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Abstract—Flow-based load balancing algorithms for multipath
Internet routing are often used for traffic engineering. However,
the target load distribution and the load balanced result agree
only on average, and there is a significant inaccuracy over time
due to stochastic effects. Dynamic load balancing reduces this
inaccuracy by relocating flows to other paths in regular time
intervals. This causes packet reordering. Therefore, the flow
reassignment rate should be kept low. In this paper we consider
load balancing in networks. It differs from load balancing at a
single node by the fact that several load balancing steps may
be performed at consecutive nodes in series. This affects the
flow reassignment rate and the load balancing accuracy due
to interdependencies and polarization effects. We quantify the
impact by simulation results, explain the observed phenomena,
and give recommendations for load balancing in practice.

I. I NTRODUCTION

Multipath Internet routing is used, e.g., for traffic engineer-
ing to distribute the traffic more evenly through the network.
This requires load balancing algorithms to spread traffic with
the same destination over several interfaces. Load balancing
should be done per flow and not per packet to avoid packet
reordering and a detrimental impact on the throughput of TCP
[1]–[3]. Therefore, hash-based load balancing algorithmsare
used, whose basic architecture is presented in [4]. As flows
come and go, the traffic distribution result of the load balancer
changes and, as a consequence, the outcome deviates from
the intended target distribution. To limit the inaccuracy of
the load balanced result, dynamic load balancing algorithms
correct the result by reassigning flows to other paths. This
causes a route change for these flows and a chance for packet
reordering. Therefore, the flow reassignment rate of dynamic
load balancing algorithms should be kept low.

In [4] we have considered the accuracy and dynamics of
hash-based load balancing algorithms at a single node. This
reveals the general properties of the algorithms and is relevant
if load balancing is applied to traffic aggregates only once.
A typical application example is the self-protecting multipath
[5] (SPM). The SPM transmits the traffic over several disjoint
paths according to a load balancing function (cf. Fig. 1). In
case of a path failure, the flows are redistributed from the
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Fig. 1. The SPM load balances the traffic only once.
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Fig. 2. ECMP routing causes the traffic to undergo multiple load
balancing steps.

failed path to the working paths according to another path-
failure-specific load balancing function. Load balancing is
also required for equal cost multipath (ECMP) routing with
OSPF [6], IS-IS [7], or some proprietary RIP implementations
[8]. This application scenario differs from the SPM by the
fact that traffic undergoes load balancing possibly more than
once and that the amount of input traffic for a load balancer
depends on preceding load balancers, which is illustrated
by router C in Fig. 2. This creates two new problems: (1)
flows forwarded by an earlier hash-based load balancer over a
specific interface are “polarized” such that a succeeding load
balancer is potentially not able to spread this traffic aggregate
anew [9]; (2) flow reassignments by a preceding dynamic
load balancer entails possibly further flow reassignments at
succeeding load balancers since suddenly missing or new flows
affect their traffic distribution. In this paper, we study how
the load balancing accuracy and the flow reassignment rate is
affected by these issues.

The paper is structured as follows. Section II gives an
overview on static and dynamic hash-based load balancing
algorithms. Section III explains our simulation model and
reviews the problems of single-stage load balancing while
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Section IV presents our new results regarding the accuracy
and the dynamics of multi-stage load balancing. Finally, we
summarize our work in Section V.

II. OVERVIEW OF HASH-BASED LOAD BALANCING

ALGORITHMS

The following notation formalizes the problem of load
balancing for multipath routing. The set of outgoing links
(interfaces)L(r, d) at routerr to destinationd can be derived
from the routing table and corresponds to the paths used from
r to d. All flows at a certain routerr with destinationd are
denoted by the flow setF(r, d). The destinationd actually
represents the set of destinations subsumed by one entry in
the routing table. Hence, the flows inF(r, d) are all spread
over the same interfaces. The target load fractiontLF (r, d, l)
for a specific outgoing linkl ∈ L(r, d) describes the desired
load balancing objective as a percentage of the total traffic
forwarded at routerr towards destinationd over link l. Thus,
the condition

∑
l∈L(r,d) tLF (r, d, l) = 1 must be fulfilled.

