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Abstract— Models for the downlink capacity of WCDMA consuming such that traffic dynamics that might appear on
systems with dedicated channels as specified in the UMTS Releasqnuch larger time scales can not be simulated. The typical
'99 rely on the orthogonality factor for approximating the intra-  g|ution is to apply the results from link-layer simulatioe.qg.

cell interference due to multi-path propagation. This model is . .
no longer applicable for the HSDPA as the performance of fast CQ! traces [3] or even a location dependent bandwidth [7], [8

scheduling and adaptive modulation and coding depends on the t0 system-level simulation. The problem in doing so is that t
small-scale fading effects. This leads to the problem on how to traces are in general not location specific and furthermore d
produce reliable statistics for the long-term system-level behavio not consider system variations like changes of the othkr-ce
yvhen small-scale fading effects are not negligible. In_this paper we jntarference.
introduce a general framework on how to perform time-efficient . . . L .
simulations that capture the effects of small-scale fading. . The key proble_m in_high-level time-dynamic simulations
is how to determine the amount of data that HSDPA users
I. INTRODUCTION transmit in a certain period of time where we assume constant
Mobile network operators continue to deploy the Higlshadowing and constant transmit powers of all NodeBs, i.e.
Speed Downlink Packet Access (HSDPA) service in theiluring a preriod of time where the system remains constant.
existing UMTS networks. From the users perspective, tidter that period the users might move to new locations, new
HSDPA offers high bit rates (promised are up to 14.4 Mbpsisers might appear and some users might leave the system
and low latency. From operators perspective, the HSDPA ascording to the data they transmitted. Then, the data v@lum
hoped to play a key role for the much longed for break througtansmitted in the next time period can be determined for
of high quality mobile data services. From a technical pecsp the new situation. We provide a simple and computationally
tive, the HSDPA brings a new paradigm to UMTS: Instead dfficient algorithm to estimate the distribution of the CQI
adapting transmit power to the radio channel condition deor (Channel Quality Identifier) in a static network situatidrne
to ensure constant link quality, HSDPA adapts the link dyaliCQI distribution allows to determine the bandwidth of the
to the radio channel conditions. This enables a more efficigRSDPA users under consideration of the available codes and
use of scarce resources like transmit power, code resourties UE classes for different scheduling disciplines. Irs thi
and also hardware resources. paper we focus on the simplest one, round-robin scheduling.
In the literature, a wide range of publications on several The rest of the paper is organized as follows: In Section I
aspects of the HSDPA exists. The capacity of the HSDP#e very briefly summarize the key features of HSDPA. In Sec-
mostly in terms of throughput, is the focus of many work#on Il we present our model for approximating the HSDPA
which use simulations to obtain their results. The models bandwidth. In Section IV we demonstrate the accuracy of our
early publications like [1] and [2] concentrate on aspedts algorithm. In Section V we summarize the main contributions
scheduling, HARQ and physical layer techniques. In [3kdin of this paper and describe the next steps in generalizing the
layer simulations have been performed which are used tcefit tnodel.
signal-to-noise ratio to CQIs. All these models do not cdesi
the impact of coexistent dedicated channels on the HsDPA.!l-
This is done in [4], which assumes a fixed number of OVSF The main features of the HSDPA are AMC (adaptive
codes reserved for the HS-DSCH in their extensive simulationodulation and coding), packet-scheduling with time and
The impact of the HSDPA on network planning is the focusode-multiplex, Hybrid ARQ, and short TTls (Transmission
of [5], [6], [7] and [8]. All these works use simulations forTime Interval) of 2ms. AMC and opportunistic scheduling are
their results. The impact of code restraints is considered énabled by a feedback channel that is used by the mobiles to
[5] and [6], while [7] and [8] concentrate on the influence ofeport their CQI (Channel Quality Identifier) to the NodeB.
the multi-path model and scheduling. In [9], a method for thehe TFRC (Transport Format and Resource Combination)
estimation of the interference for the HSPDA is proposed. relates the CQI to the TBS (Transport Block Size, volume
Evaluating the performance of HSDPA arises the probletmasmitted per TTI), the number of parallel codes, and the
that the system behavior essentially depends on variationsreference power adjustment. In [10] TFRCs for different UE
a very small time scale. This makes detailed simulations cfasses are specified. Indirectly, the TRFCs also definengodi
the one hand necessary but on the other hand extremely tira2 and modulation scheme. Accordingly, a mobile has to
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estimate its channel quality and map it to the right CQI. In The TBS is limited by the reported CQI and the available
general this is a quite complicated task as a certain chanoetles at the cell. We obtain the mean TBS for mobile a
prediction is necessary to compensate for the feedback.defandom TTI as

