NOTICE: This is the author’s version of a work accepted for publication by Springer. Changes resulting from the publishing process, including

editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been

made to this work since it was submitted for publication in ITG/GI Symposium Communication in Distributed Systems (KiVS), 2007.

publication is available at Springer via http://dx.doi.org/ 10.1007\/978-3-540-69962-0_10.

Throughput Performance of the ActiveMQ JMS Server

Robert Henjes, Daniel Schlosser, Michael Menth, and Vaigtimmler

University of Wirzburg, Institute of Computer Science
Am Hubland, D-97074 Wirzburg, Germany
Phone: (+49) 931-888 6644, Fax: (+49) 931-888 6632
{henj es, schl osser, ment h, hi nm er} @ nf or mati k. uni - wuer zbur g. de

Abstract. Communication among distributed software components according to
the publish/subscribe principle is facilitated by the Java messaging s€iWiS).
JMS can be used as a message routing platform if the subscribers irtsall fi
rules on the JMS server. However, it is not clear whether its messaggtiput is
sufficient to support large-scale systems. In this paper, we investigatapacity
of the high performance JMS server implementation ActiveMQ. In esttto
other studies, we focus on the message throughput in the presefiltersfand
show that filtering reduces the performance significantly. We presembdel
for the message processing time at the server and validate it by regents.
This model takes the number of installed filters and the replication grattes of
messages into account and predicts the overall message throughppegific
application scenarios.

1 Introduction

The Java Messaging Service (JMS) is a communication migakefor distributed soft-
ware components. It is an elegant solution to make largevaodtprojects feasible and
future-proof by a unified communication interface which &fided by the JMS API
provided by Sun Microsystems [1]. A salient feature of IM$hst applications can
communicate with each other without knowing their commatian partners as long
as they agree on a uniform message format. Information geovipublish messages to
the JMS server and information consumers subscribe toicartassage types at the
JMS server to receive a certain subset of these messagessisTriown as the pub-
lish/subscribe principle.

In the non-durable and persistent mode, JMS servers efficidaliver messages
reliably to subscribers that are presently online. Theefthey are suitable as back-
bone solution for large-scale realtime communication lkeetnwloosely coupled software
components. For example, some user devices may providereiformation to the
JMS. Other users can subscribe to certain message typeshe gresence informa-
tion of their friends’ devices. For such a scenario, a higtiggenance routing platform
needs filter capabilities and a high capacity to be scalabéelarge number of users.
In particular, the throughput capacity of the JMS servewusthoot suffer from a large
number of clients or filters.

In this paper we investigate the performance of the ActivefdQIMS server im-
plementation. We evaluate the maximum throughput by measemt under various
conditions. In particular, we consider different numbedrpublishers, subscribers, and

This work was funded by Siemens AG, Munich. The authors alone amonsible for the
content of the paper.

© Springer18" ITG/GI KiVS Conference, Bern, Switzerland, February 2007 — glage

The final

filters, different kinds of filters, and filters of differenbmplexity to characterize the
throughput performance of the ActiveMQ JMS Server. We alsppse a mathemat-
ical model depending on the number of filters and the messggleeation grade to
approximate the processing time of a message for the Actysktver.

The paper is organized as follows. In Section 2 we present B&&Ecs that are
important for our study and consider related work. In SecBowe explain our test
environment and measurement methodology. Section 4 sheasurement results and
proposes a model for the processing time of a simple messgnding on the server
configuration. These models are useful to predict the sehreughput for specific
application scenarios. Finally, we summarize our work iot®e 5.

2 Background

In this section we describe the Java messaging service (AMB)liscuss related work.

2.1 The Java Messaging Service

Messaging facilitates the communication between remdigva®e components. The
Java Messaging Service (JMS) is one possible standardsofb$sage exchange. So-
called publishers connect to the JMS server and send mesgagte So-called sub-
scribers connect to the JMS server and consume availabkagesor a subset thereof.
So the JMS server acts as a relay node [3], which controls dssage flow by various
message filtering options. This is depicted in Figure 1. Bhbts and subscribers rely
on the JMS API [1] and the JMS server decouples them by acng laroker. As a
consequence, publishers and subscribers do not need todawmwother.