For instance, if routerr uses two outgoing linksl0 and l1
to spread the traffic towardsd equally, thenL(r, d) = {l0, l1}
and tLF (r, d, l0) = tLF (r, d, l1) = 50%.

Hash-based load balancing algorithms first use a hash
function h(·) and a characteristic flow IDid(f) of a flow
f to compute a hash valueh(id(f)). A link selector function
sr,d(h(id(f))) then yields the outgoing interfacel ∈ L(r, d)
from the respective set of outgoing links. This functional
approach avoids the need to store the corresponding outgo-
ing interface for every flow separately. The authors of [10]
analyzed different hash functions for this purpose. We use the
16-bit cyclic redundancy check (CRC) in our experiments as
recommended in their study. The flow IDid(f) consists mostly
of the five-tuple source and destination IP address, source and
destination port number, as well as protocol id, or a subset
thereof, which are part of the invariant header field of each
packet. Thus, hash-based algorithms differ with respect tothe
applied hash functionh and link selector functionssr,d.

We assume that the current traffic ratecTR(r, d, l) at router
r over a specific linkl ∈ L(r, d) to destinationd can be
obtained by some means, e.g. by online measurements [11].
It allows to calculate the current load fractioncLF (r, d, l)=

cTR(r,d,l)∑
l′∈L(r,d)

cTR(r,d,l′)
. If it differs substantially from the target

load fractiontLF (r, d, l) due to stochastic effects, a change
of the link selector functionsr,d is required. For instance, if
currently cLF (r, d, l0) = 40% < 50% = tLF (r, d, l0) and
cLF (r, d, l1) = 60% > 50% = tLF (r, d, l1) for the example
from above, then flows should be relocated froml1 to l0 to
abolish this imbalance.

A. Static and Dynamic Load Balancing Algorithms

Static load balancing algorithms do not allow such a change
of the link selector functionsr,d while dynamic algorithms
automatically adapt their link selector function to achieve a
new balanced traffic distribution.
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Fig. 3. Data structure of a direct link selector function.

1) Static Hashing:Link selector functions perform either a
direct mapping between hash values and links or an indirect,
table-based mapping using intermediate data structures.

a) Direct Hashing: Direct link selector functions may
be implemented by a simple modulo operation, i.e.,
mod (h(id(f)), |L(r, d)|) determines the number of the out-
going interface within the link set. This leads to an even
objective distribution of the traffic aggregateF(r, d) over the
links in L(r, d): tLF (r, d, li) = tLF (r, d, lj) ∀li, lj ∈ L(r, d).
The data structure of such a direct link selector function is
illustrated in Figure 3.
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Fig. 4. Data structure of a table-based link selector function.

b) Table-Based Hashing:Target load fractions other than
even load distribution can be obtained by table-based link
selector functions. They perform an indirect mapping from
the hash valueh(id(f)) to an outgoing interfacel ∈ L(r, d)
via so-called intermediate bins. The bins have pointers to the
outgoing interfaces. The entire bin set is denoted byB(r, d)
and the bins are numbered 0, ...,(|B(r, d)|−1). Now, the table-
based link selector function consists of a bin selector function
(e.g. mod(h(id(f)), |B(r, d)|)) that maps a hash value to a
specific bin, and the pointer of the bin that further directs the
flow f to an interface. The data structure of such a table-
based link selector function is illustrated in Figure 4. The
link specific bin setB(r, d, l) contains all bins ofB(r, d) with
pointers tol.

2) Dynamic Hashing:For static link selector functions,
the assignment between bins and links is fixed. Dynamic
algorithms adapt their link selector functions to the current
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load conditions during runtime. Increasing the link specific bin
setB(r, d, l) of a link l increases also the current load fraction
of l. This is achieved by redirecting pointers tol from bins
with pointers to other links. The reduction of the current load
fraction of a link l works analogously. Dynamic algorithms
check the current load difference

cLD(r, d, l)=cLF (r, d, l)− tLF (r, d, l) (1)

for any link l ∈ L(r, d) from time to time, e.g. in periodic
intervals of lengthtr = 1 s, and reassign the pointers of the
bins if needed. Links with a positivecLD(r, d, l) are called
overloaded and those with a negativecLD(r, d, l) are called
underloaded. In the example from above, linkl0 is underloaded
with a current load differencecLD(r, d, l0)=cLF (r, d, l0) −
tLF (r, d, l0) = 40% − 50% = −10%. Link l1 is overloaded
with cLD(r, d, l1) = 10%. A link l may be overloaded with
regard to some flow setF(r, d) and, simultaneously, it may be
underloaded with regard to some other flow set towards other
destinations.

