(©2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

The definitive version of this paper has been published in European Wireless 2008, 2008 10.1109\ /ew.2008.4623896.

in other works.

QoS Provisioning in WLAN Mesh Networks Using
Dynamic Bandwidth Control

D. Hock*, N. BayerT, R. Pries*, M. Siebert!, D. Staehle*, V. Rakocevict, B. Xuf
*Deptartment of Distributed Systems, University of Wiirzburg, Germany
Email: {hock, pries, stachle}@informatik.uni-wuerzburg.de
TDeutsche Telekom/T-Systems, Darmstadt, Germany
Email:{Nico.Bayer, M.Siebert, Bangnan.Xu} @t-systems.com
1School of Engineering and Mathematical Sciences, City University, London, UK
Email:V.Rakocevic @city.ac.uk

Abstract—WLAN, based on the IEEE 802.11 standard has
been extensively studied since its release. In addition to infras-
tructure access to WLAN, mesh networks currently attract a
lot of attention. This comes from the envisioned advantages of
wireless mesh networks, such as cheap installation costs, extended
coverage, robustness, easy maintenance, and self-configuration
possibilities. In this paper we focus on Quality of Service support
for multimedia applications in WLAN-based mesh networks.
Therefore, a dynamic bandwidth control mechanism is imple-
mented on the network layer and the results show that high
prioritized traffic can be protected from disturbing best effort
traffic.

Index Terms—WLAN, 802.11, Mesh, Testbed

[. INTRODUCTION

The continuous standardization of Wireless Local Area
Networks (WLANS) is a success story. Since the first release
of the IEEE 802.11 WLAN standard in 1997, it gradually
improved its performance and evolved into a very flexible
and well-understood technology. However, todays WLANS are
mainly Access Point (AP) centered and form small islands in
laboratories, on campuses, and in hot-spot urban environments.
A Wireless Mesh Network (WMN) brings these hot-spots
together, similar to wired routers, which connect networks to
ensure a reliable end-to-end connection. The standardization of
WLAN mesh networks was started in 2003 under the extension
IEEE 802.11s [1]. Besides the IEEE 802.11s standard further
standardization groups for WMNs like IEEE 802.15.5 [2] and
IEEE 802.16j [3] underline the importance of wireless mesh
networks.

The main characteristic of a wireless mesh network is the
communication between nodes over multiple wireless hops to
increase the radio coverage and to enable network connec-
tivity between stations which are outside their direct receive
range. In contrast to wireless ad-hoc networks which focus
on mobility, end user devices, and point to point connections,
WMNs are normally static devices and focus on reliability,
network capacity, and are mainly used as an alternative to a
wired network infrastructure.

Major research aspects in WMNs are routing and Quality of
Service (QoS) support. In this paper, we present a distributed,
measurement-based approach to protect QoS traffic from best
effort traffic in WLAN-based mesh networks. The aim of the

proposed mechanism is to keep track of the services currently
present in the network and to ensure a stable and high QoS
level. The tools for the approach are implemented and tested
on wireless mesh nodes. The results reveal that the mechanism
does not only keep track of disturbing traffic on the same path,
but also regulates traffic flows on crossing paths. It should be
noted that the presented approach is general in nature and even
if it is discussed and implemented based on wireless mesh
networks, it can also be applied to other types of networks,
e.g. wireless ad-hoc and wired networks.

The remainder of the paper is organized as follows. In
Section II the work related to QoS issues in wireless mesh
networks is shown. This is followed by Section III, introducing
wireless mesh networks and its known problems. Our approach
is presented in Section IV and Section V shows the results of
performance measurements in an example scenario. Finally, a
short conclusion is given in Section VI.

II. RELATED WORK

One step towards QoS support in IEEE 802.11 networks is
defined in the IEEE 802.11e standard for service differentia-
tion, which slightly modifies the Carrier Sense Multiple Ac-
cess/Collision Avoidance (CSMA/CA) mechanism. However,
the standard does not guarantee a good QoS level, especially
in highly loaded networks. This has been tested and improved
for single hop environments in [4], [5], and [6].

