
Throughput Performance of the ActiveMQ JMS Server

Robert Henjes, Daniel Schlosser, Michael Menth, and Valentin Himmler

University of Würzburg, Institute of Computer Science
Am Hubland, D-97074 Würzburg, Germany

Phone: (+49) 931-888 6644, Fax: (+49) 931-888 6632
{henjes,schlosser,menth,himmler}@informatik.uni-wuerzburg.de

Abstract. Communication among distributed software components according to
the publish/subscribe principle is facilitated by the Java messaging service (JMS).
JMS can be used as a message routing platform if the subscribers install filter
rules on the JMS server. However, it is not clear whether its message throughput is
sufficient to support large-scale systems. In this paper, we investigatethe capacity
of the high performance JMS server implementation ActiveMQ. In contrast to
other studies, we focus on the message throughput in the presence offilters and
show that filtering reduces the performance significantly. We present amodel
for the message processing time at the server and validate it by measurements.
This model takes the number of installed filters and the replication grade ofthe
messages into account and predicts the overall message throughput for specific
application scenarios.

1 Introduction
The Java Messaging Service (JMS) is a communication middleware for distributed soft-
ware components. It is an elegant solution to make large software projects feasible and
future-proof by a unified communication interface which is defined by the JMS API
provided by Sun Microsystems [1]. A salient feature of JMS isthat applications can
communicate with each other without knowing their communication partners as long
as they agree on a uniform message format. Information providers publish messages to
the JMS server and information consumers subscribe to certain message types at the
JMS server to receive a certain subset of these messages. This is known as the pub-
lish/subscribe principle.

In the non-durable and persistent mode, JMS servers efficiently deliver messages
reliably to subscribers that are presently online. Therefore, they are suitable as back-
bone solution for large-scale realtime communication between loosely coupled software
components. For example, some user devices may provide presence information to the
JMS. Other users can subscribe to certain message types, e.g. the presence informa-
tion of their friends’ devices. For such a scenario, a high performance routing platform
needs filter capabilities and a high capacity to be scalable to a large number of users.
In particular, the throughput capacity of the JMS server should not suffer from a large
number of clients or filters.

In this paper we investigate the performance of the ActiveMQ[2] JMS server im-
plementation. We evaluate the maximum throughput by measurement under various
conditions. In particular, we consider different numbers of publishers, subscribers, and

This work was funded by Siemens AG, Munich. The authors alone are responsible for the
content of the paper.

c©Springer,15th ITG/GI KiVS Conference, Bern, Switzerland, February 2007 – page1

NOTICE: This is the author’s version of a work accepted for publication by Springer. Changes resulting from the publishing process, including

editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been

made to this work since it was submitted for publication in ITG/GI Symposium Communication in Distributed Systems (KiVS), 2007. The final

publication is available at Springer via http://dx.doi.org/ 10.1007\/978-3-540-69962-0 10.

filters, different kinds of filters, and filters of different complexity to characterize the
throughput performance of the ActiveMQ JMS Server. We also propose a mathemat-
ical model depending on the number of filters and the message replication grade to
approximate the processing time of a message for the ActiveMQ server.

The paper is organized as follows. In Section 2 we present JMSbasics that are
important for our study and consider related work. In Section 3 we explain our test
environment and measurement methodology. Section 4 shows measurement results and
proposes a model for the processing time of a simple message depending on the server
configuration. These models are useful to predict the serverthroughput for specific
application scenarios. Finally, we summarize our work in Section 5.

2 Background

In this section we describe the Java messaging service (JMS)and discuss related work.

2.1 The Java Messaging Service

Messaging facilitates the communication between remote software components. The
Java Messaging Service (JMS) is one possible standard of this message exchange. So-
called publishers connect to the JMS server and send messages to it. So-called sub-
scribers connect to the JMS server and consume available messages or a subset thereof.
So the JMS server acts as a relay node [3], which controls the message flow by various
message filtering options. This is depicted in Figure 1. Publishers and subscribers rely
on the JMS API [1] and the JMS server decouples them by acting as a broker. As a
consequence, publishers and subscribers do not need to knoweach other.