In [3] a formula for mapping the SIR to the CQI is proposed: ] .
E[TBS] =Y () .mm(TBS(q),TBS (ch,k))7
CQI = max(0, min(30, | SIR/1.02 4 16.62] (1) = (5)

Opportunistic scheduling allows the NodeB to consider tﬁ’gherfpk(Q) is the probability that mobilé reports CQlg and
CQls reported from different mobiles in the scheduling, seeB>” (Ch.x) is the maximum TBS supported by the available
e.g. [11] for different scheduling schemes. Hybrid ARQ edﬂSDPA codes. With round robin _schedulmg, a user transmits
ables a secure communication with rather low SIR valudd %Ylery”trl T P:Nheren - /g/lfd's .the number of _HSDPA
by soft-combining retransmissions with prior transmiesio mobiles. Then, the average bandwidif of a userk is

According to [3] the first transmission aims at a FER of 10%. By = 2E[T(l_.fSk] : (6)
n-2ms-(1+perr

30

lIl. BANDWIDTH APPROXIMATION wherep,.,, is the probability of an erroneous transmission in

In the following we describe an algorithm to approximatéhe first stage of the hybrid ARQ process. Further retrans-
the HSDPA bandwidth in a static network situation. Th&nissions occur with low probability such that their impact
network consists of a set of NodeB% and every NodeB; on the bandwidth is negligible for this rather coarse band-
transmits with powefl,. We focus on the sett, of HSDPA width approximation. If we observe a certain period of time
mobiles served by NodeB. NodeBx spends powef, ;, for ~consisting ofT" TTls the average transmitted data volume is
the HSDPA and may use up 16, ;, codes in parallel. E[Vk] = B - T - 2ms.

The propagation channel from NodeBo mobilek consists ~ The key of our bandwidth approximation is an algorithm to
of a setP,, of pathsp with associated average relativedetermine the distribution of the CQI in a random TTI with
received powermg, and delayr,, as e.g. defined by theindependent powers for the individual paths. The knowledge
3gpp [12] for evaluating the HSDPA performance. The avera§éthe CQI distribution allows the computation of the averag
relative received powers are normalized, i.e. their sumalsqubandwidth for other scheduling disciplines like propantb
one. Furthermore, let, ;. be the average propagation gairfair scheduling or MaxCQI scheduling, as well. Furthermore
from NodeBx to mobile k. Then, the poweR, ;. , mobile k the volume transmitted in a certain period of time is acfuall

receives on patlp is a random variable with a variance that strongly depends on
the autocorrelation of the reported CQI. However, further
Ropp =T dog-Bp ) scheduling disciplines and the CQI auto-correlation atsida

e main focus of this paper.
The distribution of the CQI follows from the distribution
function of v since the PRA means only an offset in the

where 3, is a random variable for the instantaneous relatiB
propagation loss of multi-path component If every multi-
path component experiences independent Rayleigh fading, ” - . RO )
is exponentially distributed with mean;, . Assuming that the decibel scale. A _d|rect calculat_|on of the_z dlstr!butlon dtion
Rake receiver has a finger on every multipath component a?lfd%_ or even of its the mean |s.numer|cally |ntract§1b!g. AC-
uses perfect Maximal Ratio Combining, the HSDPA achiev&9rdingly, our approach is to estimate the type of distrdiut

a SIR of and approximate the mean and standard deviation. Therefore
we assume that mean and varianceyadre functions of the
Vi = T:Tuh . Z Pr ratio ¥ of average other-cell received power to average own-
v FEPz (ZyEB\m 7;131"; Byk) + Boks cell received power