A MAC protocol for QoS support in WMNs is proposed
by Carlson et al. [7]. It is called Distributed end-to-end
Allocation of time slots for REal-time traffic (DARE). In this
protocol, time slots are reserved in all mesh nodes along a real-
time traffic’s route to ensure a transmission with good QoS
performance. The reservations are thus done for fix routes but
repair mechanism are provided if a link fails and the route
has to be changed. The DARE approach is implemented and
tested in a simulation with ns-2.

Besides the simulation-based adaptation mechanisms, Guo
et al. [8] implemented a mechanism called Software-based
Time Division Multiple Access (STDMA) on top of the WLAN
MAC layer in a testbed. The approach is designed to support
WLAN-based VoIP appplications and it is claimed that a

significant improvement of the maximum number of G.729-
quality voice conversations in a WLAN is achieved. Typical
scenarios with both best effort and real-time traffic are though
not in the scope. This reduction to single use cases is, besides
the MAC layer changes, the second difference to the approach
presented here.

There are also propositions for QoE provisioning on higher
layers. He et al. [9] introduce a middleware-based QoS control
in 802.11 wireless networks. The idea is to implement a traffic
prioritization inside the mesh nodes based on control theory.
To realize this prioritization a “middleware design with cross-
layer framework” is introduced and implemented in a Linux-
based testbed. Above the middleware, the applications have
the possibility to define requirements for single connections.
Before a service is started, the application informs the mid-
dleware that certain QoS specifications are needed for the
desired flow between two end points. The middleware’s task
is to choose an adequate service class on a dynamical base
depending on the current performance of the service and the
demanded requirements. By a control loop the current quality
is measured and compared to the desired one. Depending on
the current “quality error” dynamical packet scheduling is
performed.

To distinguish our approach from [9] two things are men-
tioned. As the middleware approach is based on prioritization
inside the mesh nodes, only problems caused by traffic passing
through one of the nodes prioritizing multimedia streams can
be handled. If the traffic problems occur due to collisions on
the air interface caused by nodes that are not demanded to
prioritize any real-time traffic among themselves, they will
not recognize any problem and not control the disturber to
solve the problem. There is no signaling mechanism between
different nodes using the middleware software to locate a
problem outside the real-time route. Depending on the focused
field of application, there might be a second drawback of the
approach presented in [9]: All services that need a certain QoS
performance have to be announced first.

III. WLAN MESH NETWORKS AND THE MESHBED SETUP

Wireless mesh networks are an interesting new approach
to provide cheap, reliable, and flexible broadband wireless
Internet access. As shown in Fig. 1, a WMN consists of a
number of different devices connected over wireless links.
A Mesh Point (MP) is a node which fully supports mesh
relaying, meaning that it is capable of forming an association
with its neighbors and forwarding traffic on behalf of other
MPs. Besides these MPs, there are special Mesh Access Points
(MAPs) which act as APs as well, connecting non-MP-capable
devices to the WMN. A Mesh Point Portal (MPP) is another
MP, bridging traffic between different WMNs or connecting
the WMN to the Internet.

As todays technology and infrastructure developments have
advanced, e.g. when looking at WMNSs, the services used by
the customers nowadays have as well. As for instance Voice
over IP (VoIP) has become more and more popular, networks

and mechanisms are necessary to ensure high quality for real-
time applications. The performance of real-time applications
in WMNs has been widely studied in terms of simulation, but
only a few testbeds exist. We have investigated the possibility
of real-time application support in a WLAN-based mesh net-
work testbed, called "MeshBed”, that has been developed by
T-Systems in Darmstadt, Germany. Details about the MeshBed
can be found in [10]. Fig. 1 shows a symbolic excerpt of this
network. In case of the MeshBed, the single mesh routers
are connected via WLAN on the 5 GHz frequency band.
The gateway is connected to the core network providing
Internet access via Ethernet. Access Points in the MeshBed
are allowing notebooks, WLAN-based telephones, and other
client devices to connect via Ethernet cable or WLAN on the
2.4 GHz frequency band.

