(©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redis-
tribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been

published in 20th International Teletraffic Congress (ITC20), 2007, 10.1007\/978-3-540-72990-7_56.

Estimating Churn in Structured P2P Networks

Andreas Binzenbfer' and Keniji LeibnitZ

1 University of Wiirzburg, Institute of Computer Science
Chair of Distributed Systems, Wvzburg, Germany
bi nzenhoef er @ nf or mat i k. uni - wuer zbur g. de
2 Graduate School of Information Science and Technology
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
leibnitz@st.osaka-u.ac.jp

Abstract. In structured peer-to-peer (P2P) networks participating peers can join
or leave the system at arbitrary times, a process which is known as. dlany
recent studies revealed that churn is one of the main problems facat/yis-
tributed Hash Table (DHT). In this paper we discuss different possibibtfiesw

to estimate the current churn rate in the system. In particular, we shovwtdhow
obtain a robust estimate which is independent of the implementation details of
the DHT. We also investigate the trade-offs between accuracy, okraed re-
sponsiveness to changes.

1 Introduction

With the recent development of new peer-to-peer (P2P) athires, P2P has evolved
from simple file-sharing networks to efficient alternatit@she classic client-server ar-
chitecture. This is accomplished by each peer particigatia logical overlay structure,
simultaneously acting as client and as server. The peesjmnsible for maintaining
its share of information and providing it to the other peecguesting this data.

Additionally, P2P networks have no static network topolagy each participating
peer may join or leave the overlay at any time. This processfésred to ashurn [1].
However, this freedom of having a highly dynamic networkisture comes at a cost.
The higher the churn rate is, the more difficult it becomegtiernetwork to maintain
its consistency [2]. Too high churn can cause routing fadutoss of stored resources
or the entire overlay structure, or inconsistent views effibers on the overlay.

Thus, itis essential that the overlay network structureagwained even in the pres-
ence of high churn. Especially in structured P2P architestisuch as Chord [3], where
all peers are arranged in a ring structure, the integrithefrteighborhood relationship
among the peers must be kept at all times. As a consequese, tietworks require
more maintenance traffic when the churn rate is high. How&&P networks operate
without a centralized control unit and each peer has onlynédd view of the entire
network, usually not being aware of the current churn ratbémnetwork. Thus, a peer
should be able to estimate the churn rate from the limiteorin&tion that is available
and autonomously react to high churn situations by incnggtsie maintenance traffic.

In this paper, we propose a fully distributed algorithm feeps to estimate the churn
rate by exchanging measurement observations among negghtiee overlay network

itself is used as a memory for the estimate while each onl@e pontributes to up-
dated measurements of the estimator. The advantage of étiechis that it operates
passively, i.e., there are no additional entities requitechonitor online and offline

periods of the peers and no further overhead is necessarye Waimainly consider

Chord-based DHT networks, our method is not restricted yoype of structured P2P
overlay since it operates independently of the underlyirfyProtocol. Wherever nec-
essary, we will point out the corresponding differencestb@ptypes of structured P2P
networks, e.g. Kademlia [4] or Pastry [5].

The paper is organized as follows. In Section 2, we discusgesexisting models
for estimating the churn rate in P2P networks. This is foddviby Section 3 where we
give a detailed description of our proposed estimationmehé&ection 4 will show that
our algorithm is capable of retrieving accurate estimatesvae will study the impact
of the parameters, e.g. the number of monitored neighbdiseostabilization interval,
on the performance of our approach. Finally, we concludeptiger in Section 5 and
elaborate on possible extensions.