3 .
O m =3 o With oy = (T, dy0)/(Ts - de) ()

PEP2 i\ f L

with B, = and B, . r =
o ZPGPM % ot Z for which we introduce the abbreviation APR. This is of ceurs
In Eq. (3) every finger experiences the same other-cell ian approximation since exactly,depends not only ok, but
terference as we assume slowly varying channel conditiom® the received power ratig; , of every non-serving NodeB.
Thermal noise is neglected since in well-designed networkEhe assumption that ] is a function ofy;, is also the basis
it is by magnitudes less than the multiple access intererenof the orthogonality factor model

Let us introduce the variabld, = T, /T, for the ratio

— 1
of HSDPA power to total cell power, and the variablg for Eln] = Spta (®)

the SIR achieved by the total cell power, i.e. where the orthogonality facter assumes values between 0.05
(4) and 0.4 according to the multi-path profile. The orthogonal-
ity factor model is well accepted and introduced in many
For the rest of this paper, we refer to the variabjeas the textbooks on UMTS radio network planning. In fact, most
normalized SIR (nSIR), and to the variakle, as the HSDPA work concerning analytical models or higher layer UMTS
power ratio (PR) . simulations rely on the orthogonality factor model. Howgve

Ve = Dz - Y-



for studying the performance of HSDPA, the orthogonality 10
factor is not appropriate, since computing the CQI distidyu )
requires the distribution of the SIR.

Unlike the orthogonality factor model, we are interested
in the nSIR in decibel scale and in the functiotig(X)
and fsrp(X) that map the APRE to the mean Ey] and
the standard deviation STB)] of nSIR in decibel scale. We
propose to use four-parametric Weibull functions

¢ ITU Pedestrian A
o |TU Pedestrian B
o ITU Vehicular A

d

expectation of normalized SIR E[y] [dB]

. e -5 |

faped(®) =a—0b-e " 9 !
both for fr and fsrp. : Y0
Let us now assume that we know the distributionoin S 07 a0t 1 2 3 4 5 6
decibel scale. Then, the mean and standard deviation akow u average other-to—own cell received power ratio

to determine the parameters of the function such that we also

; L . : Fig. 1. Fitting of f5(2) by Weibull functi
obtain the distribution functiomx(¢) for a certain APRX. 9 fting of f=(%) by Weibull functions

Applying Eqg. (1) that relates SIR to CQI we obtain the 6r o ITU Pedestrian A
following CQI distribution: o ITU Pedestrian B
as (¢u(q)) forg=0
o ax (qu (Q))
Pearl® =\ Loy (o) forg=1,..,20 10

1 —ax (¢e(q)) forg=30

where the functionsp,(q) and ¢¢(q) relate CQlg to the
respective maximum and minimum normalized SIR for a
certain HSDPA power ratio. The functions are given as

std. dev. of normalized SIR Std}] [dB]

¢u(Q) = (q - 15'62) -1.02+ A, h[dB] 13 = = 5

’ 11 10 10 10 10
¢Z(Q) = (q - 1662) -1.02 + Am,h[dB]- ( ) average other—to—own cell received power ratio
Finally, the mean TBS follows from Eq. (5) considering the Fig. 2. Fitting of fs (%) by Weibull functions

available codes and the UE class, and Eq. (6) translates

the mean TBS to the mobiles’ bandwidth with round robin

scheduling. propagation gain is derived from the distantet,, , between
NodeB and mobile according to the COST231 model

In this section we will identify parameters for the function dy kdB] = —140.9 = 36.4 - log,(disty x)- (12)
fe(¥) and fsrp(X) and investigate to what extent we carwe consider the three multi-path profiles defined in [12] for
speak of functions. Furthermore, we investigate whichridistHSDPA conformance testing, ITU Pedestrian A (PA), ITU
bution matches best with the normalized SIR. Pedestrian B (PB), and ITU Vehicular A (VA). The gaif$

1) Simulation Model: At this place we want to demon- of the single multi-pathg normalized to a maximum path
strate the idea and accuracy of our model using a two lexgdin of 0dB are summarized in Tab. I.

Monte Carlo simulation. In the first level we gener&t@0 2) Parameters for the Weibull functionsthe parameters
different static network situations. A static network siion for the functionsfz(3) and fs.4(X) are found for the three
corresponds to a set of NodeB locations, the power of theultipath profiles by fitting the Weibull functions to the
NodeBs, and the location of a single mobile. We assign tieeans and standard deviations obtained by the simulation.
mobile to the closest NodeB and determine the ABRIn The parameters and the corresponding root mean square error
the second level we genera’00 snapshots of the multi- (rmse) are summarized in Tab. Il.

path profile, i.e. values fa,, for every static situation which  Figs. 1 and 2 show the mean and the standard deviation
allows us to determine the mean, the standard deviation, asfdhe normalized SIR versus the APR The dots represent

a histogram of the normalized SIR. the values obtained from the simulation, the solid linesasho

For evaluating the quality of our model in the most gener#te fitted curves. Note that in Fig. 1 the x-axis is scaled
way, we generated the set of NodeBs according to a hontogarithmically in the left half and linearly in the right ha
geneous Poisson process within an are&/oh x 5km and The main observations are first, that the mean and the
with a density of 1.27 NodeBs pérn?. The NodeB power is standard deviation are not exactly functions %f second,
chosen uniformly between 4W and 10W. The mobile is locatedat the means are much more function-like than the standard
randomly within an inner area dfkm x 3km. The average deviation, and third, that the fitted curves match the middle

IV. PARAMETERIZATION AND VALIDATION



Bor Ppy  Bpy By Pog By
PA| 0 97 -192 228 -

160001

PB| 0 09 -49 78 8 -239 : o Logmermal
VA 0 -1 -9 -10 -15 -20 14000 o Inverse Gaussian
TABLE | Ped. A, 15 Codes 4 Gamma
12000t
MULTI-PATH FADING PROFILES
— Ped. A, 10 Codes
= 10000
fe(X) fsTp(X) = i
PA PB VA PA PB VA a 8000l
a| 923 287 390| 431 160 2.12 c
b | 53.63 51.42 51.06| -063 -0.83 -0.68 L brauggephaeromeag o
c| 157 228 211| 117.06 063 056 £ 6000 -
d| -022 -024 -024| 112 -114 -1.32
rmse | 0.21  0.07 0.08| 0.17 0.07 0.09 40001
TABLE I 2000
PARAMETERS FOR THEWEIBULL MODEL
0 . . . . .
10 10 107 10" 10°
average other—to—own received power ratio =
of the occurring values quite well. Furthermore, we observe Fig. 3. Validation of the mean TBS