Mpbile Mesh backbone Mesh access
device - a @ 5 GHz @ 2.4 GHz
Mesh Point C J
(MP) -B J @d

% ©
\\ Mesh Access
\ Poaint (MAP) - D
\

Ethernet Mesh Point & ————— Ethernet link for
link
in Portal (MPP) - A 2 F user access
e
f
Fig. 1. MeshBed architecture

Currently, the MeshBed consists of 12 mesh routers and
two mesh gateways, which are all deployed indoors. For
investigations in more realistic scenarios, it is planned to
extend the MeshBed with a 15 nodes outdoor mesh network.
The mesh routers consist of embedded AMD Geode SC1100
Systems with 266MHz CPUs and 64 MB of RAM. The
gateways consist of barebone desktop PCs with 3 GHz Intel
Pentium 4 processors and 1 GB of RAM. All mesh nodes are
equipped with Atheros Wireless Mini PCI WiFi Cards as well
as Ethernet ports and use operating systems based on Linux
together with madwifi [11], an open-source WiFi driver.

In the next section, the approach for QoS support in WMNs
is presented.

IV. A ROUTING LAYER BASED APPROACH
A. Idea and General Structure

1) Idea of the Approach: The general idea of the approach
is to perform the QoS support at the routing layer. MAC layer
changes would be possible as well but they are not suited
in this case. WLAN has already become a wide spread tech-
nology. Changing something in the MAC layer as currently
standardized would not just mean an update to or recreation
of all drivers for the WLAN devices but also implies possible
hardware changes in those devices. This makes the deployment
and usage of new MAC mechanisms very difficult.

Routing layer mechanisms to enhance QoS are a promising
approach for WLAN-based mesh networks. The routing layer
is easily exchangeable, as it is totally based on software.
Independent of the operating system, the routing layer is
logically situated on top of the network device driver and
interacting with it via driver independent interfaces.

In the presented approach, maximal adaptability and flex-
ibility is reached through a distributed solution. Every relay
node is equipped with capacities to monitor, judge, and react
on the current network situation.

The aim of the proposed mechanism is to keep track of
the services currently present in the network. Approaching
or already present problems shall be recognized as fast as
possible. Solutions to those problems on different ways shall
be provided to ensure a stable and high QoS level.

This aim basically needs two main tools to be realized, a
Traffic Observer that analyzes the current network situation
and a Traffic Controller that offers different possibilities to
influence the actual situation to provide high QoS. Further-
more, an effective way to allow communication between those
two components not only when present on one mesh node but
also when distributed throughout the network is necessary. The
following sections explain the different parts of the mechanism
in more detail.

2) General Structure and Interoperability: Fig. 2 shows the
general structure of the developed mechanisms. The core of
the implementation is formed by the OLSR implementation of
Andreas Tonnesen OLSRd [12]. Running on every node, this
software enables the mesh routers to connect to each other and
to form the MeshBed. The Traffic Observer is implemented as
a kernel module. It is runnable independently of OLSRd and
can be compiled and used on any linux machine with the
correct kernel version. The Traffic Controller is implemented
as a plugin to the OLSRd plugin interface. It includes a
signaling unit making use of the OLSRd broadcast messages
and allows thus communication between different Traffic Con-
trollers. Located on one single node Traffic Observer and
Traffic Controller are contacting each other via the Linux
netlink sockets.

i OLSR Signaling Messages

Broadcast

!

Plugin Interface

Traffic Observer
Flow Monitoring
Threshold Management

Netlink Socket
Traffic Controller
Traffic Contolling Mechanism:
Signaling

fileread | Netlink Socket[Plugin Interface

|

Fig. 2. General Structure

B. Traffic Observer

The key part of the presented approach is the component
called Traffic Observer. Its tasks are two folded. On the one
hand this module has to monitor the current situation in the
mesh network by observing the current traffic flow, as well
as other information that can be obtained from the network.
On the other hand it has to judge whether the current network
situation is acceptable or, if this is not the case, how to react
on the occurring problems. To realize this, certain thresholds
are needed. In the following sections each of these two tasks
is presented in detail.

1) Flow Monitoring: As mentioned before, the most im-
portant task of the Traffic Observer, as the name says, is
observing the network and the traffic inside it. Especially
because Traffic Observer and Traffic Controller are normally
situated in every relay node, there is much information of
different kind that might be obtained and analyzed. In a raw
classification one might separate this information into packet
or traffic related information and non-packet or -traffic related
information. Even though the latter one, including things like
CPU usage or memory load at the monitoring node, might
also be of big interest, the main focus lies on the former!.