B. Hash-Based Load Balancing Algorithms under Study

In [4] we introduced a modular composition of load bal-
ancing algorithms based on algorithms from literature and
on new ones. The reassignment can be decomposed into a
bin disconnection and a bin reconnection step. We proposed
various algorithms consisting of a combination of different
disconnection and reconnection strategies and evaluated their
performance at a single node. Some of the algorithms are
simple, others are rather complex – depending on the number
of reassigned bins. For the performance analysis of multi-
stage load balancing, we use the algorithms with the highest
load balancing accuracy from both categories. Both algorithms
are greedy. They are only heuristics and achieve certainly not
the optimal accuracy. However, simplicity and fast execution
counts more than optimality.

In the following, the size of a binb∈B(r, d) is determined
by its current traffic ratecTR(r, d, b). It is the overall rate of
the flowsf ∈F(r, d) whose IDsid(f) are mapped tob via the
hash and the modulo function. The current traffic load fraction
of a bin is defined bycLF (r, d, b) = cTR(r,d,b)∑

b′∈B(r,d)
cTR(r,d,b′)

.

This definition is analogous to the definitions for links.
1) Single Bin Disconnection (SBD+): The single bin

disconnection strategy (SBD) is illustrated in Fig. 5. It dis-
connects from the link with the largest overload the largest
bin b that does not turn the link into underload. Then, it
reconnects the bin to the linkl′ ∈ L(r, d) with the largest
underload. If such a binb does not exist, nothing is done.
SBD+ avoids to bring any link into underload and is therefore
called conservative (+). This avoids heavy oscillations when
big bins that turn links into underload are moved back and
forth between a few links at successive reassignment steps.

2) Multiple Bin Disconnection (MBD−): The multiple bin
disconnection strategy (MBD) is illustrated in Fig. 6. In con-
trast toSBD+, the multiple bin disconnection strategy (MBD)
disconnects so many bins from all overloaded links until any

Disconnection Reconnection

Fig. 5. The single bin disconnectionSBD+ relocates only one bin
in each step to achieve equal load for the three linksl0,l1, and l2.

Disconnection

Disconnection Reconnection

Step 1

Step 2

Bin pool

Bin pool

Fig. 6. The multiple bin disconnectionMBD− relocates several bins
in each step to achieve equal load for the three linksl0,l1, and l2.

further bin removal turns them into underload. The bins are
checked in the order of decreasing size for removal (step 1).
Afterwards, each link is turned into underload intentionally
by removing its smallest bin from its link specific bin set
B(r, d, l) (step 2). Therefore, we call this strategy progressive
(-). The disconnected bins are collected in a so-called bin
pool BP(r, d). Then, these bins are reassigned again in the
order of decreasing size. AlthoughMBD− turns all links into
underload, the problem of heavy oscillations is avoided since
MBD− can disconnect several small bins instead of a big one
to achieve that goal.

III. A CCURACY AND DYNAMICS OF SINGLE-STAGE

HASH-BASED LOAD BALANCING

We first explain our simulation model and, then, review
the problems of single-stage load balancing with static and
dynamic algorithms.

A. Simulation Model

The interarrival time of flows on Internet links are expo-
nentially distributed with rateλIAT [12]–[14]. Therefore, we
apply the Poisson model for flow arrivals in our simulation.
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The holding times are identically and independently distributed
with a mean value ofE[B] = 90 s. The resulting offered
load can be calculated bya = λIAT · E[B] measured by the
pseudo unit Erlang (Erl) and reflects the average number of
simultaneous flows. We use synthetically generated flow IDs
consisting of the four-tuple source and destination IP address
and source and destination port.

In the single-stage performance evaluation, we study the
load balancing behavior for a flow setF(r, d) at router r
destined ford and, thus, simulate the traffic distribution to
a given number of interfaces at a single node according to a
given target load fractiontLF (r, d, l). In the multi-stage analy-
sis, we extend this study to networks and simulate the traffic
distribution to a number of paths at multiple interconnected
routers according to the respective target load functions.

Standard simulation techniques were applied to obtain confi-
dence intervals and a high simulation credibility. We simulated
so long that the 99% confidence intervals deviate at most 1%
from the respective mean values. As they are hardly visible,
we do not show them in the following figures.

B. Impact of Traffic Properties on the Accuracy of Static Load
Balancing

Both the flow rate variability and the number of simultane-
ous flows influence the load balancing accuracy. If all flows
have the same size, the task of load balancing reduces to the
problem of distributing the active flows over the paths just
according to their number and not to their rate. Heterogenous
flow rates complicate this task with an increasing variability.
In our study we work with flows with heterogeneous rates of
64 kbit/s and2048 kbit/s and a mean of256 kbit/s, which
yields a relatively high coefficient of variation of2.29 [15].
In fact, measurements with real Internet traffic found that a
few large flows (elephants) produce50% to 60% of the total
traffic while the rest is due to many small flows (mice) [16],
[17].

We first study the impact of the number of simultaneous
flows in a very simplistic scenario. The load of a flow
aggregateF(r, d) is balanced equally between two links by a
static load balancer without flow reassignments. We measure
the current load fractioncLF (r, d, l) for each link and capture
a time-weighted histogram to assess the behavior over time.
Figure 7 shows the resulting distribution functions. The x-axis
shows the load fraction on one linkl with a granularity of
1%, and the y-axis shows the probability that the observed
load fractions are smaller than or equal to a valuex on this
link l at an arbitrary time instant. The results for the second
link are symmetric as we consider load balancing over two
links here. The load balancing accuracy is high if the curve
increases around the target load fractiontLF (r, d, l) = 50%
with a steep slope. The curves correspond to an offered
load of a = 10{2,3,4} Erl. It is clearly visible that the load
balancing accuracy increases with the number of simultaneous
flows. An offered load of 10 Erl is definitely too small for
load balancing since we observed almost any load fractions
between0% and 100% and, thus, is not shown here. In the

following experiments, we consider an offered load of100 Erl
because it is a moderate aggregation degree and, thereby, more
challenging for the load balancing accuracy.
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Fig. 7. Impact of the offered load on the load balancing accuracy
with static hashing (target distribution:50%, 50%).
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Fig. 8. Impact of dynamic algorithms on the load balancing
inaccuracyI (target distribution:10%, 20%, 30%, 40%).

C. Accuracy Increase through Dynamic Load Balancing

In case of moderate aggregation level, static load balancing
is not accurate enough. Dynamic load balancing algorithms are
needed. To study their accuracy, we distribute the traffic over
four links with target load fractions of 10%, 20%, 30%, and
40% since this is more demanding for the algorithms. The
bin reassignment interval length is set totr = 1 s. We use
the average values of the current load differencecLD(r, d, l)
(cf. Equation 1) of all linksl ∈ L(r, d) to measure the load
balancing inaccuracy

I=
1

|L(r, d)|
∑

l∈L(r,d)

|cLD(r, d, l)|. (2)

Its meanE[I] captures the inaccuracy over time by a single
number. The inaccuracyI is a very intuitive measure, but it
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only helps compare the algorithms in the same scenario. Load
balancing accuracy of scenarios with other target distribution
values or even a different number of links cannot be compared
by that approach. Figure 8 illustrates the complementary
distribution function of I for static hashing,SBD+, and
MBD−. The faster the curves decay, the higher is the load
balancing accuracy. TheSBD+ algorithm (E[I] = 2.27%) is
significantly more accurate than static hashing (E[I] = 8.42%)
but its accuracy is further improved by theMBD− algorithm
(E[I] = 0.81%). This clearly shows the benefit of dynamic
load balancing.