The JMS offers two different connection modes: a durable anda non-durable con-
nection type. If a subscriber connects in the durable mode, the messages will be stored
for delivery if this client disconnects. All stored messages will be delivered when the
client connects next time to the JMS server. Persistence is another option for JMS. If
the persistent option is set, each message has to be delivered reliably to all actively
connected clients, which is ensured by confirming receptionwith acknowledgments. In
the non-persistent mode the JMS server must deliver the message only with an at-most-
once guarantee. This means that the message can be lost, but it must not be delivered
twice according to [1]. In this study, we only consider the persistent but non-durable
mode.

Information providers with similar themes may be grouped together by making
them publish to a so-called common „topic”; only those subscribers having subscribed
for that specific topic receive their messages. Thus, topicsvirtually separate the JMS
server into several logical sub-servers. Topics provide only a very coarse and static
method for message selection due to the fact that publishersand subscribers have to
know which topics they need to connect to. This results in a slight loose of the decou-
pling feature in the publish/subscribe context. In addition, topics need to be configured
on the JMS server before they can be used actively. If no topics are explicitly intro-
duced at the JMS server, exactly one default topic is present, to which all subscribers
and publishers are connected.

Filters are another option for message selection. A subscriber may install a message
filter on the JMS server. Only the messages matching the filterrules are forwarded to the

1

2

3

n

1

2

3

m

SubscribersPublishers

Message Flow

Filters Replication
Grade

JMS
Server

Filtered
Message

Fig. 1.The JMS server delivers messages from
the publishers to all subscribers with matching
filters.

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Controlling

1 Gbit/s Link
100 Mbit/s Link

Gigabit-Switch

Fig. 2.Testbed environment.

respective subscriber instead of all messages. In contrastto topics, filters are installed
dynamically during the operation of the server by each subscriber.

A JMS message consists of three parts: the message header, a user defined property
header section, and the message payload itself [1]. So-called correlation IDs are ordi-
nary 128 byte strings that can be set in the fixed header of JMS messages as the only
user definable option within this header section. Correlation ID filters try to match these
IDs whereby wildcard filtering is possible, e.g., in the formof ranges like[#7;#13],
which means all IDs between #7 and #13 are matched including #7 and #13. Several
application-specific properties may be set in the property section of the JMS message.
Application property filters try to match these properties.Unlike correlation ID filters,
a combination of different properties may be specified whichleads to more complex
filters with a finer granularity. After all, topics, correlation ID filtering, and application
property filtering are three different possibilities for message selection with different
semantic granularity and they require different computational effort.

2.2 Related Work

The JMS is a wide-spread and frequently used middleware technology. Therefore, its
throughput performance is of general interest. Several papers address this aspect already
but from a different viewpoint and in different depth.

The throughput performance of four different JMS servers iscompared in [4]: Fio-
ranoMQ [5], SonicMQ [6], TibcoEMS [7], and WebsphereMQ [8].The study focuses
on several message modes, e.g., durable, persistent, etc.,but it does not consider filter-
ing, which is the main objective in our work. The authors of [9] conduct a benchmark
comparison for the SunMQ [10] and IBM WebsphereMQ. They tested throughput per-
formance in various message modes and, in particular, with different acknowledgement
options for the persistent message mode. They also examinedsimple filters, but they
did not conduct parametric studies, and no performance model was developed. The ob-
jective of our work is the development of such a performance model to forecast the
maximum message throughput for given application scenarios. A proposal for design-
ing a “Benchmark Suite for Distributed Publish/Subscribe Systems” is presented in [11]
but without measurement results. The setup of our experiments is in line with these rec-
ommendations. General benchmark guidelines were suggested in [12] which apply both