Traffic related information are all those information con-
cerning the traffic of the network, i.e. the packets describing
this traffic in the case of IP as in WLAN-based mesh networks.
One of the main aims of the approach presented in this work
is a distributed solution to the issue that is highly adaptable
to different scenarios and network changes. This has a large
impact on the possible choice of monitorable information. No
information of neighbor nodes about their observations can
be included in the measurements for two reasons. First, the
standard packet structure of real-time services does not include
any place to transport those information. Second, sending this
information in separate packets with regular time intervals is
impossible due to an insolvable trade off between too much
signaling overhead and too imprecise information. OLSRv2
might solve this problem because it provides a more flexible
signaling framework but it also increases the overhead and
therefore it might not be a good approach especially in highly
loaded networks with many active sessions.

All information the Traffic Observer can analyze about the
currently active services is obtained by the observation of the
packets passing by in the own node. Three different types
of information can be obtained for a certain packet stream.
First of all there is the explicit time independent information
readable out of the packets content, as for instance source
or destination address or protocol type. Next, there is the
implicit time dependent information which is obtainable at
the moment of the packet monitoring, e.g. the packet absolute
arrival time or relative arrival time after the last packet of the
same service. Finally, there is statistical information that is
based on a series of packets rather than on a single one. This

'Normally it should be possible to choose the devices powerful enough
in terms of memory and processor capacity so that those parameters do not
become the bottleneck of a transmission. Limits of this estimation are shown
in Section V.

information provides a long term analysis of the monitored
services, for instance packet loss over the last n packets or
the standard deviation of the packet inter arrival time. The
measurement of the widely used one way delay metric is
evidently not possible in this approach as information of more
than one time stamp at other nodes in the network would be
necessary. Though obtaining this information is impossible as
explained before.

Fig. 3 shows a screen shot of the graphical information page
displaying the information provided by the Traffic Observer. In
the following section all displayed values are shortly described
and assigned to the above classification. Furthermore, the
equations to calculate the statistical information is given.

Configuration Routes LinksTopology All

Abowut QoS Monitoring

RTP Services

ID source destination next hop SSRC PT meanlPD stdIPD loss

4 192168.1.30 182.163.1.40 192.188.1.13 2152362586 33 201ms S8ms 0.0%

4 192168.1.30 182.168.1.40 192.168.1.13 2152362586 33 201ms 158ms 1.0%

4 192168130 192.168.1.40 192.168.1.13 21523625868 33 201 ms 268ms 3.0%
Other Traffic

ID protocol srcip
1 TCcP 192.168.1.10
1 UDP 192.165.1.10

dst ip src port dst port bits'sec
192.168.1.20 123 321 118.37 kbfe
192.168.1.20 123 321 118.37 kbfs

packets/sec
1320 pkifs
132.0 pkifs

Fig. 3. A screenshot from the Browsers Monitoring Page

The information collected for Premium and RTP Services
are as follows: source, destination, and next hop IP address of
the packet can be obtained as explicit information, either out
of the packet header, or in case of the next hop address out
of the routing table by knowledge of the destination address.
The payload type of the RTP service and its unique SSRC
number are also explicitly readable from the packet header.
The combination of SSRC and next hop address is used to
assign a unique ID to each service. Packets with the same
SSRC and next hop obtain the same ID and are collected
together.

The values mean;pp, stdipp, and loss are statistical
information. To explain their calculation, the following
definitions are given: For every packet p; the following
implicit and explicit information can be obtained:

¢;: unique identification number of p;,
t;: absolute arrival time of p;,

Al — ti—ti—1

i = ey relative arrival time of p;, and

l;: total length of p; in Bytes.
Furthermore, sets are held containing the obtained values for

the last window size w packets P = {piast—w-+t1s-- -, Diast }
sorted by time of packet arrival:

® = {¢last7w+17 LR 7¢last}a

T= {tlastwarlv “ee atlast},

AT = {Atlast7w+17 o aAtlast}y and

L= {llast—w+17 ey llast}-

Using these definitions, the statistical information can

be obtained as follows:
The mean inter packet delay mean;pp is defined as

x
meanypp = mean[AT] = Z:Ti
w
The standard deviation of the inter packet delay std;pp is
defined as
2
_ w ZzGAT z? ZmGAT:E
Std[pD = . — .
w—1 w w

The packet loss loss is defined as

loss = 1— 2] v

maz[®] — min[®] +1 ! max|[®] — min[®] + 1

The information collected for Other Traffic, i.e. non real-
time traffic are as follows: The protocol type, source and
destination addresses, and ports are explicit information of
the packet header. The combination of source and destina-
tion addresses and ports are used to assign a packet to the
correct monitored service. Bits/sec and pkts/sec are statistical
information calculated as follows using the above definitions:
The bandwidth in bits/sec bps is defined as

ZleLl

bps = max[T] — min[T]

The packet rate in pkts/sec is defined as

It |L] w
PREPS = maz[T] — min[T]

2) Threshold Management: The preceding section has of-
fered a look inside the Traffic Observer’s monitoring facilities.
It displayed which different types of information and parame-
ters are measurable and how they are obtained. All information
provided by the Traffic Observer is always available up to the
most recent packet on demand via the Linux proc filesystem
procfs.

Monitoring of the services alone is though not enough to do
QoS monitoring and enhancement. There is also the need for
a mechanism that judges the monitored information and reacts
in the case of a possible quality decrease. To realize this task,
a threshold management in the 7raffic Observer is necessary.
Following a common way of illustration, traffic light charts
with colors green, yellow, and red depicting good, average,
and bad quality are used.

Key parameters have to be compared to adequate thresholds
to assign them with the correct color, i.e. quality level. The key
parameters chosen in this work to judge QoS and a possible
QoS degradation are the previously introduced std;pp and
loss.

max[T] — min[T]

In this work, the thresholds to do the QoS judgment on this
parameters are configured service dependent. Each RTP pay-
load type can be configured with four own values describing
the 5tdIPDy,,,,i,,,,,/,yﬁ”mu7 StdIPDye”O“,,,,.ed’ lossgreen—yellow’
and 1055 yeliow—rea thresholds. One might imagine that thresh-
olds could become less demanding in case of a larger number
of services in the network or more claiming in an empty
network. The thresholds defined in this work are though
intentionally not adapting to different network situations. They
are set to fixed values for every type of service.

As said before, the monitored values of the Traffic Observer
are always available on demand via the procfs. More precisely,
the explicit and implicit information for the w last packets are
saved internally. At the moment of access to the procfs, the
statistical information is calculated. The judged key parameters
stdrpp and loss belong to the statistical information as well.
Nevertheless, they have to be compared to the thresholds
regularly and not just on demand. std;pp and loss are thus
calculated when | {5] new packets have arrived. For instance
in case of w = 100 with the arrival of every 10th packet the
stdrpp and loss values are updated. Afterwards, the values
are compared to the thresholds. If the thresholds are exceeded,
a QoS alert is broadcast via the linux netlink socket. To avoid
an alert flooding during the process of the reaction period,
alerts are sent with an interval of 1 second.

C. Traffic Controller

The second important unit of the mechanism is the so
called Traffic Controller. So far, the possibilities of the Traffic
Observer to detect a problem and its ways to give alerts have
been presented. The remaining logical steps of the mechanism
to solve quality problems are signaling the quality problems
to other nodes in the MeshBed and to react on the disturbing
influence to increase the quality. These tasks are realized by
the Traffic Controller and are presented in this section.

1) Traffic controlling mechanisms: Quality degradation can
occur for several reasons like packet loss, jitter, and long end-
to-end delays. A common approach to decrease the packet
loss and the jitter is packet prioritization using the type of
service bit in the IP header. However, due to problems on the
air interface caused by subsequent nodes when relaying traffic
over multiple hops, a prioritization alone does not work in
WMNeE.