The JMS offers two different connection modes: a durableaandn-durable con-
nection type. If a subscriber connects in the durable mddentessages will be stored
for delivery if this client disconnects. All stored messagéll be delivered when the
client connects next time to the JMS server. Persistencedthar option for JIMS. If
the persistent option is set, each message has to be ddlirediably to all actively
connected clients, which is ensured by confirming receptitim acknowledgments. In
the non-persistent mode the JMS server must deliver theagesmly with an at-most-
once guarantee. This means that the message can be lostpmustinot be delivered
twice according to [1]. In this study, we only consider thegi&ent but non-durable
mode.

Information providers with similar themes may be groupegetber by making
them publish to a so-called common ,topic”; only those subscs having subscribed
for that specific topic receive their messages. Thus, topitsally separate the JIMS
server into several logical sub-servers. Topics providg anvery coarse and static
method for message selection due to the fact that publistretssubscribers have to
know which topics they need to connect to. This results inghsloose of the decou-
pling feature in the publish/subscribe context. In additimpics need to be configured
on the JMS server before they can be used actively. If no sopie explicitly intro-
duced at the JMS server, exactly one default topic is pregemthich all subscribers
and publishers are connected.

Filters are another option for message selection. A suixscnay install a message
filter on the JMS server. Only the messages matching therfilles are forwarded to the

- Message Flow----—--- Rl

5]

Serv,er Measurement Measurement

(3.2 GHz, 1GB RAM) (3.2 GHz, 1GB RAM)

Q jum |

22 Fitered
g
. . o
: : Measurement Aeasuremem
~ (3.2 GHz, 1GB RAM)
‘ (e (3.2 GHz, 1GB RAM)
N T A

~
Gigabit-Switch N

v
/

/

/

/

/ A\D

Publishers ‘ / \ Subscribers T Ghs Tk s
Filters Replication ——=_100 Mbit/s Link #
Grade Controlling
Fig. 1. The JMS server delivers messages from Fig. 2. Testbed environment.

the publishers to all subscribers with matching
filters.

respective subscriber instead of all messages. In contraspics, filters are installed
dynamically during the operation of the server by each siitesc

A JMS message consists of three parts: the message header,detined property
header section, and the message payload itself [1]. Seecadirrelation IDs are ordi-
nary 128 byte strings that can be set in the fixed header of JeSages as the only
user definable option within this header section. Corretald filters try to match these
IDs whereby wildcard filtering is possible, e.g., in the foafiranges like[#7;#13,
which means all IDs between #7 and #13 are matched includirgnd #13. Several
application-specific properties may be set in the propeatyien of the JIMS message.
Application property filters try to match these propertidslike correlation ID filters,
a combination of different properties may be specified wiéads to more complex
filters with a finer granularity. After all, topics, correiat ID filtering, and application
property filtering are three different possibilities for ssage selection with different
semantic granularity and they require different compatel effort.

2.2 Related Work

The JMS is a wide-spread and frequently used middlewarentdatyy. Therefore, its
throughput performance is of general interest. Severasaudress this aspect already
but from a different viewpoint and in different depth.

The throughput performance of four different IMS serverimpared in [4]: Fio-
ranoMQ [5], SonicMQ [6], TibcoEMS [7], and WebsphereMQ [8he study focuses
on several message modes, e.g., durable, persistengtit.does not consider filter-
ing, which is the main objective in our work. The authors gf¢genduct a benchmark
comparison for the SunMQ [10] and IBM WebsphereMQ. Theyeshroughput per-
formance in various message modes and, in particular, wdreht acknowledgement
options for the persistent message mode. They also exarimgde filters, but they
did not conduct parametric studies, and no performance meedeveloped. The ob-
jective of our work is the development of such a performanceehto forecast the
maximum message throughput for given application scesafigproposal for design-
ing a “Benchmark Suite for Distributed Publish/Subscrilgst8ms” is presented in [11]
but without measurement results. The setup of our expetsnigimn line with these rec-
ommendations. General benchmark guidelines were suggeqt] which apply both