to JMS systems and databases. However, scalability issues are not considered, which is
the intention of our work. A mathematical model for a generalpublish-subscribe sce-
nario in the durable mode with focus on message diffusion without filters is presented
in [13] but without validation by measurements. The authorsof [13] present in [14] an
enhanced framework to analyze and simulate a publish/subscribe system. In this work
also filters are modeled as a general function of time but not analyzed in detail. The
validation of the analytical results is done by comparing them to a simulation. In con-
trast, our work presents a mathematical model for the throughput performance in the
non-durable mode including several filter types and our model is validated by measure-
ments on an existing implementation of a JMS server. Severalother studies address
implementation aspects of filters. A JMS server checks for each message whether some
of its filters match. If some of the filters are identical or similar, intelligent optimizations
may be applied to reduce the filter overhead [15].

The Apache working group provides the generic test tool JMeter for throughput
tests of the ActiveMQ [16]. However, it has only limited functionality such that we rely
on an own implementation to automate our experiments.

3 Test Environment

Our objective is the assessment of the message throughput ofthe ActiveMQ JMS server
by message under various conditions. For comparability andreproducibility reasons
we describe our testbed, the server installations, and our measurement methodology in
detail.

3.1 Testbed

Our test environment consists of five computers that are illustrated in Figure 2. Four
of them are production machines and one is used for control purposes, e.g., controlling
jobs like setting up test scenarios and monitoring measurement runs. The four produc-
tion machines have a 1 Gbit/s network interface which is connected to one exclusive
Gigabit switch. They are equipped with 3.2 GHz single CPUs and 2048 MB system
memory. Their operating system is SuSe Linux 9.1 with kernelversion 2.6.5-smp in-
stalled in standard configuration. The “smp”-option enables the support of the hyper-
threading feature of the CPUs. Hyper-threading means that asingle-core-CPU uses
multiple program and register counters to virtually emulate a multi-processor system.
In our case we have two virtual cores. To run the JMS environment we installed Java
JRE 1.5.0 [17], also in default configuration. The control machine is connected over a
100 Mbit/s interface to the Gigabit switch. In our experiments one machine is used as
a dedicated JMS server. Our test application is designed such that JMS subscribers or
publishers can run as Java threads. Each thread has an exclusive connection to the JMS
server component and represent a so-called JMS session. A management thread collects
the measured values from each thread and appends these data to a log file in periodic
intervals.

In our test environment the publishers run on one or two exclusive publisher ma-
chines, and the subscribers run on one or two exclusive subscriber machines depending
on the experiment. If two publisher or subscriber machines are used, the publisher or
subscriber threads are distributed equally between them.

3.2 Server Installation

The ActiveMQ server version 4.0 stable [2] is an open source software provided by the
Apache group. We installed it on one of the above described Linux machines in default
configuration such that the hyper-threading feature of the Linux kernel is used and the
internal flow control is activated. To ensure that the ActiveMQ JMS server has enough
buffer memory to store received messages and filters we set explicitly the memory for
the Java Runtime Environment to 1024 MB.

3.3 Measurement Methodology

Our objective is the measurement of the JMS server capacity and we use the overall
message throughput of the JMS server machine as performanceindicator. We keep the
server in all our experiments as close as possible to 100% CPUload. We verify that
no other resources on the server machine like system memory or network capacity are
bottlenecks. The publisher and subscriber machines must not be bottlenecks. Therefore
their CPU loads must be lower than 75%. To monitor these side conditions, we use the
information provided in the Linux „/proc” path. We monitor the CPU utilization, I/O,
memory, and network utilization for each measurement run. Without a running server
software, the CPU utilization of the JMS server machine doesnot exceed 2%, and a
fully loaded server must have a CPU utilization of at least 95%.

Experiments are conducted as follows. The publishers run ina saturated mode, i.e.,
they send messages as fast as possible to the JMS server. However, they are slowed
down by the flow control of the server such that we observe publisher-side message
queueing. We count the overall number of sent messages at thepublishers and the over-
all number of received messages by the subscribers to calculate the server’s rate of
received and dispatched messages. Our measurement runs take 10 minutes whereby we
discard the first seconds due to warmup effects. For verification purposes we repeat the
measurements several times, but their results hardly differ such that confidence inter-
vals are very narrow even for a few runs. Therefore, we omit them in the figures of
the following sections. The following experiments use the non-durable and persistent
messaging mode as described in the Section 2.

4 Measurement Results

In this section we investigate the maximum message throughput of the ActiveMQ JMS
server. The objective is to assess and characterize the impact of specific application
scenarios on the performance. In particular, we consider filters since they are essential
for the use of a JMS server as a general message routing platform.

4.1 Impact of the Number of Publishers and Subscribers

In our first experiment, we study the impact of different numbers of publishers and
subscribers on the message throughput. The results of the following two experiments
yield the minimum number of clients which have to be connected to the JMS server to
fully load the JMS server. In the persistent mode, i.e., lostmessages are retransmitted by
the JMS server and messages are preliminarily written to a disk for recovery purposes.
Also each message is explicitly acknowledged by the recipient of the message.

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

x 10
4

Number of publishers

T
hr

ou
gh

pu
t (

m
sg

s/
s)

Received / dispatched messages

Received and dispatched messages

(a) 1 subscriber thread (r=1)

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

x 10
4

Number of publishers

T
hr

ou
gh

pu
t (

m
sg

s/
s)

Received messages

Dispatched messages

Received and dispatched messages

(b) 10 subscriber threads (r=10)

Fig. 3. Impact of the number of publishers on the message throughput

Impact of Number of Publishers We study the impact of the number of publishers for
a single connected subscriber without filters and for 10 connected subscribers without
filters. We present the throughput of the messages that are received and dispatched by
the server in Figure 3(a) and Figure 3(b) together with theirsum which we call the
overall message throughput in the following.

For a single subscriber, the throughput of received messages equals the one of dis-
patched messages since each message is forwarded to only onesubscriber while for 10
subscribers, the dispatched throughput is 10 times larger than the received throughput.
As the overall throughput of the server is limited, the received throughput for 10 sub-
scribers is clearly smaller than the one for a single subscriber. Thus, the average number
of replications of each message clearly impacts the received throughput and we call it
the replication grader in the following. A comparison of the absolute throughput of
both experiments shows that only a relatively small overallthroughput of 34000 msgs/s
can be achieved for a single subscriber while for 10 subscribers, a maximum overall
throughput of 62000 msgs/s can be achieved for 16 publishers.

For both experiments, the throughput is almost independentof the number of pub-
lishers if this number is sufficiently large (about 10) such that we use at least 10 sub-
scribers in the following experiments. We also observed that the server cannot be fully
loaded with a single subscriber.

Impact of the Number of Subscribers Similarly to the experiment above, we inves-
tigate the impact of the number of subscribers on the JMS server throughput. To that
end, we have 20 publisher threads running on one machine and vary the number of
subscribers on two other machines. Figure 4 shows the received, dispatched, and the
overall message throughput. The maximum overall throughput of about 60000 msgs/s
is reached for 10 connected subscribers and decreases decreases only slightly for an
increased number of subscribers. The received throughput of the JMS server decreases
with an increasing number of subscribers. We observe a received throughput of about
16000 msgs/s for one subscriber and of about 130 msgs/s for 320 subscribers.

Unlike in Figure 3(a) or Figure 3(b), the received message rate decreases signifi-
cantly with an increasing number of subscribersm. This can be explained as follows.
No filters are applied and all messages are delivered to all subscribers such that each
message is replicatedm times. We call this a replication grader =m. This requires

0 50 100 150 200 250 300320
0

1

2

3

4

5

6

x 10
4

Number of subscribers

T
hr

ou
gh

pu
t (

m
sg

s/
s)

Received

Dispatched

Received and dispatched

Fig. 4. Impact of the number of subscribers on
the message throughput (20 publishers).

0 50 100 150 200 250 300320
0

1

2

3

4

5

6
x 10

4

Number of subscribers

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Application property filters (3)

No filters (1)

Correlation ID filters (2)

Fig. 5. Impact of filter activation and the num-
ber of subscribers on the message throughput.

more CPU cycles for dispatching messages and increases the overall processing time of
a single received message. As a consequence the rate of received messages at the server
decreases. Thus, the replication grade has to be consideredwhen performance measures
from different experiments are compared.
4.2 Impact of Filter Activation
We evaluate the impact of filter activation on the message throughput. We perform
3 different experiment series where all publishers send messages with an application
property or correlation ID value set to #0. We install 20 publisher threads on a single
publisher machine and a varying number ofm subscriber threads on one subscriber
machine. We use the following filter configurations which lead to a message replication
grade ofr=m.

(1) No filters are installed.
(2) A filter for #0 is installed by each subscriber as correlation ID.
(3) A filter for #0 is installed by each subscriber as application property.

the number of subscribers on the message
Figure 5 illustrates the overall message throughput for theabove described experi-

ments. The overall message throughput differs only slightly for the three different ex-
periments. For other server types, like Bea WebLogic [18] orFioranoMQ [5], filter
activation results in a decreased overall throughput compared to experiment (1). A com-
parison of the results for experiment (2) and (3) shows that correlation ID filters lead to
a slightly larger throughput than application property filters for the ActiveMQ server.
In the following experiments we focus only on application property filters because they
are more flexible.

From Figure 5 we can also conclude, that an increasing numberof equal filters has
almost no impact on the overall throughput for more than 300 installed filters. Since the
overall throughput remains almost constant at a value of 50000 msgs/s.
4.3 Impact of Complex OR-Filters
A single client may be interested in messages with differentcorrelation IDs or applica-
tion property values. There are two different options to getthese messages. The client
sets up subscribers

(1) with a simple filter for each desired message type.
(2) with a single but complex OR-filter searching for all desired message types.

0 50 100 150 200 250 300320
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of different IDs / simple filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Simple filters (1)
Complex OR filters (2)

Application property filters

Correlation ID filters

Fig. 6. Impact of simple filters and complex
OR-filters on the message throughput for a
replication grade ofr=1.

0 1 2 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Components per AND filter

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Filter distinction in
first component (1)

Filter distinction in
middle component (2)

Filter distinction in
last component (3)

Fig. 7. Impact of an early non-match decision
for AND-filters on the message throughput de-
pending on the filter complexity for a replica-
tion grade ofr=1.

These two options are alternative filter configurations for the same application scenario.
We assess the JMS server performance for both options by two different experiments,
which have both a message replication grade ofr=1 if the publishers send IDs from #1
to #n in a round robin fashion.

(1) To assess simple filters, we set up for each different ID exactly one subscriber with
a filter for that ID.

(2) To assess complex filters, we set up 5 different subscribers numbered from 0 to 4.
Subscriberj searches for the IDs #(j · ⌊ n

5⌋+i) with i∈ [1; n
5] using an OR-filter.

We use in this experiment one publisher machine with 20 publisher threads and one
subscriber machine with a varying number of subscribers forthe simple filters approach
or 5 subscribers for the complex or filters experiment, respectively. We also repeat the
experiment for correlation ID and application property filters.

Figure 6 shows the message throughput depending on on the number of different
IDs n in the complex filter. The throughput for the complex OR filters and the simple
filters is for both different filter types in the same order of magnitude. The throughput
for the simple filter experiment (1) is mostly lower than the throughput for the complex
OR filters experiment (2). Also from this experiment we can conclude, that throughput
performance of the application property filters and the correlation ID filters only slightly
differ.

4.4 Impact of Complex AND-Filters
In the application header section of a message, multiple properties, e.g.P1, ...,Pk, can
be defined. Complex AND-filters may be used to search for specific message types. In
the following, we assess the JMS server throughput for complex AND-filters. They are
only applicable for application property filtering. We use one machine with 20 publisher
threads and one machine withm=10 subscriber threads that are numbered byj∈ [1;m].
We design three experiment series with a different potential for optimization of filter
matching. The subscribers set up the following complex AND-filters of different length
n:

(1) for subscriberj:P1=# j,P2=#0, ...,Pn=#0

(2) for subscriberj if n is odd:
P1=#0, ...,Pn+1

2 −1=#0,Pn+1
2
=# j,Pn+1

2 +1=#0, ...,Pn=#0
for subscriberj if n is even
and if j≤ n

2: P1=#0, ...,Pn
2−1=#0,Pn

2
=# j,Pn

2+1=#0, ...,Pn=#0
and if j> n

2: P1=#0, ...,Pn
2
=#0,Pn

2+1=# j,Pn
2+2=#0, ...,Pn=#0

(3) for subscriberj: P1=#0,P2=#0, ...,Pn=# j

The corresponding messages are sent by the publishers in a round robin fashion to
achieve a replication grade ofr=1. Then, the filters can reject non-matching messages
by looking at the first component in experiment (1), at the first half of the components in
experiment (2), and at alln components in experiment (3). This experiment is designed
such that both the replication grade and the number of subscribers is constant and that
only the filter complexityn varies. To avoid any impact of different message sizes in this
experiment series, we definek=25 properties in all messages to get the same message
length.

Figure 7 shows the message throughput depending on the filtercomplexityn. In all
scenarios, the filter complexity reduces the server capacity. Experiment (1) yields the
largest message throughput, followed by experiment (2) and(3). The evaluation of a
complex filter is obviously stopped as soon as a mismatch of one of the components
occurs and the evaluation is performed from left to right of its components, as required
by the JMS API [19]. precedence level. Parentheses can be used to change this order.
This early reject decision of the filters reduces the processing time of a message and in-
creases thereby the server capacity. As a consequence, practitioners should care for the
order of individual components within AND-filters: components with the least match
probability should be checked first.

4.5 Joint Impact of the Number of Filters and the ReplicationGrade

We study the impact of the replication grader, the number of filtersn f ltr on the message
throughput of the JMS server.

Experimental Analysis The publishers send only messages with ID #0 as a property
in the application property part. To achieve a replication grade ofr, we set upr different
subscribers with a filter for ID #0. Furthermore, we installmadd

subs additional subscribers,
each installing a filter for ID #1. So we have a total ofmadd

subs+r subscribers installed and
the number of filters in the system isn f ltr =madd

subs+r. We use the following values for
our experimentsr∈{1,2,5,10,20,40}, madd

subs∈{5,10,20,40,60,80,160}, and conduct
them with 20 publisher threads on one publisher machine and with a variable number
of r+madd

subs subscribers equally distributed over two subscriber machines.
The solid lines in Figure 8(a) and Figure 8(b) show, that the measured received and

overall throughput slightly decreases for an increasing number of installed filtersn f ltr

for the above described experiments. The message throughput is also clearly influenced
by the message replication grader. Therefore, we provide in Figure 8(c) and Figure 8(d)
an alternative presentation of the same data with the replication grade on the x-axis and
separate curves for the number of additional non-matching filters. Figure 8(c) and Fig-
ure 8(d) show that the received throughput clearly decreases and the overall throughput
clearly increases with an increasing replication grade. Comparing Figure 8(c) and Fig-
ure 8(d) with Figure 8(a) and Figure 8(b) leads to the conclusion that the impact of the

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of application property filters