Considering the possibilities of automated and manual
WLAN channel choice, it can be estimated that there are
no external influences to the WMN on the air interface. All
colliding packets are originating from one of the own mesh
routers in the MeshBed. Under these circumstances a reaction
to these collisions can be done by a reduction of the disturbing
traffic’s packet amount. By reducing the allowed bandwidth
for non real-time traffic to a lower but still acceptable level,
the frequency of possible disturbing packets is automatically
decreased as well.

2) Steps of Controlling: Fig. 4 shows the steps of a Traffic
Controller reaction in an example scenario inside the WMN
environment displayed in Fig. 1. A constant bitrate real-time

connection between a and d via A-B-C-D is disturbed by
crossover high bandwidth traffic from e to f via E-F, see
Fig. 4(a). The packets relayed from E to F and from F to

(a) scenario
B-o—=a—4
B ¢ 1
@ 5)

®

(c) neighbor broadcast (d) problem location and reaction

Fig. 4. Steps of Controlling

f collide on the air interface with the packets relayed from
B and C which results in a quality decrease of the real-time
service, as illustrated in Fig. 4(b). The Traffic Observers at
B, C, and D detect the quality problem and send an alert to
their Traffic Controllers. At first the nodes try to find possible
disturbances in their own queues. To avoid quality decrease
caused by overloaded queues, all non real-time applications
in the own node are checked first, if a certain bandwidth
threshold is exceeded. If this is the case, the bandwidth of
the non real-time applications is reduced. A bandwidth of
5Mbps is supposed as sufficient for most purposes. In the
used practical implementation, the Traffic Controller reduces
the bandwidth to 5Mbps in case of real-time problems. A
dynamical stepwise adaptation of the bandwidth for non real-
time traffic is an interesting topic to be researched and tested
by simulation studies in future work.

In the next step as neighbor nodes might cause crossover
problems, as for instance E and F do in this scenario, signaling
messages are sent to all one-hop neighbors via the OLSRd
Hello Message system. This is shown in Fig. 4(c). All nodes
receiving such a broadcast message of a disturbed node are as
one-hop neighbors of the disturbed node possibly responsible
for the disturbance. Therefore, they check and control the
bandwidth of possible disturbing traffic the same way as the
disturbed node did before. In the displayed scenario, E will
activate the bandwidth control. F then recognizes that the
bandwidth is already reduced to 5 Mbps and no further reaction
is necessary. Fig. 4(d) shows the situation after the reaction of
the mechanism. E is performing bandwidth control that leads
to a slower but still working high bandwidth traffic from e to
f. The performance of the real-time flows increases again and
the QoS demands can be met.

V. PERFORMANCE MEASUREMENTS

To analyze the performance of the presented approach, the
WMN environment and scenario as depicted in Fig. 1 and

VWW AN 1 [
I v]

estimated
MOS
— N WwWhO

o

100 200 300

loss (%)
O N A~ O 0o

o

>

n‘ n‘ Y AR W

0 100 200 300 400 500
@ 40 " " i i
£30]
S 20/ —_ T
=zt0r__ = ' .
@ w w w w

0 100 200 300 400 500

measurement time (s)

Fig. 5. Influences of Crossover Disturbers

Fig. 4 has been set up in a testbed. The constant bitrate
real-time connection between a and d is realized by a VoIP
connection with inter arrival time 20ms and a packet size
of 200Bytes. This connection is disturbed by subsequent
crossover high bandwidth connections from e to f via E-F with
stepwise increasing bandwidths of 5, 10, 15, 20, 25 Mbps.

Fig. 5 and Fig. 6 successively show the results of measure-
ments with deactivated and activated controlling mechanism.
The x-axis shows the time of the measurement in seconds, the
y-axes show the estimated Mean Opinion Score (M OS) [13]
and the [oss in percent of the real-time traffic measured at D
as well as the bandwidth in Mbps of the disturbing service
measured at F.

The stdypp has also been measured at D. However, the
measurements have shown that even for the highest disturbing
bandwidth of 25 Mbps, this parameter still stays in an accept-
able level below 5ms. Therefore, it is not displayed in the
measurement results. The loss value is on the other hand a
lot more sensible to collisions on the air interface. As Fig. 5
shows, it is already sporadically increasing for a disturbing
bandwidth of 10 Mbps.