to JMS systems and databases. However, scalability issei@®aconsidered, which is
the intention of our work. A mathematical model for a gengnatblish-subscribe sce-
nario in the durable mode with focus on message diffusiohouit filters is presented
in [13] but without validation by measurements. The authudifd 3] present in [14] an
enhanced framework to analyze and simulate a publish/gbbssystem. In this work
also filters are modeled as a general function of time but natyaed in detail. The
validation of the analytical results is done by comparirgnthto a simulation. In con-
trast, our work presents a mathematical model for the tHrpugperformance in the
non-durable mode including several filter types and our rhisd@lidated by measure-
ments on an existing implementation of a JMS server. Sewthar studies address
implementation aspects of filters. A IMS server checks foh @@essage whether some
of its filters match. If some of the filters are identical or #am intelligent optimizations
may be applied to reduce the filter overhead [15].

The Apache working group provides the generic test tool éMfgr throughput
tests of the ActiveMQ [16]. However, it has only limited fuiomality such that we rely
on an own implementation to automate our experiments.

3 Test Environment

Our objective is the assessment of the message throughitet AttiveMQ JMS server

by message under various conditions. For comparability repdoducibility reasons

we describe our testbed, the server installations, and easorement methodology in
detail.

3.1 Testbed

Our test environment consists of five computers that arstitdied in Figure 2. Four
of them are production machines and one is used for contrplgses, e.g., controlling
jobs like setting up test scenarios and monitoring measeménuns. The four produc-
tion machines have a 1 Gbit/s network interface which is eoted to one exclusive
Gigabit switch. They are equipped with 3.2 GHz single CPUs 2048 MB system
memory. Their operating system is SuSe Linux 9.1 with kemegsion 2.6.5-smp in-
stalled in standard configuration. The “smp”-option ensaltkee support of the hyper-
threading feature of the CPUs. Hyper-threading means ttsmge-core-CPU uses
multiple program and register counters to virtually emallatmulti-processor system.
In our case we have two virtual cores. To run the JMS envirgrime installed Java
JRE 1.5.0 [17], also in default configuration. The controthiae is connected over a
100 Mbit/s interface to the Gigabit switch. In our experitseone machine is used as
a dedicated JMS server. Our test application is designel that JIMS subscribers or
publishers can run as Java threads. Each thread has aniexclosnection to the IMS
server component and represent a so-called JMS sessiomagemment thread collects
the measured values from each thread and appends these ddtagtfile in periodic
intervals.

In our test environment the publishers run on one or two ekatupublisher ma-
chines, and the subscribers run on one or two exclusive sbhbsemachines depending
on the experiment. If two publisher or subscriber machimesuaed, the publisher or
subscriber threads are distributed equally between them.

3.2 Server Installation

The ActiveMQ server version 4.0 stable [2] is an open souofievare provided by the
Apache group. We installed it on one of the above describedX.machines in default
configuration such that the hyper-threading feature of tihentkernel is used and the
internal flow control is activated. To ensure that the Adilg JMS server has enough
buffer memory to store received messages and filters we pktidy the memory for
the Java Runtime Environment to 1024 MB.

3.3 Measurement Methodology

Our objective is the measurement of the JMS server capaciynae use the overall
message throughput of the JIMS server machine as perfornvaticator. We keep the
server in all our experiments as close as possible to 100% IG&d We verify that
no other resources on the server machine like system memaomstwork capacity are
bottlenecks. The publisher and subscriber machines muisertoottlenecks. Therefore
their CPU loads must be lower than 75%. To monitor these sidditions, we use the
information provided in the Linux ,/proc” path. We monitdre CPU utilization, 1/O,
memory, and network utilization for each measurement ruith®it a running server
software, the CPU utilization of the JMS server machine dossexceed 2%, and a
fully loaded server must have a CPU utilization of at lea$t695

Experiments are conducted as follows. The publishers rarsgturated mode, i.e.,
they send messages as fast as possible to the JMS servervédptirey are slowed
down by the flow control of the server such that we observeiglui-side message
gueueing. We count the overall number of sent messages jatittishers and the over-
all number of received messages by the subscribers to asdctiie server's rate of
received and dispatched messages. Our measurement rari®taknutes whereby we
discard the first seconds due to warmup effects. For veidicgiurposes we repeat the
measurements several times, but their results hardlyrditieh that confidence inter-
vals are very narrow even for a few runs. Therefore, we ongtrtlin the figures of
the following sections. The following experiments use tlo@-durable and persistent
messaging mode as described in the Section 2.

4 Measurement Results

In this section we investigate the maximum message thraugifghe ActiveMQ JMS
server. The objective is to assess and characterize theciropapecific application
scenarios on the performance. In particular, we considerdikince they are essential
for the use of a JMS server as a general message routingrptatfo

4.1 Impact of the Number of Publishers and Subscribers

In our first experiment, we study the impact of different nersof publishers and
subscribers on the message throughput. The results of beifug two experiments
yield the minimum number of clients which have to be connéttethe JMS server to
fully load the JMS server. In the persistent mode, i.e.,los$sages are retransmitted by
the JMS server and messages are preliminarily written tslafdr recovery purposes.
Also each message is explicitly acknowledged by the reciméthe message.

6 6 [/’V\
— —_ | I
3° R d and dispatched messages 37
% ecelve P 9 % Dispatched messages
é 4 / ‘é 4 Received and dispatched messages
5 5
23 23
'Sv Received / dispatched messages -S.,

34 3:
= ' = Received messages
1 1
% 20 40 60 80 100 120 140 160 (] 20 40 60 80 100 120 140 160
Number of publishers Number of publishers
(a) 1 subscriber thread £ 1) (b) 10 subscriber threads=£ 10)

Fig. 3. Impact of the number of publishers on the message throughput

Impact of Number of Publishers We study the impact of the number of publishers for
a single connected subscriber without filters and for 10 eoted subscribers without
filters. We present the throughput of the messages that ee&veel and dispatched by
the server in Figure 3(a) and Figure 3(b) together with tkam which we call the
overall message throughput in the following.

For a single subscriber, the throughput of received messegeals the one of dis-
patched messages since each message is forwarded to ordylasweiber while for 10
subscribers, the dispatched throughput is 10 times lahger the received throughput.
As the overall throughput of the server is limited, the reedithroughput for 10 sub-
scribers is clearly smaller than the one for a single subscrThus, the average number
of replications of each message clearly impacts the rede¢iveughput and we call it
the replication grade in the following. A comparison of the absolute throughput of
both experiments shows that only a relatively small ovehatlughput of 34000 msgs/s
can be achieved for a single subscriber while for 10 subsgjla maximum overall
throughput of 62000 msgs/s can be achieved for 16 publishers

For both experiments, the throughput is almost indepenafethie number of pub-
lishers if this number is sufficiently large (about 10) sulehttwe use at least 10 sub-
scribers in the following experiments. We also observetttiaserver cannot be fully
loaded with a single subscriber.

Impact of the Number of Subscribers Similarly to the experiment above, we inves-
tigate the impact of the number of subscribers on the IMSeseéhvoughput. To that
end, we have 20 publisher threads running on one machine amydtive number of
subscribers on two other machines. Figure 4 shows the estedispatched, and the
overall message throughput. The maximum overall througbpabout 60000 msgs/s
is reached for 10 connected subscribers and decreasesskesmnly slightly for an
increased number of subscribers. The received througlipe dMS server decreases
with an increasing number of subscribers. We observe avextéhroughput of about
16000 msgs/s for one subscriber and of about 130 msgs/s @es8#scribers.

Unlike in Figure 3(a) or Figure 3(b), the received message dacreases signifi-
cantly with an increasing number of subscribersThis can be explained as follows.
No filters are applied and all messages are delivered to bficsibers such that each
message is replicate times. We call this a replication grade=m. This requires

@)
ol =

IS
IN

3 A\
| Dispatched / /
| Correlation ID filters (2)

w

n

Application prﬁperty filters (3)

N

Received

4

0 50 100 150 200‘ 250 300320 50 100 150 200‘ 250 300320
Number of subscribers Number of subscribers

Throughput (msgs/s)

N
-

Overall throughput (msgs/s)

o

o

Fig. 4. Impact of the number of subscribers onFig. 5. Impact of filter activation and the num-
the message throughput (20 publishers). ber of subscribers on the message throughput.

more CPU cycles for dispatching messages and increasegdta @rocessing time of
a single received message. As a consequence the rate ebosessages at the server
decreases. Thus, the replication grade has to be considberdperformance measures
from different experiments are compared.

4.2 Impact of Filter Activation

We evaluate the impact of filter activation on the messageutittput. We perform
3 different experiment series where all publishers sendsages with an application
property or correlation ID value set to #0. We install 20 jsHeér threads on a single
publisher machine and a varying numberrofsubscriber threads on one subscriber
machine. We use the following filter configurations whichdéaa message replication
grade ofr =m.

(1) No filters are installed.
(2) Afilter for #0 is installed by each subscriber as corietatD.
(3) Afilter for #0 is installed by each subscriber as appiaaproperty.

the number of subscribers on the message

Figure 5 illustrates the overall message throughput foratheve described experi-
ments. The overall message throughput differs only shofatt the three different ex-
periments. For other server types, like Bea WebLogic [18FimranoMQ [5], filter
activation results in a decreased overall throughput coetpi@ experiment (1). A com-
parison of the results for experiment (2) and (3) shows tbaetation ID filters lead to
a slightly larger throughput than application propertyefit for the ActiveMQ server.
In the following experiments we focus only on applicatioogerty filters because they
are more flexible.

From Figure 5 we can also conclude, that an increasing nuoflegyual filters has
almost no impact on the overall throughput for more than 88eailed filters. Since the
overall throughput remains almost constant at a value 0080@sgs/s.

4.3 Impact of Complex OR-Filters

A single client may be interested in messages with diffecentelation IDs or applica-
tion property values. There are two different options totgese messages. The client
sets up subscribers

(1) with a simple filter for each desired message type.
(2) with a single but complex OR-filter searching for all dedimessage types.

x10° x10°

— o Smplefiters () 15 Filter distinction in
% 35 Complex OR filters (2) g = first Cﬁmleﬂ’)
2 N Application property filters 218 h - T
£ e L £ 14 o -
528 S 12 /
c‘l ;‘l Filter distinction in \
2 2 2 1 last component (3) \
o 0 o0s Filter distinction in
c 15 < middle component (2)
= Z o8
© 1 Correlation 1D filters =
@ © 04
> >
608 O o2
(] 50 100 150 200 250 300320 %12 5 10 15 20 25
Number of different IDs / simple filters Components per AND filter

Fig. 6. Impact of simple filters and complex Fig. 7. Impact of an early non-match decision

OR-filters on the message throughput for afor AND-filters on the message throughput de-

replication grade of =1. pending on the filter complexity for a replica-
tion grade off =1.

These two options are alternative filter configurationstiersame application scenario.
We assess the JMS server performance for both options byiffeoetit experiments,
which have both a message replication grade-el if the publishers send IDs from #1
to #n in a round robin fashion.

(1) To assess simple filters, we set up for each different lx#y one subscriber with
a filter for that ID.

(2) To assess complex filters, we set up 5 different subgsrimembered from 0 to 4.
Subscriberj searches for the IDs(#: [2] +i) with i € [1; 2] using an OR-filter.

We use in this experiment one publisher machine with 20 phbli threads and one
subscriber machine with a varying number of subscriberghf®simple filters approach
or 5 subscribers for the complex or filters experiment, retpaly. We also repeat the
experiment for correlation ID and application propertyefitt.

Figure 6 shows the message throughput depending on on theenwhdifferent
IDs n in the complex filter. The throughput for the complex OR fitand the simple
filters is for both different filter types in the same order adgnitude. The throughput
for the simple filter experiment (1) is mostly lower than theoughput for the complex
OR filters experiment (2). Also from this experiment we canaode, that throughput
performance of the application property filters and theaation 1D filters only slightly
differ.