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

r = 1r = 2
r = 5

r = 10

r = 20 r = 40

(a) Impact of the number of filters on the re-
ceived throughput

0 50 100 150 200
0

1

2

3

4

5

6

7

x 10
4

Number of application property filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

r = 1

r = 2
r = 5

r = 10
r = 20

r = 40

(b) Impact of the number of filters on the overall
throughput

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000

14000

16000

Message replication grade

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

Number of additional
non−matching filters

(c) Impact of the replication grade on the re-
ceived throughput

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

x 10
4

Message replication grade

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

Number of additional
non−matching filters

(d) Impact of the replication grade on the over-
all throughput

Fig. 8. Impact of the number of application property filters and the replication grade on message
throughput of the ActiveMQ server

message replication grade on the message throughput is larger than the impact of the
number of installed filters. The throughput is the same regardless if we use equal or
different filters that do not match. Which is unlike with the SunMQ [20] which leads
to a different analytical model. We conducted the same experiment for correlation ID
filters and obtained very similar results.

A Simple Model for the Message Processing TimeWe assume that the processing
time of the JMS server for a message consists of three components. For each received
message, there is

– a fixed time overheadtrcv which is almost independent of the number of installed
filters.

– a fixed time overheadn f ltr · tall
f ltr caused by the JMS server due to the number of all

installed filters. This value depends on the application scenario.
– a variable time overheadr ·ttx depending on the message replication grader. It takes

into account the time the server takes to forwardr copies of the message.

This leads to the following message processing timeB:
B = trcv +n f ltr · t f ltr + r · ttx. (1)

From previous study it is known, that this model holds also for other JMS server
implementations, e.g. the FioranoMQ [21] and the Bea WebLogic [18]. Within timeB,

one message is received andr messages are sent on average. Therefore, the received and
overall throughput are given by1B and r+1

B , respectively. The values fortrcv, t f ltr, andttx
can be derived from the measured received message throughput in our experiments by
least square approximation.

Validation of the Model by Measurement Data The curves for replication grader=
20 andr=40 do not follow the trend of the curves for replication gradesr∈{1,2,5,10}.
Therefore, we respect only the experiments with replication gradesr ∈ {1,2,5,10}
in the least squares approximation and obtain the model parameterstrcv =4.9·10−5s,
t f ltr = 1.6·10−7s, andttx = 1.5·10−5s. We use these parameters to calculate the ana-
lytical throughput which is illustrated in Figures 8(a)–8(d) by dashed lines. For small
replication gradesr = {1, ...,10} the analytical throughput is in good accordance with
the measured throughput. We also measured the performance of the correlation ID fil-
ters. But we measured only slightly different message throughput values and we can
therefore omit a rather complex model as for example used forthe SunMQ [20] server.
As mentioned above, the capacity curves for message replication gradesr = 20 and
r = 40 in Figure 8(b) are lower than expected from an intuitive extrapolation of the
other curves. The reason for this observation might be a maximum internal transmis-
sion capacity of the server such that the server CPU is no longer the limiting criterion.
In previous studies with other server types we have not encountered such a phenomenon
since the overhead of these servers for message filtering wassignificantly larger than
the one for ActiveMQ. As a consequence, the transmission capacity of these servers
was sufficient even for a large message replication grade ofr=40. However, we expect
to observe similar saturation effects for these servers, too, if we further increase the
message replication grade in this experiment series.

5 Conclusion
In this work, we first gave a short introduction into JMS and reviewed related work.
We presented the testbed and explained our measurement methodology before we con-
ducted the experiments. Then we have investigated the maximum message throughput
of the Java Messaging System (JMS) server “ActiveMQ” under various conditions.

We studied the server capacity depending on the number of publishers and sub-
scribers and found out that the maximum server performance can be achieved only if
sufficiently many publishers and subscribers participate in the system. Correlation ID
filters lead to a slightly larger throughput than application property filters and com-
plex OR-filters are more efficient than equivalent single filters. As ActiveMQ obviously
supports an early reject for non-matching AND-filters, practitioners should carefully
choose the order of the filter components. We showed that the use of filters has only
a small impact on the server capacity. This makes the ActiveMQ server very attractive
compared to other JMS server solutions [5], [18] if filteringis heavily used. In contrast,
the message replication grade has a significant impact on both the received and over-
all throughput. We finally developed an analytical model to describe the capacity of
the ActiveMQ and provided appropriate model parameters based on our measurements.
This model is useful to predict the server capacity in practical application scenarios.

Currently, we investigate the capacity of server clusters,which are intended to in-
crease the overall message throughput of the system. Furthermore, we investigate dif-
ferent options to reduce the overhead for filter processing times.

References

1. Sun Microsystems, Inc.: Java Message Service API Rev. 1.1. (2002)http://java.sun.
com/products/jms/.

2. Apache: ActiveMQ, Reference Documentation. (2006)http://www.activemq.org.
3. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of Pub-

lish/Subscribe. In: ACM Computing Surveys. (2003)
4. Krissoft Solutions: JMS Performance Comparison. Technical report (2004)http://www.

fiorano.com/comp-analysis/jms_perf_comp.htm.
5. Fiorano Software, Inc.: FioranoMQT M : Meeting the Needs of Technology and Business.

(2004)http://www.fiorano.com/whitepapers/whitepapers_fmq.pdf.
6. Sonic Software, Inc.: Enterprise-Grade Messaging. (2004)http://www.

sonicsoftware.com/products/docs/sonicmq.pdf.
7. Tibco Software, Inc.: TIBCO Enterprise Message Service. (2004) http://www.tibco.

com.
8. IBM Corporation: IBM WebSphere MQ 6.0. (2005)http://www-306.ibm.com/

software/integration/wmq/v60/.
9. Crimson Consulting Group: High-Performance JMS Messaging. Technical

report (2003)http://www.sun.com/software/products/message_queue/
wp_JMSperformance.pdf.

10. Sun Microsystems, Inc.: Sun ONE Message Queue, Reference Documentation. (2006)
http://developers.sun.com/prodtech/msgqueue/.

11. Carzaniga, A., Wolf, A.L.: A Benchmark Suite for Distributed Publish/Subscribe Systems.
Technical report, Software Engineering Research Laboratory, Department of Computer Sci-
ence, University of Colorado, Boulder, Colorado (2002)

12. Wolf, T.: Benchmark für EJB-Transaction und Message-Services. Master’s thesis, Univer-
sität Oldenburg (2002)

13. Baldoni, R., Contenti, M., Piergiovanni, S.T., Virgillito, A.: Modelling Publish/Subscribe
Communication Systems: Towards a Formal Approach. In: 8th International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2003). (2003) 304–311

14. Baldoni, R., Beraldi, R., Piergiovanni, S.T., Virgillito, A.: On the modelling of pub-
lish/subscribe communication systems. Concurrency - Practice and Experience17 (2005)
1471–1495

15. Mühl, G., Fiege, L., Buchmann, A.: Filter Similarities in Content-Based Publish/Subscribe
Systems. Conference on Architecture of Computing Systems (ARCS) (2002)

16. Apache Incubator: ActiveMQ, JMeter Performance Test Tool. (2006) http://www.
activemq.org/jmeter-performance-tests.html.

17. Sun Microsystems, Inc.: JRE 1.5.0. (2006)http://java.sun.com/.
18. Bea Systems: Bea WebLogic Server 9.0. (2006)http://dev2dev.bea.com.
19. Sun Microsystems, Inc.: Java Message Service Specification, Version 1.1. (2002)http:

//java.sun.com/products/jms/docs.html.
20. Henjes, R., Menth, M., Zepfel, C.: Throughput Performance of Java Messaging Services

Using Sun Java System Message Queue. In: High Performance Computing & Simulation
Conference (HPC&S), Bonn, Germany (2006)

21. Henjes, R., Menth, M., Gehrsitz, S.: Throughput Performanceof Java Messaging Services
Using FioranoMQ. In: 13thGI/ITG Conference on Measuring, Modelling and Evaluation of
Computer and Communication Systems (MMB), Erlangen, Germany (2006)