A MOS value of less than 3, marked by a red line in Fig. 5,
can be considered to imply bad quality. For loss values bigger
than 1.7% the MOS goes below this threshold. This loss
value is thus also marked by a red line. Fig. 5 shows that
the threshold is already exceeded for a disturber bandwidth
of 10 Mbps. For disturber bandwidths of 20 Mbps and more,
the quality is close to or below the accepted value during the
whole period of disturbance. For the highest tested bandwidth
of 25 Mbps, the service quality at D is totally unacceptable as
the loss value increases drastically.

Fig. 6 shows the same case as Fig. 5 but with activated
mechanism at all nodes A, B, C, D, E, and F. Obviously, as
a first perception, the phases with high loss, invoking low
MOS, are a lot shorter than without the influences of the
mechanism.

The vertical green and red lines in the curves show the
time of the problem detection and the time of the controller

3 |
g4 \
S g 3| — Detection v]
@ ? Reaction ‘ ‘ ‘ il
0 100 200 300 400 500
8 ‘ ‘ ‘ ‘
Sk 1
24 *
82 (e lied Ol | s
0 100 200 300 400 500
% 40 w w w w
§30 I
=20 il q .
=10 ___ -] 1
m o s s s s
0 100 200 300 400 500
measurement time (s)
Fig. 6. Improvements by the Traffic Controller

reaction. The first exceeding values alerted at the time of the
detection of a new problem are marked with a red circle in
the loss graph. The Traffic Observer threshold between yellow
and red [oss values is set to 1.5 % and displayed in the graph
by a dotted horizontal red line.

The bandwidth graph shows the reaction by reduction of
the disturbers bandwidth to the configured value 5 Mbps. This
obviously leads to a direct return to acceptable quality values
in the loss and M OS curves.

To quantify the performance of the mechanism, the key
parameters, reaction time and signaling message load, have
been analyzed. Depending on the number of neighbors a mesh
router in the depicted scenario receives on average between
400 Byte, about 3 to 4 packets, and 2000 Byte, 15 to 20
packets, of OLSRd messages per second. As said before, the
Traffic Observer does not send alerts more frequently than
with an interval of 1 second to avoid an alert flooding. An
alert is furthermore broadcast by an OLSRd message of a size
fitting in one single OLSRd packet. This one additional packet
per second does not show any increase of the average OLSRd
signaling bandwidth. Even the highest measured OLSRd sig-
naling bandwidth of 2000 kbps is ignorable even in a highly
loaded network. The signaling load issue is thus no problem
of the presented mechanism.

The second important metric to quantify the mechanism’s
performance is the reacting time. As upcoming quality loss
is recognized latest within the first w disturbed packets, i.e.
in the default case with w = 100 and constant bitrate 20 ms
in the first two 2 seconds, the delay between the occurrence
of a quality decrease and the recognition can be disregarded.
Then again an activation of the Traffic Controller, e.g. reducing
the disturbers bandwidth, is supposed to solve the problem in
maximally w packets as well, what can be confirmed by a
look at Fig. 6. The time between the activation of the Traffic
Controller and the return of an acceptable quality level is
thus also negligible. The scope lies on the delay between the
detection and the reaction. Fig. 6 shows that this delay depends
on the bandwidth of the disturber. For the bandwidths of 5,

10, 15Mbps the delay is between 1 and 3 seconds. Such a
delay results only in a short QoS loss which is still acceptable
for a user.

For the test cases with higher bandwidths of 20 Mbps and
25 Mbps, which are though not expected to occur in real mesh
networks, the delays increase significantly up to 7 seconds. An
analysis of the single controlling steps has shown that the high
delays in the measurement setup are mainly caused inside the
Traffic Controller while activating the traffic reduction. The
delays are due to high CPU use of the used mesh nodes. In
this case the prerequisite of Section IV that the nodes can be
chosen fast enough to not be the bottleneck of a transmission
is not met anymore with the used equipment. The effects are
though expected to disappear when more powerful machines
or a hardware based realization are used. Investigating such a
realization might be a promising topic for future work.

