
Estimating Churn in Structured P2P Networks

Andreas Binzenḧofer1 and Kenji Leibnitz2

1 University of Würzburg, Institute of Computer Science
Chair of Distributed Systems, Ẅurzburg, Germany

binzenhoefer@informatik.uni-wuerzburg.de
2 Graduate School of Information Science and Technology

Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
leibnitz@ist.osaka-u.ac.jp

Abstract. In structured peer-to-peer (P2P) networks participating peers can join
or leave the system at arbitrary times, a process which is known as churn. Many
recent studies revealed that churn is one of the main problems faced byany Dis-
tributed Hash Table (DHT). In this paper we discuss different possibilitiesof how
to estimate the current churn rate in the system. In particular, we show howto
obtain a robust estimate which is independent of the implementation details of
the DHT. We also investigate the trade-offs between accuracy, overhead, and re-
sponsiveness to changes.

1 Introduction

With the recent development of new peer-to-peer (P2P) architectures, P2P has evolved
from simple file-sharing networks to efficient alternativesto the classic client-server ar-
chitecture. This is accomplished by each peer participating in a logical overlay structure,
simultaneously acting as client and as server. The peer is responsible for maintaining
its share of information and providing it to the other peers requesting this data.

Additionally, P2P networks have no static network topologyand each participating
peer may join or leave the overlay at any time. This process isreferred to aschurn [1].
However, this freedom of having a highly dynamic network structure comes at a cost.
The higher the churn rate is, the more difficult it becomes forthe network to maintain
its consistency [2]. Too high churn can cause routing failures, loss of stored resources
or the entire overlay structure, or inconsistent views of the peers on the overlay.

Thus, it is essential that the overlay network structure is maintained even in the pres-
ence of high churn. Especially in structured P2P architectures, such as Chord [3], where
all peers are arranged in a ring structure, the integrity of the neighborhood relationship
among the peers must be kept at all times. As a consequence, these networks require
more maintenance traffic when the churn rate is high. However, P2P networks operate
without a centralized control unit and each peer has only a limited view of the entire
network, usually not being aware of the current churn rate inthe network. Thus, a peer
should be able to estimate the churn rate from the limited information that is available
and autonomously react to high churn situations by increasing the maintenance traffic.

In this paper, we propose a fully distributed algorithm for peers to estimate the churn
rate by exchanging measurement observations among neighbors. The overlay network

c©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redis-

tribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been

published in 20th International Teletraffic Congress (ITC20), 2007, 10.1007\/978-3-540-72990-7 56.

itself is used as a memory for the estimate while each online peer contributes to up-
dated measurements of the estimator. The advantage of this method is that it operates
passively, i.e., there are no additional entities requiredto monitor online and offline
periods of the peers and no further overhead is necessary. While we mainly consider
Chord-based DHT networks, our method is not restricted to any type of structured P2P
overlay since it operates independently of the underlying DHT protocol. Wherever nec-
essary, we will point out the corresponding differences to other types of structured P2P
networks, e.g. Kademlia [4] or Pastry [5].

The paper is organized as follows. In Section 2, we discuss some existing models
for estimating the churn rate in P2P networks. This is followed by Section 3 where we
give a detailed description of our proposed estimation scheme. Section 4 will show that
our algorithm is capable of retrieving accurate estimates and we will study the impact
of the parameters, e.g. the number of monitored neighbors orthe stabilization interval,
on the performance of our approach. Finally, we conclude thepaper in Section 5 and
elaborate on possible extensions.

2 Discussion of Different Churn Models

The impact of joining peers is usually the less problematic aspect of churn, since it
mainly results in temporary failures like routing inconsistencies or resources which
might be temporarily located at a wrong position in the overlay. The process of peers
leaving the system, however, can result in irreparable damage like loss of the overlay
structure or loss of data stored in the overlay. In general, node departures can be divided
into friendly leaves andnode failures. Friendly leaves enable a peer to notify its overlay
neighbors to restructure the topology accordingly. Node failures, on the other hand,
seriously damage the structure of the overlay by causing stale neighbor pointers or data
loss. In this paper we therefore concentrate on node failures.

There are two predominant ways to model churn. The first assumes churn per net-
work by specifying a global join and leave rate [1]. This is also very similar to the
half-life of a system as defined in [6]. Usually the global join process is modeled by a
Poisson process with rateλ. One of the main problems of this model is that the number
of nodes joining the system within a given time interval is independent of the current
size of the system. However, while a join rate of 50 peers per second is quite significant
for small networks, it might have no noticeable influence in very large networks.

Another way to model churn is to specify a distribution for the time a peer spends
in the system (online time) or outside the system (offline time). This way the churn rate
can be considered per node and thus generates a churn behavior, which is comparable in
networks of different size. As in [7] we turn our main attention to scenarios where the
join and failure rate are both described per node. To be able to model the offline time
of a peer, we assume a global number ofn peers, each of which can either be online
or offline. Joins are then modeled by introducing a random variableToff describing the
duration of the offline period of a peer. Accordingly, leavesare modeled by a random
variableTon describing the online time of a peer. Usually,Ton andToff are exponentially
distributed with meanE[Ton] andE[Toff], respectively. However, this may not hold in

realistic scenarios where distributions tend to become more skewed [8]. Therefore, in
Section 3 we design our estimator independent of the distribution ofTon andToff.

The actual user behavior in a real system heavily depends on the kind of service
which is offered. For example, Gummadi et al. [9] showed thatP2P users behave essen-
tially different from web users. Additionally, Bhagwan et al. [10] argue that availability
is not well-modeled by a single-parameter distribution, but instead is at least a com-
bination of two time-varying distributions. This is supported by the observation that
failure rates vary significantly with both daily and weekly patterns and that the failure
rate in open systems is more than an order of magnitude higherthan in a corporate
environment [11]. Finally, to be able to compare the performance of different selection
strategies for overlay neighbors, Godfrey et al. [8] present a definition of churn which
reflects the global number of changes within a time interval∆t. While the definition is
very useful in simulations which permit a global view on the system, it cannot be used
by an estimator which can only rely on local information.

3 Estimating the Churn Rate

In general, an estimator for the churn in the system must in some way capture the
fluctuations in the overlay structure and then deduce an estimate for the churn rate
from these observations. In structured P2P networks, each peer has periodic contact to
a specific number of overlay neighbors. Those overlay neighbors are calledsuccessors
in Chord,k-bucket entries in Kademlia, orleafs in Pastry. The basic principle of the
estimator described here is to monitor the changes in this neighbor list and use them to
derive the current churn rate.

3.1 Obtaining Observations

We model the behavior of a peer using two random variablesTon andToff which describe
the duration of an online session and an offline session. Thismodel assumes that offline
peers will rejoin the overlay network at a later point in time. While this is a very rea-
sonable assumption for closed groups like corporate networks or distributed telephone
directories (Skype), other applications like content distribution (BitTorrent) might have
no recurring customers. For the latter case, an estimator for the global join rateλ is pre-
sented in [12] based on the average age of peers in the neighbor list. The main problem
is that such estimators require an additional estimate of the current system size [13].

Each online peerp stores pointers toc well defined overlay neighbors (or contacts)
which are specified by the individual DHT protocols. To maintain this structure of the
overlay, peerp periodically contacts a special subset of its neighbors every tstab sec-
onds and runs an appropriatestabilization algorithm. This corresponds, e.g., tobucket
refreshes in Kademlia or the stabilization with the direct successor in Chord. At each
of these stabilization instants the peer synchronizes its neighbor list with those of its
contacts. Our estimator monitors the changes in this neighbor list and collects different
realizations of the random variablesTon andToff. Thereby,obs(i) is theith observation
made by the peer andtime(i) is the time when the observation was made. The obser-
vation history is stored in a list which contains up tokmax entries. Furthermore, a peer

n1 n2 n3

p

Toff = now − t
p

off

c

Fig. 1. Peerp rejoins the network and sends its
offline duration to itsc neighbors

n1 n2 s c

1. periodic stabilize 2. detect offline peer

3. notify neighbors

Fig. 2. Peerp only monitors its direct neighbor
s but distributes its observations

stores the time stampstpon andt
p
off which correspond to the time peerp itself joined or

departed from the overlay, respectively.
The shorter a peer stays offline on average the higher is the join rate. To obtain

realizations ofToff, a peer stores the timetpoff when it last went offline. The next time
it goes online it calculates the duration of its offline session asnow − t

p
off and sends

this value to itsc overlay neighborsni (cf. Fig. 1). Note that the information can be
piggybacked on other protocol messages to avoid unnecessary overhead. In Chord, a
joining peer contacts its successors and possibly its fingers, in Pastry its leaf set or
neighborhood set, and in Kademlia it refreshes its closest bucket. These messages can
be used to disseminate the observed offline time to the overlay neighbors.

To obtain realizations ofTon we proceed as follows. In a DHT system, a peerp peri-
odically contacts at least one neighbors to stabilize the overlay structure (cf. Step 1 in
Fig. 2). In Chord this would be the direct successor in a clockwise direction, in Kadem-
lia the closest peer according to the XOR-metric. If, duringone of its stabilization calls,
p notices thats has become offline (cf. Step 2 in Fig. 2), it calculates the duration of the
online session of peers asnow − tson, wheretson is the time when peers went online.
Peerp then distributes this observation to all its overlay neighbors as shown in Step
3 in Fig. 2. If the DHT applies some kind ofpeer down alert mechanism [1, 11], the
information could also be piggybacked on the correspondingnotify messages.

An obvious problem of this approach is that peerp does not always naturally know
tson, the time when peers went online. This is, e.g., true ifp went online afters or if s

became the successor ofp due to churn. For this reason each peers memorizes the time
tson when it went online and sends this information to its new predecessor whenever it
stabilizes with a new peer. To cope with the problem of asynchronous clocks it sends
its current online durationnow− tson. This way the error is in the order of magnitude of
a network transmission and thus negligible in comparison tothe online time of a peer.

When a peer joins the network, it first needs to obtain some observations before it
can make a meaningful estimate of the churn rate. Therefore,we use the overlay net-
work as a memory of already obtained observations. If a new peer joins the overlay it
downloads the current list of observations from its direct successor. This way the ob-
servations persist in the overlay and a new peer can already start with a useful estimate
which reflects the current churn rate in the network. An alternative is to invest more
overhead by periodically contacting a number of peers instead of just one. Mahajan
et al. [14] present an algorithm which relies on the fact thata peer continuously ob-
servesc overlay neighbors. Such a peer should on average observe onefailure every

Sorted Estimates

E
st

im
at

ed
va

lu
e

ofp

p̂

u(1000, 0.05)

l(1000, 0.05)

0 200 400 600 800 1000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 3. Sorted estimates (k = 10
3, α = 95)

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �� � � � � � � � �� � � �� � � �� � � �

� � � �	 	 	 	

� � � � � � � � �

� � � � � � � � � � �

. .
 .

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �Ton Ton

Ton

Ton

TonTonTon

Ton

p

n1

n2

c

Fig. 4. Observations in lifetime of peerp

∆t = 1
c
· E[Ton]. Thus, if a peer observesk failures in∆t the mean online time of a

peer can be estimated as:

Ê[Ton] =
c · ∆t

k
=

c · (time(k) − time(1))

k
.

In addition to the periodic contact toc neighbors, the algorithm also has to struggle with
the correctness of the neighbor pointers and the problem of obtaining enough observa-
tions during the lifetime of the peer.

3.2 Derivation of the Churn Rate

In this section we will use the following notation: For a random variableX, we denote
x(t) as the pdf,X(t) as the cdf, andE[X] as the mean. Estimated values will be marked
using a hat. Once a peer has obtained a list of observationsobs(i), i = 1, . . . , k of the
random variablesTon andToff, it can rely on robust estimates like the empirical mean
and the empirical standard deviation.

The larger we setk, i.e. the more observations a peer maintains in its history,the
more accurate the estimate is going to be. However, ifk is chosen too large, it will take
longer for the estimator to react to changes in the current churn rate. In this context,
the limits of the corresponding confidence interval can be used to autonomously derive
an optimal value ofk. If the calculated confidence interval is larger than a predefined
threshold, a peer can increasek accordingly.

While the mean ofTon andToff give a first idea about the churn in the system, the
main purpose of the estimator is to self-tune the parametersof the DHT or to calculate
the probability of certain events. This usually requires knowledge of the entire distri-
bution or at least of some important quantiles. For example,to calculate the probability
that an overlay neighbor will no longer be reachable at the next stabilization instant,
we need to know the probabilityp that this contact will stay online for less thantstab

seconds. An unbiased point estimator for this probability is given by:

p̂ = P̂ (Ton < tstab) =
1

k

∣∣{T i
on : T i

on < tstab for i = 1, 2, ..., k
}∣∣, (1)

where| · | indicates the cardinality of a set. The100(1 − α) confidence interval for̂p
can be calculated using the following bounds:

u(k, α) = p̂ + z1−α

2
·

√
p̂(1 − p̂)

k
l(k, α) = p̂ − z1−α

2
·

√
p̂(1 − p̂)

k
(2)

wherez1−α

2
is the1 − α

2 critical point for a standard normal random variable. In case
over- or underestimating has serious consequences for the applied application, the limits
of the confidence interval can be used as estimates themselves.

We simulated an overlay withtstab = 30 s where the online time of a peer was expo-
nentially distributed with meanE[Ton] = 600 s. Under these conditions, the probability
p that a specific peer goes offline before the next stabilization instant is 4.88%. Fig. 3
shows the sorted estimates ofp and the corresponding upper and lower bounds from
1000 peers. The upper boundu(k, α) tends to overestimate and the lower boundl(k, α)
tends to underestimate. Note, that due to the denominator inEqn. (1) the estimate is
discretized into steps of1

k
.

In some cases an application requires knowledge of the entire distribution function
of the online time. If the type of distribution is known a priori, the peer can use the
correspondingMaximum Likelihood Estimator (MLE) to estimate the parameters of the
distribution. However, there is always the danger of assuming an incorrect distribution
which would lead to correspondingly distorted results. A possibility to reduce this risk
is to perform a hypothesis test [15] to verify that the type ofdistribution is actually
the assumed one and only use an MLE if the test delivers a positive result. In general,
however, the actual type of distribution is not known or a superposition of multiple
distributions. In this case, a peer has to rely on an estimateof the quantiles [16] of the
online distribution.

To show the importance of using the overlay network as a memory for already
made observations, we regard the random variableX which describes the number of
observations a peer makes during its lifetime provided thatit continuously observesc
overlay neighbors. This concept is visualized in Fig. 4 where we assume that a neighbor
ni which went offline is immediately replaced by another peer. The random variableX
corresponds to the number of leave events in the figure and canbe computed as

P (X = i) =

∫
∞

0

ton(t) · P (X = i|Ton = t) dt. (3)

In the case of exponentially distributed online times, thiscan be written as

P (X = i) =

∫
∞

0

λe−λt ·
(cλt)i

i!
· e−cλt dt =

ci

(c + 1)i+1
, (4)

since the number of departures in a fixed interval of lengtht is Poisson distributed with
parameterc · λ.

To compare this theoretical approximation to practical values, we simulated an over-
lay network withTon = 300 s, tstab = 30 s, and c = 40, where the online/offline
time of a peer is exponentially distributed. The maximum size of the history was set to
kmax = 100. Fig. 5 shows the probability density function ofX for both the analysis

Number of observationsk

P
D

F

Analysis

Simulation

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Fig. 5. Expected observations forc = 40

Elapsed simulation time [h]

E
st

im
at

ed
E

[T
o
n
]
[m

in
]

Analysis

Simulation

5 10 15 20 25 30

4

6

8

10

12

14

16

18

Fig. 6. Response to churn changes

and the simulation. It can be seen that the analysis matches the simulation very well
except for the two peaks at the left and the right of the figure.The peak at 100 clearly
results from the maximum size of the history. That is, all probabilities forP (X > 100)
are added toP (X = 100). The peak at 0 arises from the fact that while the analysis
immediately takes offline peers into account, the first stabilization instant in the simu-
lation occurs 30 s after the peer joined the network. Thus, all peers which stay online
for less than 30 s, can never make an observation. In conclusion, both the analytical and
the simulation results show that a peer does not make enough observations during its
lifetime in order to derive a meaningful estimate and a good estimator should therefore
utilize the overlay network as a memory for already made observations.

The more observations a peer makes per time unit, the faster it can react to changes
in the global churn rate. This can be measured by looking atT leave

obs , the time between
two observed leave events, orT

join
obs , the time between two observed join events. If

a peer shares its observations withc overlay neighbors, the next observation is made
as soon as one of thesec + 1 peers goes offline. Thus, the distribution ofT leave

obs can
be calculated as the minimum ofc + 1 forward recurrence times ofTon. Due to the
memoryless property, the forward recurrence time of an exponentially distributed online
time Ton is also exponentially distributed with the same parameters. In this case the
distribution ofT leave

obs can be calculated as:

P
(
T leave

obs < t
)

= 1 − P (Ton ≥ t)
c+1

= 1 − e−(c+1)λt. (5)

If the distribution is not known, we can still easily computethe mean ofT join
obs as

E
[
T

join
obs

]
=

E[Toff]
c+1 . The calculation is a little more complicated forT leave

obs since the
time when a peer actually observes that another peer is offline differs from the actual
time the node left the overlay. Assuming that overlay neighbors are updated everytstab

seconds, the average error isεon = tstab

2 which leads to

E
[
T leave

obs

]
=

E[Ton] + εon

c + 1
(6)

The above considerations can be used to approximate the expected time it takes the
estimator to respond to a global change of the churn rate. Whenthe mean online time of

the peers changes fromEold[Ton] to Enew[Ton], we approximate the expected response
timeE[R] by the time needed to collectkmax new observations.

E[R] = Eold[Ton] +
kmax

c + 1
· (Enew[Ton] + εon) (7)

Fig. 6 compares the analytical response time to that obtained from a simulation
run. In the simulation we again used exponentially distributed online/offline times, set
kmax = 100, c = 10, tstab = 30 s, and changedE[Ton] from 10 min to 5 min to 15 min
and back to 10 min after8.33 h, 16.66 h, and25 h of simulation time, respectively. The
simulated curve shows the mean of the estimatedE[Ton] values of all peers, which were
online at the corresponding time. The error bars represent the interquartile range. It can
be seen that the estimator is able to capture the changes in the churn rate and that the
time it takes to adjust to the new value complies with the analysis. Note that, due to the
stabilization period of 30 s, the estimated values lieεon = 15 s above the actual value.

4 Numerical Results

In this section we will evaluate the proposed estimator using simulations. Unless stated
otherwise, we will always consider that the online and offline times of the users are
exponentially distributed with meanE[Ton] andE[Toff], respectively. The default stabi-
lization interval iststab = 30 s and the size of neighbor list isc = 20. We will further
assume that there are 40000 initial peers withE[Ton] = E[Toff], resulting in an average
of 20000 online peers at a time. Although our estimator yields results for both online
and offline time, we will concentrate on estimating the online timeTon, since this is usu-
ally a more important parameter for the system performance andToff can be calculated
in an analogous way.

4.1 Proof of Concept

The main purpose of this section is to show that the theoreticconcept of the proposed
estimator as described in Section 3 does work equally well inpractice. We focus on
Chord since it is the currently most studied DHT network architecture. Additionally,
we will provide analytical calculations verified by simplified simulations, focusing on
properties which are important to our estimator. That is, wemainly disregard all mech-
anisms dealing with document management or replication. Tomodel the stabilization
algorithm, a peer synchronizes its neighbor list everytstab = 30 s with its direct succes-
sor. When a peer notices that another peer is offline, it notifies the peers in its neighbor
list, piggybacking the observed online time in these messages. We consider a symmet-
ric neighbor list, i.e. the number of peers in the successor list is the same as that of the
predecessor list. This improves the stability of the Chord overlay and provides a better
comparability of the result to symmetric overlays like Kademlia.

In practice too high or too low estimates might have criticalconsequences in terms
of performance or even functionality. In such a case it should be avoided that the esti-
mator underestimates or overestimates the actual churn rate. This can be achieved by
using the upper or lower bound of a specified confidence level instead of the estimated

Estimate number

E
st

im
at

ed
E

[T
o
n
]
[s

]

Upper Bound

Lower Bound

0 200 400 600 800 1000
300

400

500

600

700

800

900

1000

Fig. 7. Upper and lower confidence levels

D
ev

ia
tio

n
fr

om
ac

tu
al

va
lu

e
in

pe
rc

en
t

Number of observationsk

0.025 quantile

R
es

po
ns

e
tim

e
in

m
ul

tip
le

s
ofE

[T
o
n
]

40 neighbors

0.975 quantile

20 neighbors

0 20 40 60 80 100
0

1

2

3

4

5

-200

-100

0

100

200

300

Fig. 8. Accuracy vs. responsiveness

value itself. Fig. 7 shows the upper and lower bounds of the 99% confidence interval
for the mean. As expected, the upper bound overestimates theactual value, while the
lower bound underestimates it. The frequency at which the upper bound underestimates
or the lower bound overestimates the actual value can be influenced by the confidence
level. The higher the confidence level is chosen, the smalleris the probability for this to
happen at the cost of more inaccurate values.

4.2 Accuracy and Responsiveness

We now take a closer look at the trade-off between accuracy and responsiveness in
dependence of the size of the history. To express accuracy, we consider how much the
97.5% and 2.5% quantiles of the estimated values based onk observations differ from
the actual value in percent. This is plotted as the dotted blue curves in Fig. 8 using the
left y-axis. It can be recognized that increasing the history sizeresults in more accurate
estimates which decreases exponentially overk.

An increased accuracy, however, comes at the drawback of reducing the respon-
siveness of the estimator.Responsiveness is defined as the time it takes to collectk

fresh results when there is a change in the global churn rate.It is expressed in multi-
ples ofE[Ton] and approximated by Eqn. (7). Responsiveness increases linearly with
k (cf. green solid curves of Fig. 8 with righty-axis) and its slope is determined by the
number of overlay neighbors. The more neighbors there are, the more results are ob-
tained per time unit and the faster the estimator reacts to the change. The study shows
that depending on the application requirements, a trade-off can be made between higher
accuracy and faster responsiveness by changing the number of considered observations.

In order to provide a more comprehensive study of the responsiveness of the esti-
mator and to validate our analytical approximation in Eqn. (7), we perform simulation
runs with different churn rates and measure the time betweentwo successive obser-
vations. Obviously, the smaller this inter-observation time is, the faster the reaction to
changes of the churn rate, see Fig. 9. For different churn rates ofE[Ton] = 300 s, 600 s,
and 900 s, the inter-observation time is shown over the number of overlay contacts. The
dashed lines are the results obtained by the approximation,cf. Eqn. (6). It can be seen
that the inter-observation time decreases exponentially and that the analytical curves
match well with those obtained by simulations. A greater number than 20 neighbors is

Number of overlay contacts

In
te

r-
ob

se
rv

at
io

n-
tim

e
[s

]

E[Ton] = 900s
E[Ton] = 600s
E[Ton] = 300s
Analysis

10 20 30 40 50
0

20

40

60

80

100

120

140

160

Fig. 9. Responsiveness to different churn

c = 10, 20, 30, 40

Elapsed simulation time [min]

E
st

im
at

ed
E

[T
o
n
]
[m

in
]

250 300 350 400

5

10

15

Fig. 10. Reaction to global churn changes

not justified due to the small improvement in responsivenessand the higher overhead
in maintaining those neighbors. Smaller values ofE[Ton] result in smaller values of the
inter-observation time, but the number of overlay contactshas an even greater influence
on the inter-observation time. Note, that the responsiveness also depends on the quality
of the stabilization algorithm. If a simple algorithm is used, the neighbor lists might be
inaccurate, which in turn results in a loss of updates and a higher inter-observation time.

To show how the inter-observation time translates into the actual response time
and how the estimator behaves during these reaction phases,we simulated a network
where the mean online time of all peers was globally changed from the initial value
of 5min to 15min after a simulation time of 250 min. In Fig. 10 each data point shows
the average of the estimatedE[Ton] values of all online peers at the same time instant.
Again the more neighbors there are, the faster the estimatorapproaches the new churn
rate. However, increasing the number of neighbors beyondc = 20 does not justify its
additional overhead. Thus, using 20 overlay neighbors, as e.g. suggested in Kademlia,
is a reasonable choice.

4.3 Practicability and Implementation Aspects

In practice, it is desirable that all peers obtain equal estimates in order to derive similar
input parameters for the maintenance algorithms of the P2P network. However, those
algorithms are performed between direct neighbors of the DHT. Since these direct
overlay neighbors also exchange their measured observations, their churn estimates de-
rived from this data are expected to be highly correlated. Toquantify the degree of this
correlation, we took a global snapshot during the simulation and had a closer look at
the estimates of 5000 consecutive peers on the Chord ring. Wethen investigated the
correlation between these peers by applying methods from time series analysis. Fig. 11
depicts the autocorrelation over the number of neighbors and shows that there is a high
correlation among neighboring peers. The curves for the different numbersc of overlay
neighbors among which the measurement values are exchangedshow that the correla-
tion extends to at leastc neighbors in both directions of the ring.

A possible application of the proposed estimator is self-tuning the stabilization of
the overlay structure. In practice, the stabilization interval, i.e. the frequency at which

c = 10, 20, 30, 40

Neighbor

A
ut

oc
or

re
la

tio
n

-50 -40 -30 -20 -10 0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Fig. 11. Correlation among neighbor peers

Number of observations in history

E
st

im
at

ed
va

lu
e

fo
rt s

ta
b

[s
] Optimaltstab value

Mean estimatedtstab value

0 50 100 150 200
100

200

300

400

500

600

Fig. 12. Choice of stabilization interval

overlay neighbors are contacted to update the neighbor lists, is a fixed value. This results
in unnecessary overhead when there is no churn in the network, but when there is a high
churn rate, the stabilization overhead may not be sufficientto maintain the stability of
the overlay. For self-adaptive selection oftstab, a peer should therefore estimate the
current churn rate to derive the probability that the overlay structure becomes instable,
i.e. that all neighbors will be offline before the next stabilization call. For example,
given a mean online time ofE[Ton] = 600 s, a peer needs to stabilize at least every
300 s in order to maintain the overlay stability with a probability of 99.99%. In Fig. 12,
the mean and standard deviation of thetstab derived from estimation is shown over
the size of the observation history. It can be seen that the standard deviation decreases
exponentially and that a history size of 100 again results ina good value for practical
purposes.

5 Conclusion

Structured P2P networks apply different maintenance mechanisms to guarantee the sta-
bility of the overlay network and the redundancy of stored documents. Ideally, the pa-
rameters of these mechanisms should be adapted to the current churn rate. The more
churn there is in the system, the more overhead is needed to keep the system stable. As
a first step toward a self-organizing overlay network, we introduced a method which
enables a peer to estimate the current churn rate in the system and can be used to auto-
nomically adapt the overhead.

The estimator is based on the changes a peer observes in its list of overlay neighbors.
The more observations a peer makes, the better is the qualityof its estimate. Therefore, a
peer shares observed events with its direct overlay neighbors by piggybacking the cor-
responding information in regular protocol messages. Bothanalytical and simulation
results show that the estimator is able to capture the current churn rate. The accuracy,
the required overhead, and the responsiveness to changes can be adjusted by the num-
ber of observations considered in the estimation process and by the number of overlay
neighbors which share the results. We investigated the corresponding trade-offs and
deduced values which are suitable for practical purposes. For applications which are

sensitive to an overestimation or underestimation of the actual value, we showed how
to use the upper and lower bounds of a confidence interval as estimates themselves.

In future work, we intend to use the estimator to enable a peerto autonomously
adapt the number of overlay neighbors and the number of replicas to the current churn
rate. This way, the functionality of the overlay network will still be guaranteed in times
of high churn while the maintenance overhead will be reducedin times of no churn.

Acknowledgments

The authors would like to thank Dirk Staehle and Simon Oechsner for their many ideas,
the input, and the insightful discussions during the courseof this work.

References

1. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churnin a DHT. In: USENIX
Annual Technical Conference, Boston, MA (2004)

2. Binzenḧofer, A., Staehle, D., Henjes, R.: On the Stability of Chord-based P2P Systems. In:
GLOBECOM 2005, St. Louis, MO, USA (2005) 5

3. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In: Proc. of ACM SIGCOMM’01,
San Diego, CA (2001)

4. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the
xor metric. In: Proc. of IPTPS’02, Cambridge, MA (2002)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In: Proc. of Middleware’01, Heidelberg, Germany (2001)

6. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the Evolution of Peer-to-Peer
Systems. In: Proc. of ACM PODC, Monterey, CA (2002)

7. Krishnamurthy, S., El-Ansary, S., Aurell, E., Haridi, S.: A statistical theory of chord under
churn. In: Proc. of IPTPS’05, Ithaca, NY (2005)

8. Godfrey, P.B., Shenker, S., Stoica, I.: Minimizing churn in distributed systems. In: Proc. of
ACM SIGCOMM, Pisa, Italy (2006)

9. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload.In: Proc. of ACM
SOSP’03, Bolton Landing, NY (2003)

10. Bhagwan, R., Savage, S., Voelker, G.: Understanding availability. In: Proc. of IPTPS’03),
Berkeley, CA (2003)

11. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured peer-to-
peer overlays. In: Proc. of DSN’04, Washington, DC (2004)

12. Ghinita, G., Teo, Y.: An adaptive stabilization framework for distributed hash tables. In:
Proc. of IEEE IPDPS, Rhodes Island, Greece (2006)

13. Binzenḧofer, A., Staehle, D., Henjes, R.: On the Fly Estimation of the Peer Population in
a Chord-based P2P System. In: 19th International Teletraffic Congress (ITC19), Beijing,
China (2005)

14. Mahajan, R., Castro, M., Rowstron, A.: Controlling the cost of reliability in peer-to-peer
overlays. In: Proc. of IPTPS’03, Berkeley, CA (2003)

15. Stephens, M.A.: Edf statistics for goodness of fit and some comparisons. In: Journal of the
American Statistical Association. Volume 69. (1974) 730–739

16. Chen, E.J., Kelton, W.D.: Quantile and histogram estimation. In: Proc. of 33nd Winter
Simulation Conference, Washington, DC (2001)