2 Discussion of Different Churn Models

The impact of joining peers is usually the less problemasigeat of churn, since it
mainly results in temporary failures like routing incorieizies or resources which
might be temporarily located at a wrong position in the averiThe process of peers
leaving the system, however, can result in irreparable danlike loss of the overlay
structure or loss of data stored in the overlay. In genecalerdepartures can be divided
into friendly leaves andnode failures. Friendly leaves enable a peer to notify its overlay
neighbors to restructure the topology accordingly. Nodkiries, on the other hand,
seriously damage the structure of the overlay by causitg staghbor pointers or data
loss. In this paper we therefore concentrate on node failure

There are two predominant ways to model churn. The first assuurn per net-
work by specifying a global join and leave rate [1]. This is@alery similar to the
half-life of a system as defined in [6]. Usually the globahjprocess is modeled by a
Poisson process with rate One of the main problems of this model is that the number
of nodes joining the system within a given time interval idépendent of the current
size of the system. However, while a join rate of 50 peers @eoisd is quite significant
for small networks, it might have no noticeable influenceemMarge networks.

Another way to model churn is to specify a distribution foe time a peer spends
in the system (online time) or outside the system (offlinedinThis way the churn rate
can be considered per node and thus generates a churn betvnid is comparable in
networks of different size. As in [7] we turn our main attemtito scenarios where the
join and failure rate are both described per node. To be ahteadel the offline time
of a peer, we assume a global numbemngbeers, each of which can either be online
or offline. Joins are then modeled by introducing a randorakeée T describing the
duration of the offline period of a peer. Accordingly, leaees modeled by a random
variableT,, describing the online time of a peer. Usually, andTy are exponentially
distributed with mearE[T,n] and E[Tys], respectively. However, this may not hold in

realistic scenarios where distributions tend to becomeerskewed [8]. Therefore, in
Section 3 we design our estimator independent of the disioib of 7o, andTo.

The actual user behavior in a real system heavily dependbeokind of service
which is offered. For example, Gummadi et al. [9] showed B2R users behave essen-
tially different from web users. Additionally, Bhagwan &t[A0] argue that availability
is not well-modeled by a single-parameter distributiort, ingtead is at least a com-
bination of two time-varying distributions. This is suppad by the observation that
failure rates vary significantly with both daily and weeklgtierns and that the failure
rate in open systems is more than an order of magnitude hipherin a corporate
environment [11]. Finally, to be able to compare the perfamoe of different selection
strategies for overlay neighbors, Godfrey et al. [8] présetefinition of churn which
reflects the global number of changes within a time intetvalWhile the definition is
very useful in simulations which permit a global view on tlgstem, it cannot be used
by an estimator which can only rely on local information.

3 Estimating the Churn Rate

In general, an estimator for the churn in the system must mesway capture the
fluctuations in the overlay structure and then deduce amatsifor the churn rate
from these observations. In structured P2P networks, eeeht@as periodic contact to
a specific number of overlay neighbors. Those overlay neighare calleduccessors

in Chord, k-bucket entries in Kademlia, orleafs in Pastry. The basic principle of the
estimator described here is to monitor the changes in thdgghhber list and use them to
derive the current churn rate.

3.1 Obtaining Observations

We model the behavior of a peer using two random varighgandT which describe
the duration of an online session and an offline session.fibdel assumes that offline
peers will rejoin the overlay network at a later point in tinvéhile this is a very rea-
sonable assumption for closed groups like corporate n&saar distributed telephone
directories (Skype), other applications like contentribstion (BitTorrent) might have
no recurring customers. For the latter case, an estimattiégglobal join rate\ is pre-
sented in [12] based on the average age of peers in the neiligtbdhe main problem
is that such estimators require an additional estimateeoftiirent system size [13].
Each online peep stores pointers to well defined overlay neighbors (or contacts)
which are specified by the individual DHT protocols. To maintthis structure of the
overlay, peep periodically contacts a special subset of its neighborsyetg,, sec-
onds and runs an appropriatabilization algorithm. This corresponds, e.g.,iocket
refreshes in Kademlia or the stabilization with the direct successo€hord. At each
of these stabilization instants the peer synchronizeseightvor list with those of its
contacts. Our estimator monitors the changes in this neigligi and collects different
realizations of the random variabl&s, and 7. Therebyobs(i) is theith observation
made by the peer andme(7) is the time when the observation was made. The obser-
vation history is stored in a list which contains upktg,,. entries. Furthermore, a peer