4.4 Impact of Complex AND-Filters

In the application header section of a message, multiplpepties, e.gPy,..., R, can
be defined. Complex AND-filters may be used to search for fipeoessage types. In
the following, we assess the JMS server throughput for cerfAND-filters. They are
only applicable for application property filtering. We useeanachine with 20 publisher
threads and one machine witl=10 subscriber threads that are numbered &y1; m].
We design three experiment series with a different potefdraoptimization of filter
matching. The subscribers set up the following complex Aflers of different length
n:

(1) for subscribelj:Py=#j,P=#0,...,P,=#0

(2) for subscribejj if nis odd:
Pi=#0,...,Pns1_; =#0,Pnj1 =#),Pn1 , =#0,...,Py=#0
L2 2 2
for subscribeij if nis even
andif j<3: PL=#0,...,Py_1 =#0,Py :#j,P5+1:#0,...,Pn:#O
and if j > 3: Pu=#0,...,Py =#0,Py .1 =#],Py . =#0,...,Py=#0
(3) for subscribelj: PL=#0,P,=#0, ..., P,=#]

The corresponding messages are sent by the publishers imd robin fashion to
achieve a replication grade pf 1. Then, the filters can reject non-matching messages
by looking at the first component in experiment (1), at the Fiedf of the components in
experiment (2), and at al components in experiment (3). This experiment is designed
such that both the replication grade and the number of sillessris constant and that
only the filter complexityn varies. To avoid any impact of different message sizes # thi
experiment series, we defitkie= 25 properties in all messages to get the same message
length.

Figure 7 shows the message throughput depending on thecbiteplexityn. In all
scenarios, the filter complexity reduces the server capdexperiment (1) yields the
largest message throughput, followed by experiment (2)(8hdThe evaluation of a
complex filter is obviously stopped as soon as a mismatch efafrihe components
occurs and the evaluation is performed from left to right®tiomponents, as required
by the JMS API [19]. precedence level. Parentheses can loetasdnange this order.
This early reject decision of the filters reduces the pranggsme of a message and in-
creases thereby the server capacity. As a consequencttipnacs should care for the
order of individual components within AND-filters: compartg with the least match
probability should be checked first.

4.5 Joint Impact of the Number of Filters and the ReplicationGrade

We study the impact of the replication grad¢éhe number of filters|;, on the message
throughput of the JMS server.

Experimental Analysis The publishers send only messages with ID #0 as a property
in the application property part. To achieve a replicaticadg ofr, we set up different
subscribers with a filter for ID #0. Furthermore, we insnﬁﬁgs additional subscribers,
each installing a filter for ID #1. So we have a totahgf{.+r subscribers installed and
the number of filters in the systemiig = n@‘fgs+r. We use the following values for
our experiments € {1,2,5,10,20,40}, mi44 € {5,10,20,40,60,80, 160}, and conduct
them with 20 publisher threads on one publisher machine atidawariable number
of r+m244 subscribers equally distributed over two subscriber nreshi

The solid lines in Figure 8(a) and Figure 8(b) show, that tleasared received and
overall throughput slightly decreases for an increasingier of installed filtersig ¢,
for the above described experiments. The message throtighgiso clearly influenced
by the message replication grad&@herefore, we provide in Figure 8(c) and Figure 8(d)
an alternative presentation of the same data with the @it grade on the x-axis and
separate curves for the number of additional non-matchiregdi Figure 8(c) and Fig-
ure 8(d) show that the received throughput clearly deceeasd the overall throughput
clearly increases with an increasing replication graden@aring Figure 8(c) and Fig-
ure 8(d) with Figure 8(a) and Figure 8(b) leads to the conatuthat the impact of the

16000

~

——Measured throughput|
- - ~Analytical throughput

N
N
3
3
3

o

12000

o
1]
3
3
S
o

8000F

%

6000

n

4000

Overall throughput (msgs/s)

-

2000

Received throughput (msgs/s)

200

50 100 150 4 50 . 100 150 00
Number of application property filters Number of application property filters

(a) Impact of the number of filters on the 1®) Impact of the number of filters on the overall
ceived throughput throughput