that PA with a single dominating path achieves by far larger
mean SIRs than PB and VA but the standard deviation is also
larger. Quite remarkably, the standard deviation of PArniscat For ¥ < 0.1 the Lognormal, Inverse Gaussian, or Gamma
independent o while the mean varies from +9dB to -9dB.distribution in decibel scale provide quite low SSEs for all
3) Distribution of the normalized SIRThe next step is three multi-path profiles.
to find a distribution that approximates the distributionyof  For further investigation, we compare the sample mean TBS
preferably for all multi-path profiles and the whole range afith the estimated mean TBS. Fig. 3 shows this comparison
APRs. In order to compare fitted distribution and sample difer the three multi-path profiles with 15 Codes, UE class 4,
tribution we compute the probabilitigs;,,, (¢, j) andpes:(¢,5) andT, ; = T,. Additionally, the mean TBS for PA with only
that+ falls in the interval 10 and 3 codes are shown. Please note, that all these values
(—o0; ~16.62] fori=0 and also the network Iayouts_ are chosen artificially with the
1) = (~16.62+ (i — 1;4]) - 1.02 for 1 <i< 40 only purpose of demonstrating the accuracy of the_ model.
(24.18;00) for i = 41 The dlffer.entl:e petween Logpormal,. Inyerse Gaussian, and
Gamma distribution foE < 0.1 is not significant. The Normal
where j denotes the situation withith smallest value of, distribution matches best for PA with 15 codes, but slightly
i.e. the jth point from the left in the previous figures. Thenynderestimates for VA. FOE > 0.1 the Normal distribution
we group.J situations together and define the maximum SSgads to quite accurate results in all cases. As a result we
of the kth group as propose either to use only the Normal distribution in delcibe
MazSSE(K) = max;eqr. 100y SSE(k - J + ) scale, or additionally to use the Lognormal distribution in
with SSE(j) = 341 (p (i, ) — Pes (i.j))Q. decibel scale fob: < 0.1. The decision for Lognormal instead
SORE SR estin of Inverse Gaussian or Gamma is the simpler computation
We consider four distributions in decibel and in linear ecal of its distribution function. An alternative would be to use
Normal, Lognormal, Inverse Gaussian, and Gamma. In decighgle sample distribution foE < 0.01 since the other-cell
scale we further distinguish the distribution defined by th@terference becomes negligible.
sample mean and standard deviation (opt) and the diswibuti
defined by the mean and standard deviation obtained from the V. CONCLUSION
Weibull model (fit). Fig. 4 depicts the obtained maximum SSE We presented a method to determine the bandwidth of an
for the three multi-path profiles. The markers are not dratvn HESDPA user in a static network simulation which means that
specific values. Their only function is to improve the charitonly small-scale fading effects occur. The key component of
of the figure. the model and also the main contribution of this paper is the
From the figures we conclude that there is no distributiogstimation of the CQI distribution from the ratio of average
that is optimal for the whole range of multi-path profileother-cell interference to average own-cell interferewtgch
and APRs. The best distribution over the whole range is tiban be easily determined for static network situations. The
Normal distribution in decibel scale with maximum SSEs ahethod can be seen as an extension of the orthogonalityr facto
about 0.08 for PB and < 0.1. An Alternative to using a model to cover the whole SIR distribution and not only the
single distribution for the whole range of APRs is to applynean SIR. One drawback of the model is that the parameters
different distributions to different APR ranges. For> 0.1 the found for the Weibull functions are quite specific for the tiul
Normal distribution in decibel scale or the Lognormal/lrse path profiles and not as easily scalable as the orthogonality
Gaussian distribution in linear scale are good candidatéactor. In this paper we focused on deriving the mean data



0.0251

sse of distribution fit for normalized SIR y [dB] sse of distribution fit for normalized SIR y [dB]

sse of distribution fit for normalized SIR y [dB]

0.015f

0.005f

— decibel scale (fit)

— decibel scale (opt)

— linear scale (opt)
* Normal

¢ Lognormal
o Inverse Gaussian
o Gamma

107 107 10" 10°
ratio of average other-to—own received power
(a) ITU Pedestrian A
0.1r $— decibel scale (fi)
—— decibel scale (opt)
0.09¢ —— linear scale (opt)
* Normal
0.08r ¢ Lognormal
o Inverse Gaussian
0.07r o Gamma
0.06r
0.05r
0.04r
0.03r
0.02r
0.01r
0
107 107 10" 10°

ratio of average other—to—own received power £

(b) ITU Pedestrian B

decibel scale (fit)
decibel scale (opt)
linear scale (opt)
Normal
Lognormal
Inverse Gaussian
Gamma

00 <o x%

10 10 10 10
ratio of average other—-to—own received power

(c) ITU Vehicular A

Fig. 4. SSE for fitting normalized SIR distribution

volume transmitted in certain period of time when roundimnob
scheduling is applied. The model also allows to considegroth
scheduling disciplines like maxCQI-scheduling or projuoral
fair scheduling.

The method is applicable in Monte Carlo simulations, in
high-level time dynamic simulations and analytic models. A
an example please refer to [13] for an analytic model based
on this method or to [14] where the method is used to
investigate HSDPA resource allocation strategies by syste
level simulations

A further advantage of this method is that it is entirely
described by the set of parameters for the Weibull functions
That makes it easily applicable for researchers that do not
have a physical layer simulator at their disposal. Furttoeen
the usage of this model can make simulations from different
researchers better comparable since the impact of the lower
layer is clearly defined.
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