Toif = now — tgﬁ 1. periodic stabilize “2. detect offline peer
e ‘\‘

3. notify neighbors
Fig. 1. Peerp rejoins the network and sends itBig. 2. Peerp only monitors its direct neighbor
offline duration to itsc neighbors s but distributes its observations

stores the time stamp§, and¢’; which correspond to the time pegiitself joined or
departed from the overlay, respectively.

The shorter a peer stays offline on average the higher is thegte. To obtain
realizations ofl i, a peer stores the timé&; when it last went offline. The next time
it goes online it calculates the duration of its offline sesshsnow — t& and sends
this value to itsc overlay neighbors:; (cf. Fig. 1). Note that the information can be
piggybacked on other protocol messages to avoid unnegesgarhead. In Chord, a
joining peer contacts its successors and possibly its fandgerPastry its leaf set or
neighborhood set, and in Kademlia it refreshes its closastdi. These messages can
be used to disseminate the observed offline time to the gvedgghbors.

To obtain realizations df,, we proceed as follows. In a DHT system, a peeeri-
odically contacts at least one neighlsaio stabilize the overlay structure (cf. Step 1 in
Fig. 2). In Chord this would be the direct successor in a alos& direction, in Kadem-
lia the closest peer according to the XOR-metric. If, duong of its stabilization calls,
p notices that has become offline (cf. Step 2 in Fig. 2), it calculates thetion of the
online session of peerasnow — t3,, wherets, is the time when peer went online.
Peerp then distributes this observation to all its overlay neigtsbas shown in Step
3 in Fig. 2. If the DHT applies some kind gier down alert mechanism [1, 11], the
information could also be piggybacked on the correspondatdy messages.

An obvious problem of this approach is that pgetoes not always naturally know
ts,. the time when peey went online. This is, e.g., true jf went online aftes or if s
became the successonmofiue to churn. For this reason each pearemorizes the time
ts, when it went online and sends this information to its new poegsor whenever it
stabilizes with a new peer. To cope with the problem of asyarobus clocks it sends
its current online durationow — tg,. This way the error is in the order of magnitude of
a network transmission and thus negligible in comparisdhewnline time of a peer.

When a peer joins the network, it first needs to obtain somerehisens before it
can make a meaningful estimate of the churn rate. Therefgrejse the overlay net-
work as a memory of already obtained observations. If a neaw joéns the overlay it
downloads the current list of observations from its diragtcessor. This way the ob-
servations persist in the overlay and a new peer can alreadynsth a useful estimate
which reflects the current churn rate in the network. An ahliéve is to invest more
overhead by periodically contacting a number of peers @bt just one. Mahajan
et al. [14] present an algorithm which relies on the fact #h@eer continuously ob-
servesc overlay neighbors. Such a peer should on average observiaiture every

0.08 Ton
p
0.07
? (1000, 0.05)
0.06
§ TOFI N Ton
g 005 n1 =
©
% 0.04 Ton | Ton L Ton
“ 003 1(1000, 0.05) n2 == =
0.02
0.01 TOn 1 Ton
] 200 400 600 800 1000 ¢ s
Sorted Estimates '
Fig. 3. Sorted estimateg:(= 103, a = 95) Fig. 4. Observations in lifetime of peer

At = 1. E[Ty). Thus, if a peer observesfailures in At the mean online time of a
peer can be estimated as:

~ c- At c- (time(k) — time(1

Biry) = C2At _ e (time(k) — time(1))

k k

In addition to the periodic contact tmeighbors, the algorithm also has to struggle with
the correctness of the neighbor pointers and the problerbtafring enough observa-
tions during the lifetime of the peer.

3.2 Derivation of the Churn Rate

In this section we will use the following notation: For a ranavariableX', we denote
x(t) as the pdf X (¢) as the cdf, and’[X] as the mean. Estimated values will be marked
using a hat. Once a peer has obtained a list of observatigiig), i = 1, ...,k of the
random variable§;, and Ty, it can rely on robust estimates like the empirical mean
and the empirical standard deviation.

The larger we set, i.e. the more observations a peer maintains in its histbey,
more accurate the estimate is going to be. Howevérjsfchosen too large, it will take
longer for the estimator to react to changes in the curreatrchate. In this context,
the limits of the corresponding confidence interval can leeldue autonomously derive
an optimal value of. If the calculated confidence interval is larger than a piiadd
threshold, a peer can incredsaccordingly.

While the mean ofly,, and Ty give a first idea about the churn in the system, the
main purpose of the estimator is to self-tune the parametdrse DHT or to calculate
the probability of certain events. This usually requireswiedge of the entire distri-
bution or at least of some important quantiles. For exantplealculate the probability
that an overlay neighbor will no longer be reachable at the stbilization instant,
we need to know the probabiliy that this contact will stay online for less than,,
seconds. An unbiased point estimator for this probabiitgiven by:

PR i i .
P =P (Ton < tstar) = %\{Tgn Ton < tstay fOri=1,2,.. k}|, (1)

where| - | indicates the cardinality of a set. Th80(1 — «) confidence interval fop
can be calculated using the following bounds:

p(1 —Pp)
k

l(k,a)=p—2z1_2 pl=p) 2

u(k,a) =p+ Z1-g - a i

wherez; ¢ is thel — § critical point for a standard normal random variable. Inecas
over- or underestimating has serious consequences foptie@application, the limits
of the confidence interval can be used as estimates theraselve

We simulated an overlay with;,, = 30 s where the online time of a peer was expo-
nentially distributed with mea®'[T,n] = 600 s. Under these conditions, the probability
p that a specific peer goes offline before the next stabilindtistant is 4.88%. Fig. 3
shows the sorted estimatespand the corresponding upper and lower bounds from
1000 peers. The upper bounck,) tends to overestimate and the lower boufid «)
tends to underestimate. Note, that due to the denominatégm (1) the estimate is
discretized into steps gf.

In some cases an application requires knowledge of theeatiitribution function
of the online time. If the type of distribution is known a miiathe peer can use the
correspondingviaximum Likelihood Estimator (MLE) to estimate the parameters of the
distribution. However, there is always the danger of asagran incorrect distribution
which would lead to correspondingly distorted results. Agbility to reduce this risk
is to perform a hypothesis test [15] to verify that the typedistribution is actually
the assumed one and only use an MLE if the test delivers aiy@sisult. In general,
however, the actual type of distribution is not known or aesppsition of multiple
distributions. In this case, a peer has to rely on an estiofatee quantiles [16] of the
online distribution.

To show the importance of using the overlay network as a mgrfwralready
made observations, we regard the random variablhich describes the number of
observations a peer makes during its lifetime provided ithaintinuously observes
overlay neighbors. This concept is visualized in Fig. 4 vehee assume that a neighbor
n; which went offline is immediately replaced by another pebe fTandom variablé&
corresponds to the number of leave events in the figure andecaomputed as

P(X=i)= / fon(t) - P (X = i[Ton = £) dt. @3)
0
In the case of exponentially distributed online times, t@a be written as

~ At)! ct
P(X =1) = —Xt.(ci_fckt - ¢ 4
(X =1) /0 Ae et R)

since the number of departures in a fixed interval of lengshPoisson distributed with
parameter: - \.

To compare this theoretical approximation to practicaligal we simulated an over-
lay network withTo, = 300s, tsiap = 30s, ande = 40, where the online/offline
time of a peer is exponentially distributed. The maximune sizthe history was set to
kmae = 100. Fig. 5 shows the probability density function &f for both the analysis

18
— Simulation
0.025
Analysis 16
5
0.02 £ 14
u £ 12
0.015
g ¥ 1 i
©
0.01t £ 3
w
6 — Simulation
0.005)
- - Analysis
4
% 20 40 60 80 100 5 10 15 20 25 30
Number of observations Elapsed simulation time [h]
Fig. 5. Expected observations fer= 40 Fig. 6. Response to churn changes

and the simulation. It can be seen that the analysis mattleesirnulation very well
except for the two peaks at the left and the right of the figlilee peak at 100 clearly
results from the maximum size of the history. That is, allgadoilities forP(X > 100)

are added td°’(X = 100). The peak at O arises from the fact that while the analysis
immediately takes offline peers into account, the first §iiion instant in the simu-
lation occurs 30 s after the peer joined the network. Thugedrs which stay online
for less than 30's, can never make an observation. In conalusdth the analytical and
the simulation results show that a peer does not make enduggnations during its
lifetime in order to derive a meaningful estimate and a gaidretor should therefore
utilize the overlay network as a memory for already made vasiens.

The more observations a peer makes per time unit, the fastn react to changes
in the global churn rate. This can be measured by lookirif{&tc, the time between
two observed leave events, @f;.", the time between two observed join events. If
a peer shares its observations witbverlay neighbors, the next observation is made
as soon as one of these+ 1 peers goes offline. Thus, the distribution@f2¢ can
be calculated as the minimum ef+ 1 forward recurrence times dfy,. Due to the
memoryless property, the forward recurrence time of aneaptally distributed online
time Ty, is also exponentially distributed with the same parametershis case the
distribution of T'’¢2>¢ can be calculated as:

P (Téifswe < t) =1-P (Ton > t)c+1 =1- 67(C+1)/\t~ (5)

If the distribution is not known, we can still easily comptite mean off /"™ as

BT} = bl[f“lﬁ]. The calculation is a little more complicated fof;*“* since the
time when a peer actually observes that another peer iseffififers from the actual
time the node left the overlay. Assuming that overlay neighlare updated evety;,;,

seconds, the average erroeis = “Tb which leads to

E[Ton] + €on
c+1

The above considerations can be used to approximate thetexpgame it takes the
estimator to respond to a global change of the churn rate. \Wigemean online time of

B[] - ©

the peers changes froBy;4[Ton] t0 Erew[Ton], We approximate the expected response
time E[R] by the time needed to collekt,,,.. new observations.

kmaz
E[R] = Eold[Ton} + c+1 . (Enew [Ton} + Eon) (7)

Fig. 6 compares the analytical response time to that oltafireen a simulation
run. In the simulation we again used exponentially distedwnline/offline times, set
kmaz = 100, ¢ = 10, tstqp = 30, and changed[15n] from 10 min to 5min to 15 min
and back to 10 min afte¥.33 h, 16.66 h, and25 h of simulation time, respectively. The
simulated curve shows the mean of the estim@t&f,,] values of all peers, which were
online at the corresponding time. The error bars repreberihterquartile range. It can
be seen that the estimator is able to capture the changes ohthn rate and that the
time it takes to adjust to the new value complies with thesisl Note that, due to the
stabilization period of 30 s, the estimated valuegdie= 15 s above the actual value.

4 Numerical Results

In this section we will evaluate the proposed estimatorgisimulations. Unless stated
otherwise, we will always consider that the online and offltrmes of the users are
exponentially distributed with meaffi[T,n] and E[T5x], respectively. The default stabi-
lization interval ist.:,, = 30s and the size of neighbor list is= 20. We will further
assume that there are 40000 initial peers \liffi,,] = E[Tux], resulting in an average
of 20000 online peers at a time. Although our estimator wekbults for both online
and offline time, we will concentrate on estimating the omlimeTg,, since this is usu-
ally a more important parameter for the system performande€ g can be calculated
in an analogous way.

4.1 Proof of Concept

The main purpose of this section is to show that the theoceticept of the proposed
estimator as described in Section 3 does work equally webrattice. We focus on
Chord since it is the currently most studied DHT network &@sttiure. Additionally,
we will provide analytical calculations verified by simpdifl simulations, focusing on
properties which are important to our estimator. That ispvagnly disregard all mech-
anisms dealing with document management or replicatiormddel the stabilization
algorithm, a peer synchronizes its neighbor list evgry, = 30 s with its direct succes-
sor. When a peer notices that another peer is offline, it ngtifie peers in its neighbor
list, piggybacking the observed online time in these messagd/e consider a symmet-
ric neighbor list, i.e. the number of peers in the successbislthe same as that of the
predecessor list. This improves the stability of the Chorerlay and provides a better
comparability of the result to symmetric overlays like Kedia.

In practice too high or too low estimates might have critmahsequences in terms
of performance or even functionality. In such a case it sthével avoided that the esti-
mator underestimates or overestimates the actual chuenThis can be achieved by
using the upper or lower bound of a specified confidence lesttad of the estimated

1000— - - 300 5
° ‘ Upper Bound -

~.0.975 quantile

"l

5 0 Gt

200 0.025 quantile

100F "

Estimated?|(7,,] [s]

-100| —— 20 neighbors| 1

Deviation from actual value in percent

H
Response time in multiples @f[7,

o, k
1 *igt 24 54
" Lower Bound

4

o

—— 40 neighbors|

>
:
07 1
;
N

+

300 - -200 Q
0 200 400 600 800 1000 0 20 40 60 80 100
Estimate number Number of observations
Fig. 7. Upper and lower confidence levels Fig. 8. Accuracy vs. responsiveness

value itself. Fig. 7 shows the upper and lower bounds of tHé @86nfidence interval
for the mean. As expected, the upper bound overestimateacthal value, while the
lower bound underestimates it. The frequency at which tipeupound underestimates
or the lower bound overestimates the actual value can beemmfkd by the confidence
level. The higher the confidence level is chosen, the smialtee probability for this to
happen at the cost of more inaccurate values.

4.2 Accuracy and Responsiveness

We now take a closer look at the trade-off between accuradyresponsiveness in
dependence of the size of the history. To express accuracgpnsider how much the
97.5% and 2.5% quantiles of the estimated values basédotrservations differ from
the actual value in percent. This is plotted as the dotted bluves in Fig. 8 using the
left y-axis. It can be recognized that increasing the historyr&zelts in more accurate
estimates which decreases exponentially @ver

An increased accuracy, however, comes at the drawback otireglthe respon-
siveness of the estimatdResponsiveness is defined as the time it takes to collget
fresh results when there is a change in the global churn ltaieexpressed in multi-
ples of E[Tun] and approximated by Eqn. (7). Responsiveness increasssliinvith
k (cf. green solid curves of Fig. 8 with rightaxis) and its slope is determined by the
number of overlay neighbors. The more neighbors there heembre results are ob-
tained per time unit and the faster the estimator reactsetatange. The study shows
that depending on the application requirements, a tratleaafbe made between higher
accuracy and faster responsiveness by changing the nufdmmrsidered observations.

In order to provide a more comprehensive study of the respemsss of the esti-
mator and to validate our analytical approximation in Eqf, ve perform simulation
runs with different churn rates and measure the time betwsersuccessive obser-
vations. Obviously, the smaller this inter-observationdiis, the faster the reaction to
changes of the churn rate, see Fig. 9. For different chues @t [To,) = 3005, 600,
and 900 s, the inter-observation time is shown over the nooftverlay contacts. The
dashed lines are the results obtained by the approximatioBgn. (6). It can be seen
that the inter-observation time decreases exponentialliythat the analytical curves
match well with those obtained by simulations. A greater hanthan 20 neighbors is

NS
N O
o g _o

=
o
=]

@
R}

¢ =10, 20, 30, 40

Inter-observation-time [s]
o]
o
EstimatedE|[T,,,] [min]

N
o

N
=]

o

10 20 30 40 50 250 300 350 400
Number of overlay contacts Elapsed simulation time [min]

Fig. 9. Responsiveness to different churn Fig. 10. Reaction to global churn changes

not justified due to the small improvement in responsiveessthe higher overhead
in maintaining those neighbors. Smaller value€@f5,] result in smaller values of the
inter-observation time, but the number of overlay conthetsan even greater influence
on the inter-observation time. Note, that the responssgaéso depends on the quality
of the stabilization algorithm. If a simple algorithm is ds¢he neighbor lists might be
inaccurate, which in turn results in a loss of updates andlaehniinter-observation time.

To show how the inter-observation time translates into ttteia@ response time
and how the estimator behaves during these reaction phasesmulated a network
where the mean online time of all peers was globally changaa the initial value
of 5min to 15min after a simulation time of 250 min. In Fig. 1&ck data point shows
the average of the estimatétT;,] values of all online peers at the same time instant.
Again the more neighbors there are, the faster the estirapfmoaches the new churn
rate. However, increasing the number of neighbors beyord20 does not justify its
additional overhead. Thus, using 20 overlay neighbors,@assaggested in Kademlia,
is a reasonable choice.

4.3 Practicability and Implementation Aspects

In practice, it is desirable that all peers obtain equahesiies in order to derive similar
input parameters for the maintenance algorithms of the R2Rark. However, those
algorithms are performed between direct neighbors of th&.DSince these direct
overlay neighbors also exchange their measured obsamgatteeir churn estimates de-
rived from this data are expected to be highly correlatedydantify the degree of this
correlation, we took a global snapshot during the simutatind had a closer look at
the estimates of 5000 consecutive peers on the Chord ringhéveinvestigated the
correlation between these peers by applying methods frow $eries analysis. Fig. 11
depicts the autocorrelation over the number of neighbatssapws that there is a high
correlation among neighboring peers. The curves for tHerdifit numbers of overlay
neighbors among which the measurement values are exchahgecthat the correla-
tion extends to at leastneighbors in both directions of the ring.

A possible application of the proposed estimator is seaifrtg the stabilization of
the overlay structure. In practice, the stabilization rivég, i.e. the frequency at which

600,
1)
—— Mean estimated,,,;, value
— 500 i
0.8 ¢=10,20,30,40 1 % Optimalt,, value
5 z
3 £ 400
s °° g
g E
g o4 % 300
< £
0.2 k7]
% 200
0 ____________
. 100
-50 -40 -30 -20 -10 O 10 20 30 40 50 0 50 100 150 200
Neighbor Number of observations in history

Fig. 11. Correlation among neighbor peers Fig. 12. Choice of stabilization interval

overlay neighbors are contacted to update the neighbsyitst fixed value. This results
in unnecessary overhead when there is no churn in the netluatritvhen there is a high
churn rate, the stabilization overhead may not be suffic@maintain the stability of
the overlay. For self-adaptive selectionigf,;, a peer should therefore estimate the
current churn rate to derive the probability that the owesliucture becomes instable,
i.e. that all neighbors will be offline before the next staaition call. For example,
given a mean online time af[7,,] = 600s, a peer needs to stabilize at least every
300 s in order to maintain the overlay stability with a praligbof 99.99%. In Fig. 12,
the mean and standard deviation of the,, derived from estimation is shown over
the size of the observation history. It can be seen that Hrelard deviation decreases
exponentially and that a history size of 100 again result good value for practical
purposes.

5 Conclusion

Structured P2P networks apply different maintenance mesims to guarantee the sta-
bility of the overlay network and the redundancy of storedwdoents. Ideally, the pa-
rameters of these mechanisms should be adapted to the tccineen rate. The more
churn there is in the system, the more overhead is neede@otke system stable. As
a first step toward a self-organizing overlay network, weddticed a method which
enables a peer to estimate the current churn rate in thensysid can be used to auto-
nomically adapt the overhead.

The estimator is based on the changes a peer observesshdtsdiverlay neighbors.
The more observations a peer makes, the better is the gofilisyestimate. Therefore, a
peer shares observed events with its direct overlay nerghiyopiggybacking the cor-
responding information in regular protocol messages. Botlytical and simulation
results show that the estimator is able to capture the ductemn rate. The accuracy,
the required overhead, and the responsiveness to changés ealjusted by the num-
ber of observations considered in the estimation proceg®gthe number of overlay
neighbors which share the results. We investigated theesponding trade-offs and
deduced values which are suitable for practical purposasapplications which are

sensitive to an overestimation or underestimation of theawalue, we showed how
to use the upper and lower bounds of a confidence intervatiasates themselves.

In future work, we intend to use the estimator to enable a f@utonomously

adapt the number of overlay neighbors and the number ofcaptd the current churn
rate. This way, the functionality of the overlay networkhgiiill be guaranteed in times
of high churn while the maintenance overhead will be reducgithes of no churn.

Acknowledgments

The authors would like to thank Dirk Staehle and Simon Oeehfr their many ideas,
the input, and the insightful discussions during the coofghis work.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling CinuanlDHT. In: USENIX
Annual Technical Conference, Boston, MA (2004)
Binzenldfer, A., Staehle, D., Henjes, R.: On the Stability of Chord-based B2@®s. In:
GLOBECOM 2005, St. Louis, MO, USA (2005) 5

. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., BalakreanH.: Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications. In: Pré&A@M SIGCOMM'01,
San Diego, CA (2001)

. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer inftfam system based on the

xor metric. In: Proc. of IPTPS’02, Cambridge, MA (2002)

. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed objeettitot and routing for

large-scale peer-to-peer systems. In: Proc. of Middleware'Oijetteerg, Germany (2001)

. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of theoExion of Peer-to-Peer

Systems. In: Proc. of ACM PODC, Monterey, CA (2002)

. Krishnamurthy, S., El-Ansary, S., Aurell, E., Haridi, S.: A statidttbeory of chord under

churn. In: Proc. of IPTPS’05, Ithaca, NY (2005)

. Godfrey, P.B., Shenker, S., Stoica, I.: Minimizing churn in distédusystems. In: Proc. of

ACM SIGCOMM, Pisa, Italy (2006)

. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levil.HZahorjan, J.: Measure-

ment, modeling, and analysis of a peer-to-peer file-sharing workldadProc. of ACM
SOSP’03, Bolton Landing, NY (2003)

Bhagwan, R., Savage, S., Voelker, G.: Understanding availabifityProc. of IPTPS’03),
Berkeley, CA (2003)

Castro, M., Costa, M., Rowstron, A.: Performance and degiglity of structured peer-to-
peer overlays. In: Proc. of DSN'04, Washington, DC (2004)

Ghinita, G., Teo, Y.: An adaptive stabilization framework for distiélouhash tables. In:
Proc. of IEEE IPDPS, Rhodes Island, Greece (2006)

Binzenldfer, A., Staehle, D., Henjes, R.: On the Fly Estimation of the Peer Ptiqulia
a Chord-based P2P System. In: 19th International Teletraffic Cendf€C19), Beijing,
China (2005)

Mahajan, R., Castro, M., Rowstron, A.: Controlling the cost of bditg in peer-to-peer
overlays. In: Proc. of IPTPS’03, Berkeley, CA (2003)

Stephens, M.A.: Edf statistics for goodness of fit and some cosopa. In: Journal of the
American Statistical Association. Volume 69. (1974) 730-739

Chen, E.J., Kelton, W.D.: Quantile and histogram estimation. Inc.R033nd Winter
Simulation Conference, Washington, DC (2001)