D. Drawback of Dynamic Load Balancing

Dynamic load balancing algorithms cause flow reassign-
ments that may lead to packet reordering. Not necessarily
every flow reassignment results in packet reordering, but the
packet reordering probability scales with the flow reassign-
ment rateλFR(r, d). The flow reassignment rateλFR(r, d)
is defined as the average number of reassignments of a flow
per second. For a bin reassignment interval lengthtr = 1 s
andMBD−, the flow reassignment rate is about0.04 1

s which
means that a flow is reassigned on average every25 s and that a
flow with a duration of90 s is reassigned3.6 times on average.
This is still well acceptable. ForSBW+ it is even lower with
a value of about0.023 1

s since only one bin is relocated per
reassignment step.

E. Impact of Algorithm Parameters on the Accuracy of Load
Balancing

The experiments in the preceding paragraph were conducted
with 100 intermediate bins. The number of applied bins is a
crucial factor for dynamic table-based load balancing algo-
rithms. It directly influences the load balancing granularity.
Our performance analysis in [4] showed that a smaller number
of bins (10) with dynamic adaptation is counterproductive
and large values (500, 1000) do not lead to any further
significant improvement. We work with 100 bins because they
lead to a sufficiently high accuracy and impose still moderate
complexity. Our investigation of the reassignment interval tr
showed that fortr ∈ {10, 100} s the inaccuracy increases to
unacceptably high values and good load balancing results are
only achieved fortr ∈ {0.1, 1} s. However, only fortr = 1 s
the flow reassignment rate is acceptable.

F. Comparison to other studies

Many related studies (e.g. [18], [19]) perform a fully de-
tailed network simulation on the packet level to measure the
packet reordering probability. However, the obtained results
depend significantly on the network topology and the routing,
on the latency of different paths, and on the queueing delay
caused by cross traffic. Thus, there are many other factors but
load balancing that influence the packet reordering probability.
Therefore, we rather use a flow level simulation and focus
on the flow reassignment rateλFR which is affected only
by dynamic load balancing. The packet reordering probability
scales with the flow reassignment rateλFR. Besides, real

traffic traces are often used to emphasize that the results are
realistic. The quality of hash functions has been examined
in [10] with real traffic traces. The 16-bit CRC function
that we use in our study spreads the flows most evenly. We
study the general potential of different load balancing schemes
under various conditions and not the quality of hash functions.
Thus, we use synthetically generated flow IDs to avoid any
correlation effects within a specific trace.

IV. A CCURACY AND DYNAMICS OF MULTI -STAGE LOAD

BALANCING

We extend the single-stage performance evaluation at a sin-
gle node to multi-stage in networks where polarization effects
and interdependencies between decisions made at different
stages occur.

A. The Traffic Polarization Effect

With ECMP every node allowing another forking of the
multi-path performs load distribution. Thus, traffic undergoes
load balancing possibly more than once. This complicates the
control over the load balancing result significantly.

21 22

31 32

11

50%

100% 0%

50%

Fig. 9. The traffic polarization effect.

In Fig. 9 both router11 and 21 use the same static load
balancing algorithm without flow reassignments. Router11
ideally splits the flows in half. Since the static load balancing
depends only on the characteristic flow ID, the algorithms at
both routers make the same decisions based on this ID. Every
flow that is sent over the left interface by11 is sent over the
left interface by21 as well since their IDs produce again the
same hash values. Thus, the load balancing algorithm at router
21 is without effect. This phenomenon is called polarization
effect similar to light passing through polarization filters [9].
Dynamic hashing alleviates this effect as it reassigns flows
grouped in bins to other links. However, some bins remain
empty and this leads to decreased load balancing granularity
and to worse accuracy.

To heal the polarization effect, a randomly generated ID
can be assigned to every node in the network. Ideally, this ID
is unique for every node and changes the output of the hash
function such that the polarization effect vanishes completely.
This modification of the input values to the hash function must
be fast and retain the original potential of the load balancing
mechanisms. We suggest a 32-bit random ID. There are many
different possible operations to combine the random ID and
the flow ID to a modified input value:

c©IEEE International Conference on Communications (ICC), Glasgow, UK, June 2007 – page 5/8



APP Append random and flow ID
XOR Combine last 32 bits of random and flow ID by

bitwise-XOR
AND Combine last 32 bits of random and flow ID by

bitwise-AND
ADD Perform integer addition between both IDs as binary

numbers

So far anti-polarization mechanisms are proprietary and no
information about influencing the hash function input values
with the random ID are publicly available. In [9] Cisco
suggests the use of algorithmically generated ID which is not
further specified.

B. Accuracy of Hash-Based Multi-Stage Load Balancing

We use the simple test scenario illustrated in Fig. 10
to efficiently test the effect of the proposed modifications
against polarization and to evaluate the accuracy of hash-based
multi-stage load balancing. To assess the effectiveness ofthe
modifications against polarization, we use it as a worst case
scenario. All routers perform static hashing since it is most
sensitive to traffic polarization. All routers at the lower stages
obtain input from one link only with traffic that is possibly
polarized. Finally, the link selector function simply decides to
map even hash values to one link and odd hash values to the
other link. Thus, there are no mechanisms to compensate for
polarization.

Stage 1

Stage 2

Stage 3

Fig. 10. Simple test scenario for the polarization effect.
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Fig. 11. Accuracy of hash-based load balancing algorithms with
anti-polarization mechanisms in networks (target distribution:
50%, 50%).

Ideally, the load is split in half at every router. As seen
in Section III-B, the offered load has a severe impact on the
load balancing accuracy. For a fair comparison we require an
offered load ofa = 102 Erl at all stages where we observe the
load balancing results. We achieve this by simulations where
we feed the router at the first stage with100, 200, or 400
Erl when we evaluate the load balancing accuracy on the first,
second, or third stage.

Figure 11 shows the complementary distribution function
of the load balancing inaccuracy for the bitwise AND and
the integer addition on the three different stages togetherwith
the mean inaccuracyE[I] = 10%. We omit the results for
appending the random ID (APP) and the XOR-operator as they
have no effect against polarization. With both APP and XOR
one link carries100% of the traffic at stages2 and 3. This
can be explained by the mathematical properties of the used
hash function CRC16. Basically, CRC16 interprets the flow ID
as a polynomial over the field consisting of{0, 1}. The hash
value is the residual of the polynomial division of the flow ID
by a standardized generator polynomial. Thus, the hash is an
element of the vector space of all polynomials of degree at
most16 over {0, 1}. It can be shown that both modifications
are linear functions in this vector space and therefore haveno
effect on polarization.

The bitwise AND-operator and the integer addition, in
contrast, cancel the polarization effect completely and retain
the full load balancing potential of static hashing withE[I] =
10% at all stages as seen in Fig. 11. These modifications can be
interpreted as non-linear functions. Bitwise operations should
be preferred as they can be easily computed in hardware.
Thus, we choose the bitwise-AND operation to eliminate the
polarization effect and use the modified input values in the
following experiments if not mentioned otherwise.

Figure 11 also shows the inaccuracy at each stage if we use
the dynamic algorithmsSBD+ andMBD− instead. The load
balancing inaccuracy for both algorithms increases slightly
at each stage. Thus, even though the polarization vanishes
completely as shown above, the dynamic algorithms suffer
slightly from the reassignments made at other routers to which
they can react after some delay only. However, the loss in
accuracy is well acceptable.

C. Dynamics of Hash-Based Multi-Stage Load Balancing

To evaluate the dynamics of multi-stage load balancing
in terms of flow reassignments, we use the more complex
scenario shown in Fig. 12. Flows arrive at the lower stages
from two mutually disjoint paths. This models the dynamics
caused by multiple independent load balancing entities as
nodes in real networks receive traffic from multiple interfaces.
At the same time, the symmetry of the scenario still keeps the
complexity sufficiently low and we can observe the multi-stage
dynamics without bothering with undesirable side effects.Be-
sides, we configure the target load fractiontLF (r, d, l) = 50%
for all routersr and their linksl∈L(r, d). Hence, the routers
are expected to receive an offered load ofa = 102 Erl at all
stages which does not require different simulation runs forthe
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assessment of the load balancing accuracy at each stage as
before. The flow reassignment ratesλFR(r, d) are measured
locally for each routerr. If – for instance – router11 relocates
a flow from the interface to node21 to the interface to node
22, router21 perceives this as the termination of the flow. If
router11 changes this assignment later and reroutes the flow
to node21, router21 perceives this as the start of a new flow.

21 22

11 12

23 24

13 14

31 32 33 34

a = 10 Erl
2

a = 10 Erl
2

a = 10 Erl
2

a = 10 Erl
2

Stage 1

Stage 2

Stage 3

Fig. 12. Complex test scenario for the polarization effect.

0 3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a = 10

2
Erl

Inaccuracy x (%)

P
[I

 >
 x

]

stage 1
stage 2
stage 3

SBD+

MBD-

0.032 0.031
0.032 0.037
0.032 0.042

stage 1
stage 2
stage 3

λFR(1/s)

SBD+ MDB-
5.92 0.62
6.52 0.75
6.58 0.83

stage 1
stage 2
stage 3

E[ ] (%)I

Fig. 13. Dynamics of hash-based load balancing algorithms
with anti-polarization mechanism in networks (target distribution:
50%, 50%).

Figure 13 summarizes the results. The inaccuracy rises
slightly from stage to stage for both dynamic algorithms. The
gap between stage1 and 2 is larger than in the previous
experiment. This is due to the increased dynamics caused by
the input traffic from two independent dynamic load balancing
entities. The reassignment rates forSBD+ remain constant
at 0.032 1

s because theSBD+ bin reassignment potential is
limited since only one bin is relocated in each reassignment
step. ForMBD− the rates increase slightly from stage1
(0.031 1

s ) to stage3 (0.042 1
s ) due to its larger potential to

reassign bins. The increase is still well acceptable. However,
for both concepts the overall end-to-end reassignment rate
λe2e
FR for the flows routed over the three stages is the sum of

the rates at the three stages. Thus, the end-to-end reassignment
rateλe2e

FR increases linearly with the number of load balancing
stages. Therefore, performing load balancing at too many
stages is not recommended.

In addition to the results shown in Fig. 13, we investigated
the accuracy and dynamics ofSBD+ and MBD− in the
scenario of Fig. 12 without anti-polarization mechanisms.The
polarization effect leads to larger variations among the four
different routers at the same stage than with anti-polarization
mechanisms. For instance, the inaccuracy at stage3 is in the
range fromE[I] = 0.72% to E[I] = 0.94% for the four
different routers and the flow reassignment rate in the range
from λFR = 0.043 1

s to λFR = 0.050 1
s . Thus, polarization

leads to performance degradation also in case of dynamic
algorithms and the modifications against polarization should
be used.

V. SUMMARY AND CONCLUSION

Multipath Internet routing requires load balancing on the
flow level to avoid packet reordering. This can be done by
hash-based load balancing algorithms. We reviewed the basic
architecture of such algorithms and, in particular, explained
a simple and a complex load balancer that we identified
as especially well performing at single nodes in [4]. They
were the candidates for our study. We showed that there
is a difference between the target load distribution and the
load balanced result due to stochastic effects. Dynamic load
balancing mechanisms reduce the inaccuracy by reassigning
flows to other paths and cause thereby another potential
for packet reordering. We identified traffic properties that
influence their accuracy and proposed appropriate parameters
for the load balancing algorithms to control it.

In this paper we considered load balancing in networks, i.e.
the impact of several load balancing steps in series on the
load balancing accuracy and the flow reassignment rate. We
explained why simple application of the same load balancing
algorithm in case of static load balancers cannot balance the
traffic and why this increases the load balancing inaccuracy
for dynamic load balancers. We selected an efficient anti-
polarization mechanism among some intuitive candidates and
showed that suitable methods provide a general improvement
of load balancing methods for their application in networksin
terms of accuracy. Then, we investigated the flow reassignment
rate in a complex multi-stage network architecture where
load balanced traffic from different origins provides the input
for the next load balancer. This does not degrade the load
balancing accuracy if anti-polarization mechanisms are used,
but the overall flow reassignment rate increases approximately
linearly with the number of load balancing steps.

After all, load balancing mechanisms should be carefully
chosen to minimize the load balancing inaccuracy. Their
inaccuracy should be taken into account by the network’s
resource management, especially if the traffic load is low or
moderate. If flows undergo load balancing several times during
transportation, anti-polarization mechanisms should be used
to get an effective traffic distribution. Finally, load balancing
should not be applied too often to the same set of flows
since this increases the probability for route flaps and packet
reordering.
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