peers resst timers at approximately
the same time. The next time the first peer starts to reputhisidocument, it has to
search for the corresponding replication group beforeritredistribute the document.
However, during this search the republish timers of the rofieeers are likely to run

out and they will start to republish the document as well. thés reason, a document
might get republished by up to peers instead of just one single peer, resulting in un-
necessary overhead traffic. This problem of synchroninasialready mentioned in the
original paper. In the following section, we present a ohytwhich greatly reduces the
republish overhead and which is also resistant againshchur

Solution - Betarepublish The synchronization problem of the republish process srise
if all peers of a replication group have approximately thmedime stamp for the next
republish event. At first this seems to be unlikely. Howegach time a peer republishes
a document all other peers of the replication group recéiiedocument at approxi-
mately the same time and are thus synchronized again. The idea to avoid this
problem is to assure that all peers use different time stafpachieve this, each peer
chooses its time stamp randomly in the intef#gl,, — x, T\, + =] instead of exactly
afterT,., = 60 minutes. Let/,., be the random variable describing the time stamp
of the next republish event. Then we waht, to be distributed in such a way, that
only few peers start republishing at the beginning of theridl and the probability
to republish increases towards the end of the interval. Taig e.g., be achieved by
setting:

Irep = (T're.p - (E) +2-2 Ipeta (4)

wherel,.¢, is a random variable with density

—t _jfo<t<1
ibeta(t) — v/ (1—t)-B(2,0.5) . (5)
0 otherwise
andB («,) is the beta function, defined by
o1
Blag) = [eta-n ©)
0

Therebyz should be small compared tB..,, but still significantly larger than
the duration of a search. Figure 8 shows the probability itlefisnction of I..., for
different values ofr. All peers will set their time stamps somewhere in the irderv
[60 — 2,60 4+ x]. The probability for a peer to set its time stamp is still vy at the
beginning of the interval. It then ascends significantlydods the end of the interval.
In the case of’.., = 60 minutesx = 2 minutes is a reasonable choice, since it offers a
long period of time with a low probability of republish eventhis way, the republish
traffic will be significantly reduced as it becomes very likéhat only one or a few
peers actually start a republish process. Again, note tipgea does only republish a
document if it has not received it from another peerffar, = 60 minutes.

Effect on Overhead In this section we will have a look at the influence of the Betar
publish modification on the average amount of republistitraént by a peer.

Figure 9 shows the average number of republish packets merpee second in
dependence of the average online time. We compare thegdsulsimulations using

Sent packets per peer per second

2 2 3
o
(8]
Downlist and Force-k & Downlist and Force—k
1.5 modification ?32.5' modification
@
Q
o
1 Standard] 2
implementation o~ Standard
05 % 15 implementation |
Betarepublish modification 5 Betarepublish modification
% 50 100 150 20 2 B 50 100 150 200
Average online time [min] Average online time [min]
Figure 9. Maintenance traffic caused by Figure 10. Total maintenance traffic in
republish processes dependence of the churn rate

the standard implementation, our two previous modificati@md all modifications in-
cluding Betarepublish. First of all the average republislffic of a peer is increased by
using the downlist modification. The reason is that usingstaedard implementation
there are more offline nodes in thebuckets during times of churn. Thus documents are
republished to less peers, which reduces the republidictbatt also the redundancy in
the system. The additional traffic introduced by the dovtmiisdification is therefore
used to improve the availability of documents.

The Betarepublish modification is applied in an effort to imize the traffic which
is necessary to achieve this availability. The figure shdwas Betarepublish indeed re-
duces the amount of required republish traffic significarftlye Betarepublish traffic
lies well beneath the standard implementation and alse sigsver with an increasing
average online time. Note that the Betarepublish modificatioes only avoid redun-
dant traffic. It is still able to guarantee the same redungastability, and functionality.
Figure 10 shows how the reduced republish traffic influenbestatal traffic for the
three regarded versions of Kademlia (Standard, downlistisFeorcek, all modifica-
tions). At first, it can be seen that the use of downlists iases the total traffic as
compared to the standard implementation. Again, this ige®verhead as it greatly
helps to increase the robustness, the stability, and thendathcy of the overlay in an
autonomous way.

By adding the Betarepublish modification, the total traffisignificantly reduced
and no longer dominated by the republish traffic. While theaye maintenance traffic
sent by a peer in the standard implementation actually &#s&® when there is less
movement in the overlay network, it finally shows a self-migang behavior when
using all modifications. The less churn there is in the systeeless maintenance traffic
is generated to keep the overlay network up to date. Thatésamount of bandwidth
invested to keep the overlay running automatically adapesfito the current conditions
in the overlay.

5 Conclusion

In this paper we investigated the performance of the Kadepiotocol using a de-
tailed discrete event simulator. We were able to detect amubpt some weak points
regarding the stability and the efficiency of the overlaywaek. In this context, three
modifications have been proposed to enhance the perforptieaedundancy, and the
robustness of Kademlia-based networks. With the help ofnfiets, the correctness of
the neighbor pointers and the duration of a search is gréatlyoved. The Forcé-
modification ensures that a peer has a very good knowledgg diféct neighborhood,
which greatly increases the stability as well as the ovgmiformance. We also intro-
duced a new republish algorithm, which significantly reduites total traffic needed to
keep the overlay running. The improved version of Kadentiiewss a self-organizing
behavior as the amount of generated maintenance traffinanously adapts to the
current churn rate in the system.

The proposed modifications can be used to support large p2al@pplications,
which are able to sustain dynamic user behavior. Even ththegalgorithms have been
introduced using Kademlia, they are by no means restrictéiuis protocol. Especially
the downlist and the Betarepublish mechanisms can easigppked to other DHTs
like Pastry, CAN, or Chord.

Acknowledgements

The authors would like to thank Robert Henjes, Tobias Hal3f@hd Phuoc Tran-Gia

for the insightful discussions as well as the reviewerslieirtvaluable suggestions.

References

1. Azureus. URL: http://azureus.sourceforge.net/.

2. A. Binzenldfer and P. Tran-Gia. Delay Analysis of a Chord-based Peer-toFfleeSharing
System. INPATNAC 2004, Sydney, Australia, December 2004.

3. Andreas Binzenifer, Dirk Staehle, and Robert Henjes. On the Stability of Chord-ba2ed P
Systems. IlGLOBECOM 2005, page 5, St. Louis, MO, USA, November 2005.

4. Youki Kadobayashi. Achieving Heterogeneity and Fairness in Kédemn Proceedings of
IEEE/IPS] International Workshop on Peer-to-Peer | nter networking co-located with Sympo-
sium on Applications and the Internet (SAINT2004), pages 546-551, January 2004.

5. Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and SeifitHaA Statistical Theory
of Chord under Churn. 14th Inter national Workshop on Peer-To-Peer Systems, Ithaca, New
York, USA, February 2005.

6. Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and Markg Kaashoek. Com-
paring the performance of distributed hash tables under churiPrdeeedings of the 3rd
Inter national Workshop on Peer-to-Peer Systems (IPTPS04), San Diego, CA, February 2004.

7. Petar Maymounkov and David Mazieres. Kademlia: A peer-to-pderniation system
based on the xor metric. IPTPS2002, Cambridge, MA, USA, March 2002.

8. K. Pawlikowski, H.-D.J. Jeong, and J.-S. Ruth Lee. On credibilitgimfulation studies of
telecommunication networks. IEEE Communications Magazine, January 2002.

9. Sean Rhea, Dennis Geels, Timothy Roscoe, and John KubiatowiaadliktaChurn in a
DHT. In 2004 USENIX Annual Technical Conference, Boston, MA, June 2004.

10. lon Stoica, Robert Morris, David Karger, M. Frans. Kaashaeld Hari Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Aptdica. In ACM S G-
COMM 2001, San Diego, CA, August 2001.

11. Daniel Stutzbach and Reza Rejaie. Improving lookup performaverea widely-deployed
dht. InIEEE INFOCOM 2006, Barcelona, Spain, April 2006.

12. Skype Technologies. Skype. URL: http://www.skype.com.