——Measured throughput|
- - - Analytical throughput

16000
¥

~

——Measured throughput]
- - - Analytical throughput

o
N
]
bS]
3

=

12000

=
S
3
3
3
a

Number of additional
non-matching filters

Number of additional
non-matching filters

8000

w

6000

N

4000

Received throughput (msgs/s)

Overall throughput (msgs/s)

2000

00 5 10 15 35 40 0 5 10 15 20 25 30 35 40

30
Message replication grade Message replication grade

(c) Impact of the replication grade on the (d) Impact of the replication grade on the over-
ceived throughput all throughput

Fig. 8. Impact of the number of application property filters and the replicatiodegom message
throughput of the ActiveMQ server

message replication grade on the message throughput & lan the impact of the
number of installed filters. The throughput is the same iiigas if we use equal or
different filters that do not match. Which is unlike with then®Q [20] which leads
to a different analytical model. We conducted the same éxyat for correlation 1D
filters and obtained very similar results.

A Simple Model for the Message Processing TiméMe assume that the processing
time of the JMS server for a message consists of three compsrieor each received
message, there is

— a fixed time overheat]., which is almost independent of the number of installed
filters.

— afixed time overheadys -t?ﬂr caused by the JMS server due to the number of all
installed filters. This value depends on the applicatiomate.

— avariable time overheadtix depending on the message replication gradtgakes
into account the time the server takes to forwaobpies of the message.

This leads to the following message processing tBne
B = trov + Nfitr - toier +1 - tixc @

From previous study it is known, that this model holds alsodiner JMS server
implementations, e.g. the FioranoMQ [21] and the Bea Welbl[dg]. Within time B,

one message is received antlessages are sent on average. Therefore, the received and
overall throughput are given tél and %, respectively. The values fogy, tsir, andtiy

can be derived from the measured received message thralighgur experiments by
least square approximation.

Validation of the Model by Measurement Data The curves for replication grade=

20 andr =40 do not follow the trend of the curves for replication grade {1, 2,5, 10}.
Therefore, we respect only the experiments with replicaticadesr € {1,2,5,10}

in the least squares approximation and obtain the modehyseast,c, = 4.9-10~5s,
tir = 1.6-10°'s, andty = 1.5-10s. We use these parameters to calculate the ana-
lytical throughput which is illustrated in Figures 8(a)dBpy dashed lines. For small
replication grades = {1,...,10} the analytical throughput is in good accordance with
the measured throughput. We also measured the performétioe correlation ID fil-
ters. But we measured only slightly different message thinput values and we can
therefore omit a rather complex model as for example usethéoSunMQ [20] server.
As mentioned above, the capacity curves for message répticgradesr =20 and

r =40 in Figure 8(b) are lower than expected from an intuitiverapolation of the
other curves. The reason for this observation might be amaxi internal transmis-
sion capacity of the server such that the server CPU is neeltohg limiting criterion.

In previous studies with other server types we have not arteoed such a phenomenon
since the overhead of these servers for message filteringigmaicantly larger than
the one for ActiveMQ. As a consequence, the transmissioadigpof these servers
was sufficient even for a large message replication grade-dD. However, we expect
to observe similar saturation effects for these servers,ifove further increase the
message replication grade in this experiment series.

5 Conclusion

In this work, we first gave a short introduction into JMS andieeed related work.
We presented the testbed and explained our measuremerdduoktyy before we con-
ducted the experiments. Then we have investigated the niaximessage throughput
of the Java Messaging System (JMS) server “ActiveMQ” un@eious conditions.

We studied the server capacity depending on the number dispebs and sub-
scribers and found out that the maximum server performaanebe achieved only if
sufficiently many publishers and subscribers participatié system. Correlation 1D
filters lead to a slightly larger throughput than applicatjroperty filters and com-
plex OR-filters are more efficient than equivalent singlerfdt As ActiveMQ obviously
supports an early reject for non-matching AND-filters, pitemers should carefully
choose the order of the filter components. We showed thatgbenfifilters has only
a small impact on the server capacity. This makes the Actiyeddrver very attractive
compared to other JMS server solutions [5], [18] if filterindneavily used. In contrast,
the message replication grade has a significant impact dntbetreceived and over-
all throughput. We finally developed an analytical model &ésatibe the capacity of
the ActiveMQ and provided appropriate model parameteredaa our measurements.
This model is useful to predict the server capacity in pcattapplication scenarios.

Currently, we investigate the capacity of server clustetsch are intended to in-
crease the overall message throughput of the system. Fudhe, we investigate dif-
ferent options to reduce the overhead for filter processimgs.

References

10.

11.

12.

13.

14.

15.
16.
17.
18.
19.

20.

21.

. Sun Microsystems, Inc.: Java Message Service API Rev. DA2jAt t p: / / j ava. sun.

com products/jns/.

. Apache: ActiveMQ, Reference Documentation. (20069 p: / / www. act i venyg. or g.
. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.Mhe Many Faces of Pub-

lish/Subscribe. In: ACM Computing Surveys. (2003)

. Krissoft Solutions: JMS Performance Comparison. Technigairté2004)ht t p: / / wwwv.

fiorano. conf conp- anal ysi s/jns_perf_conp. htm

. Fiorano Software, Inc.: FioranoMd®: Meeting the Needs of Technology and Business.

(2004)ht t p: / / www. fi or ano. com whi t epaper s/ whi t epapers_f ng. pdf.

. Sonic Software, Inc.: Enterprise-Grade Messaging. (200M)t p: / / ww.

soni csof t war e. cont product s/ docs/ soni cng. pdf .

. Tibco Software, Inc.: TIBCO Enterprise Message Service.4ph0t p: / / ww. ti bco.

com

. IBM Corporation: IBM WebSphere MQ 6.0. (2005} t p: / / www 306. i bm com

sof tware/integration/wrg/ v60/ .

. Crimson Consulting Group: High-Performance JMS Messaging. chriieal

report (2003)htt p: // www. sun. cont sof t war e/ pr oduct s/ nessage_queue/
wp_JMsSper f or nance. pdf .

Sun Microsystems, Inc.: Sun ONE Message Queue, Refereocenintation. (2006)
http://devel opers. sun. coni prodt ech/ nsgqueue/ .

Carzaniga, A., Wolf, A.L.: A Benchmark Suite for Distributed Pubi&ubscribe Systems.
Technical report, Software Engineering Research Laboratoryaiffrapnt of Computer Sci-
ence, University of Colorado, Boulder, Colorado (2002)

Wolf, T.: Benchmark fiir EJB-Transaction und Message-Sesvidlaster’s thesis, Univer-
sitét Oldenburg (2002)

Baldoni, R., Contenti, M., Piergiovanni, S.T., Virgillito, A.: ModeljirPublish/Subscribe
Communication Systems: Towards a Formal Approach. fhir@ernational Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2003). 3043311

Baldoni, R., Beraldi, R., Piergiovanni, S.T., Virgillito, A.: On the dedling of pub-
lish/subscribe communication systems. Concurrency - Practice aretiEmpel7 (2005)
1471-1495

Muhl, G., Fiege, L., Buchmann, A.: Filter Similarities in Content-BbBeablish/Subscribe
Systems. Conference on Architecture of Computing Systems (ARZDBR]

Apache Incubator: ActiveMQ, JMeter Performance Test T&006) ht t p: / / www.
activeng.org/jneter-performance-tests. htnl.

Sun Microsystems, Inc.: JRE 1.5.0. (2086} p: // j ava. sun. coni .

Bea Systems: Bea WebLogic Server 9.0. (20026)p: / / dev2dev. bea. com

Sun Microsystems, Inc.: Java Message Service Specificatiosiphel.1. (2002ht t p:
/ljava. sun. com products/jns/ docs. htni .

Henjes, R., Menth, M., Zepfel, C.: Throughput Performarfcdawa Messaging Services
Using Sun Java System Message Queue. In: High Performance @ogguSimulation
Conference (HPC&S), Bonn, Germany (2006)

Henjes, R., Menth, M., Gehrsitz, S.: Throughput Performafdava Messaging Services
Using FioranoMQ. In: 18GI/ITG Conference on Measuring, Modelling and Evaluation of
Computer and Communication Systems (MMB), Erlangen, Germany6§200