Testing the efficiency of the mechanism in other network
situations and a design of experiments for different network
factors like number of nodes, number of connections, network
load, and so on is difficult in a practical implementation and
implies simulation. Implementing the approach in a simulation
environment to obtain more information about efficiency and
general usability might be thus interesting for future work.

VI. CONCLUSION

In this paper, we presented a measurement-based approach
to support real-time applications in wireless mesh networks.
In contrast to other publications in this area, the developed
algorithm was not just tested in a simulation environment,
but implemented in a real WLAN-based mesh network. It
was shown that the developed concept works well in a real
implementation.

The approach is based on two main entities, a Traffic Observer
and a Traffic Controller. Whenever the Traffic Observer detects
a problem in the mesh network, for example a high rate best
effort flow blocks a real-time application, the Traffic Controller
forces this low priority flow to reduce its bandwidth. The re-
sults have shown that the mechanisms reacts in less than three
seconds which is completely sufficient for real-time traffic over

WMNs. The next step is to improve the performance of the
developed system using several different scenarios and to ex-
tend our mechanism by an efficient admission control scheme
for real-time traffic flows. Also the simulative investigation of
adaptation mechanisms for non real-time traffic is one topic
for future work.

REFERENCES

IEEE 802.11s/D1.0. Draft Amendment to Standard for Information

Technology - Telecommunications and information exchange between

systems - Local and metropolitan area networks - Specific requirements

- ESS Mesh Networking, March 2007. IEEE 802.11s/D1.

[2] IEEE 802.15 Standard Group Web Site. Available
http://www.ieee802.org/15/.

[3] IEEE 802.16j Mobile Multihop Relay Project Authorization Re-
quest (PAR), Official IEEE 802.16j Website: http://standards.ieee.
org/board/nes/projects/802-16j.pdf, March 2006.

[4] Rastin Pries, Stefan Menth, Dirk Staehle, Michael Menth, and Phuoc
Tran-Gia. Dynamic Contention Window Adaptation (DCWA) in IEEE
802.11e Wireless Local Area Networks. In The Second International
Conference on Communications and Electronics, HUT-ICCE, Hoi An,
Vietnam, June 2008.

[5] Hao Zhu, Guohong Cao, Aylin Yener, and Allen D. Mathias. EDCF-
DM: A Novel Enhanced Distributed Coordination Function for Wireless
Ad Hoc Networks. In IEEE ICC 2004, pages 3886—3890, Paris, France,
June 2004.

[6] Lamia Romdhani, Qiang Ni, and Thierry Turletti. AEDCF: Enhanced
Service Differentiation for IEEE 802.11 Wireless Ad-Hoc Networks. In
IEEE WCNC, 2003.

[7]1 E. Carlson, C. Prehofer, C. Bettstetter, H. Karl, and A. Wolisz. A
Distributed End-to-End Reservation Protocol for IEEE 802.11-Based
Wireless Mesh Networks. IEEE Journal on Selected Areas in Com-
munications, 24(11):2018-2027, November 2006.

[8] Fanglu Guo and Tzicker Chiueh. Comparison of QoS Guarantee
Techniques for VoIP over IEEE802.11 Wireless LAN. In Multimedia
Computing and Networking 2008, San Jose, CA, USA, January 2008.

[91 Wenbo He, Hoang Nguyen, and Klara Nahrstedt. Experimental Vali-
dation of Middleware-based QoS Control in 802.11 Wireless Networks.
In BROADNETS ’'06: Proceedings of the Third International Conference
on Broadband Networks, pages 1-9, San Jose, CA, USA, 2006.

[10] Nico Bayer, David Hock, Matthias Siebert, Andreas Roos, Bangnan Xu,
and Veselin Rakocevic. VoIP performance in MeshBed - a Wireless
Mesh Networks Testbed. In Proc. IEEE 67th Vehicular Technology
Conference (VIC "08-Spring), Marina Bay, Singapore, May 2008.

[11] http://www.madwifi.org.

Andreas Tonnesen. Implementing and extending the Optimized Link
State Routing Protocol. Master Thesis at UniK, 2004.
[13] ITU-T. ITU-T Recommendation P.800, Methods for subjective determi-
nation of transmission quality. ITU-T Recommendation, 1996.

—_
—

from:

