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Abstract—Statistical anomaly detection (SAD) becomes an
increasingly important tool for the early recognition of potential
threats for security-relevant information systems. SAD systems
heavily rely on the probing of potentially very large networks.
Our contribution is an analysis of the resource requirements
on the information sink which constitutes the bottleneck of
Client/Server-based SAD systems. In order to dimension the
system appropriately, we investigate the trade-off between ac-
cumulated and distributed arrival patterns, and the impact of
the processing phase of the information sink.

I. I NTRODUCTION

Statistical anomaly detection (SAD) systems are designed
to recognize threats by analyzing the behavior of potential
attackers. The basic principle is to monitor the data flow
in a network and to compare the statistical properties with
empirical values gained from past measurements. Thus, SAD
systems require firstly the permanent monitoring of network
nodes, and secondly an information processing instance to
perform the required computations. Currently, the most com-
mon architecture approach for SAD systems follows a the
Client/Server design, where the network probes (the clients)
send their measured data to an information sink (the server).

Unfortunately this design is prone to bottlenecks at the
server. Such bottlenecks can be avoided by an appropriate
dimensioning of the performance parameters. In this paper we
investigate analytically the performance of such a system and
give guidelines for dimensioning of the information sink.

An example for such a platform, originating from the
network security area, is the “Internet Analysis System” (IAS),
[4]. This platform is based on a Client/Server architecturewith
one data sink and many data sources, which are distributed
over many different subnetworks. The aim of this system
is to derive the network harassment, like worm dispersion
or distributed Denial-of-Service attacks, by using statistical
anomaly detection based on measured data. In advance, it
is also possible to take steps against a threat once it is
identified. In order to collect the necessary measurements,each
probe monitors the network flow over a node and logs the
relevant data used for the evaluation. In order to satisfy the
confidentiality regulations, this system counts only anonymous

1Work was started when K. Tutschku was with the University of Wuerzburg

information like the protocol type or the port number of the
traffic passing over the link. Personal information, e.g. the
IP-Address, are discarded. The measured counters are sent
periodically to the server, which performs an evaluation on
the coherent data of different network probes. We call this
time which is needed to perform this evaluationreaction time.

Other SAD systems arePacket Header Anomaly Detec-
tion (PHAD) [2], the Application Layer Anomaly Detection
(ALAD) [3] or the Event Monitoring Enabling Responses
to Anomalous Live DisturbancesSystem (EMERALD), de-
scribed in [6]. PHAD and ALAD are both models for SAD
systems. In contrast to these models, EMERALD is a system
which can be compared to the IAS.

EMERALD introduces a hierarchically layered approach to
network surveillance. It includes a single analysis, a domain
wide analysis and an enterprise-wide analysis. Due to the hier-
archical approach of this system measurement data is evaluated
and aggregated on the different layers. This means, that the
raw data is not available on higher layers. This is the main
difference to our specific application, where measurement data
are sent from the distributed probes to the evaluation unit.The
performance evaluation presented in this paper is developed for
the IAS, but can easily be extended to other SAD systems, like
e.g. EMERALD.

By using a single server architecture the typical design
questions arise. Which buffer size is needed to ensure a fully
functional system? What is the blocking probability for a
requests for a given buffer size? How long does it take to
evaluate the measurement data? In this work we examine the
trade-off between the buffer occupation and its impact on the
reaction time of the SAD system. In general, the presented
results can be used by administrators to design such a system
and guarantee policy periods for evaluation and reaction times.

The paper is structured as follows: Section II discusses the
investigated application. In Section III we present the model
for this application, and in Section IV we show the results of
our investigation. Finally, in Section V the paper is concluded
and an outlook for further research is given.
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Fig. 1. Architecture of the IAS-SAD-system.

II. SYSTEM DESCRIPTION

The IAS is an intrusion and malware identification system
based on statistical anomaly detection. This kind of technique
is described in [5]. The architecture of the IAS, which is
illustrated in Figure 1, is separated into three parts: various
network probes a central information sink, the transfer system
for raw data and an evaluation and presenting system.

The network probes are spread over the investigated network
and serve as information providers. They extract and keep
counters for predefined communication parameters. This could
be, for instance, the number of TCP and UDP packets passing
over the observed link. Its also possible to capture e.g. the
number of packets belonging to a special IP address range
used as bot-nets or special ports which are known to be
used for controlling trojan horses. The number of observed
communication parameters can reach up to tens of thousands.

In periodic intervals, counter data are sent to the Raw Data
Transfer-System, where they are collected and forwarded to
the evaluation. The measurements are sent as<identifier–
counter>tuples with a size of8 byte. Since counters are reset
after transmission, they describe the difference of the observed
parameters with respect to the previous counters. In order to
reduce the amount of data, counters which have not changed
in the current interval are not transmitted. This leads to a
variation of the number of counters which are sent to the server
in each interval.

The collected data is stored into a database and then
made available for the anomaly detection algorithms. These
algorithms perform a comparison of the current counters with
predefined thresholds in order to identify local threats. To
achieve additionally a superior view of the network, chrono-
logically correlated data from several network probes are
evaluated. For that reason, the data of each sensor concerning
one measurement interval must be available at the RTS as
fast as possible to allow a fast and effective evaluation. The
time which is lost during the analysis of the measurement data
is time which is also lost for the protection of the observed
system.

In order to achieve a fast overview over the network

harassment, it would be the best to synchronize the probes
and get all the measurements at once. However, due to buffer
restrictions, this could lead to buffer overflows, data lossand
delay. One the other hand, by distributing the arrival times
over the whole interval the buffer occupation would be kept
to a minimum. But this would slow down the examination of
the connected data sets. The aim of this work is to discuss
the trade off between buffer size and examination delay, and
to determine the impact of different arrival patterns on the
design of the system. In the investigated case we assume, that
the server and not the network is the bottleneck of the SAD
system.

III. M ODEL

A. Abstract Server Model

We consider scenarios with multiple clients and one server.
In particular the clients are network probes which send a
packet consisting of measurement counters in periodic inter-
vals to the server. The server stores the data in a database. Data
arriving at the server while it is busy is stored into a queue,
which we assume to be infinite throughout this work. This
assumption simplifies the analysis of the system and allows
us to discuss overall processing times and buffer sizes.

We assume that the server processes each counter within
a constant processing time. Since the number of counters
arriving in each packet is varying, the processing time of a
packet is also varying.

B. Definitions and Performance Metrics

We assume that the network probes transmit their observed
counter measurements in equally spaced time slices of constant
length τ . There arem network probes in the system which
send their data to the server. The number of countersCi

sent by sensor nodei to the server per time slice is variable
and follows a probability distributionci(x) with meanE[Ci]
and standard deviation STD[Ci]. The processing timetc for
a counter at the information sink is constant, such that the
service time for probe datai follows as Bi = tc · Ci with
distribution bi(t) = dci(t/tc)e. In this work we assume
the counter distribution to be independent and identically
distributed, i.e.ci(x) = c(x), i ∈ {1, ...m}.

The relevant performance metrics are thebuffer occu-
pancy O at the information sink and thereaction timeR,
defined as the time between the beginning of a time slice and
the completed processing of the last probe data, belonging
to this time slice, at the RTS. Thus, after the intervalR the
system has a decision on the current threat level in the network
and may react accordingly.

C. Arrival Patterns

We consider three different arrival patterns for the counter
information data at the sink. These patterns describe when the
network probes are scheduled to send their measurements, and
are categorized as follows:

1) Super batch arrival patternThis pattern is depicted in
Figure 2(a). The measured data of the network probes
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Fig. 2. Arrival patterns for network probe data at the information sink.

are sent synchronously and arrive simultaneously at the
server. Because of different latencies between probes and
sink, the measurement data arrive in a small interval at
the server and not exactly at the same time. However, in
our analysis we assume perfectly synchronized arrivals.
Although this pattern has stringent requirements on the
clock synchronization in the network probes, it has the
advantage that additional probes can be easily added to
an existing installation without overly large configura-
tion. A disadvantage is that the cumulated arrivals of all
probe data at the same time leads to increased demands
on the buffer capacity of the server.

2) Distributed arrival patternThis arrival pattern is de-
picted in Figure 2(b). Here we assume that the inter-
arrival time between the probes is constant and equally
distributed in the intervalτ . The inter-arrival time of two
requests isτ

m
. The advantage of this pattern is that the

network utilization as well as the buffer occupation can
be expected to be lower than in the case of super batch
arrivals. Since the request arrival times are spread over
the whole time slice, it is likely that a request has been
processed completely before the next request arrives. A
disadvantage of this pattern is that the information sink
may have to wait for incoming probe data, thus wasting
time which could be used for data processing. Thus,
in high load situations it may also happen that the last
probe data has not been processed with the beginning
of a new time slice. Also, the installation of additional
probes in the network requires the re-configuration of all
probes due to the changed transmission order and time.

3) Distributed arrival pattern with processing phaseWith
this arrival pattern the time sliceτ is divided into two
intervalsτ ′ andτ − τ ′ which we denote astransmission
phaseandprocessing phase. This approach is shown in
Fig. 2(c). In the transmission phaseτ ′, all probes are
sending their data to the information sink with constant
inter-arrival timesτ ′/m, similar to thedistributed ar-
rival pattern over the whole intervalτ . The processing
phaseτ − τ ′ is then exclusively used for processing the
data. This pattern has the advantage that the idle time
between two probe arrivals is reduced, and at the same
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Fig. 3. Queueing model

time the buffer requirements are reduced if compared to
the super batch arrival pattern. We will see later how
the parameterτ ′ can be used to tune the system either
for buffer efficiency or for shorter processing times, and
thus for faster reactions.
Furthermore additional probes can be easily added to
an existing installation by scheduling them after the last
probe arrival. In this case, the length of the transmission
phase changes.

D. Performance Model

We model the SAD system as aD/GI/1 delay queuing
system as shown in Fig. 3. We assume an infinite queue with
a first-come-first-served order, i.e. no probe data will be lost.

We compute the desired system parameters buffer occu-
pancyO and the reaction timeR with a discrete-time analysis
[1] [7]. The state space is defined by means of the number of
unprocessed counters in the system,U . Transitions between
different states are described with state transition matrices.
The time diagram of the investigated process including the
state transitions is depicted in Figure 4. We assume an equally
spaced inter-arrival time∆t between the requests in a time
slice. Depending on the arrival pattern, the inter-arrivaltime
takes values∆t ∈ [0, τ

m
]. We will use the following notation,

which is also used in Figure 4:

uk(x) = unfinished work at the begin of time slicek

Q(τ) = state transition matrix between two

observation points

P(∆t) = state transition matrix between two arrivals

S(∆t) = state transition matrix depicting a reduction of

unfinished work for an interval of length∆t

tk,i = point of thei-th arrival in time slicek

We define the start points of each interval as observation
points. At this regeneration points the remaining work load
Uk can be computed, cf. [8], as

uk(x) = uk−1(x) · Q. (1)

We assume that the counter distributions and for that reason
also the service times are independent and identically distrib-
uted, i.e.ci(t) = c(t) and bi(t) = b(t). Thus the steady state
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Fig. 4. Time diagram of the process including state transition matrices

distribution for the unfinished work load is

u(x) = u(x) · Q. (2)

The state transition matrixQ between the observation points
is computed as:

Q = Pm(∆t) · S(τ − m · ∆t), (3)

i.e. it is composed of m data arrivals and a variable processing
phase. Note, that for the arrival patterndistributed arrivalno
additional processing phase is used. In this case, the matrix S
becomes the Identity matrixI. P(∆t) consists of two parts.
First an arrival adds additional work with distributionb(tk,i) to
the information sink. This work distribution is represented by
the state transition matrixB. Secondly work can be processed
between two successive arrivals, which is denoted by the state
transition matrixS(∆t). This yields

P(∆t) = B · S(∆t), (4)

with

Bi,j = P (B = j − i), (5)

Si,j(∆t) =

{

1, if j = max{0, i − ∆t/tc}

0, else.
(6)

Thus, we compute the buffer occupancy distributiono(x)
after the last packet arrival in a time slice as

o(x) = om(x) = u(x) · P(m−1)(∆t) · B. (7)

The reaction timeR comprises the service time of the last
request within a time slice and the unfinished work which is
queued in the buffer, i.eR = (m − 1) · ∆t + Om + Bm.
Therefore we compute the reaction time distribution as

r(t) = δ(t − ((m − 1)∆t))� om(x/tc)� b(t) (8)

IV. N UMERICAL RESULTS

Let us now have a look at some numerical results in order
to get an impression of the system performance. We consider
homogeneous scenarios where the probability distributions for
the number of counters of all network probes are identically,
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thus, we assume i.i.d. service times. We further assume the
counter distribution to follow a negative binomial distribution.

This allows for a simple calculation of the maximum
number of probes the information sink can process. Under
stable conditions, i.e.ρ < 1, this number can be expressed as

mmax <

⌊

τ

E[B]

⌋

, (9)

the length of a time slice divided through the mean processing
time of one probe.

Accordingly, the load can be expressed by the approximate
equation

ρ ≈
m

mmax

. (10)

As an example, let us assume a scenario withmmax = 200
supported network probes. That leads to an average processing
time for each counter ofb = τ

E[C]·200 . Under this assumption,
the number of network probes can be computed for a given
system loadρ.

We show the influence of different system loadsρ and coef-
ficients of variations of the counter distributioncv = E[C]

STD[C]
on the investigated system parameters buffer occupancyO and
reaction timeR.

A. Macroscopic Behavior

First, we investigate the influence of the length of the
transmission phaseτ ′ on the mean buffer occupancy and on
the mean reaction time as shown in Fig. 5. We assume different
load values asρ ∈ {0.25, 0.5, 0.75} with a corresponding
number of probesm ∈ {50, 100, 150}. The coefficient of
variation of the counter distribution is set tocv = 0.4. The
solid lines indicate the average buffer occupancy given as
multiples of the mean packet sizeE[C]. The dashed lines
show the corresponding reaction time, i.e. the time until the
last probe data has been processed. The reaction time, as well
as the transmission phaseτ ′ is presented as fraction of the
time slice lengthτ .

Let us defineτ ′∗ = ρ · τ as average time the sink needs
to process all datawithout consideration of any idle phases.
Thus, the curves are divided into two parts, one withτ ′ < τ ′∗

and one withτ ′ > τ ′∗.



For the caseτ ′ < τ ′∗, the arriving measurement data can
not be entirely processed in the transmission phase, queuing
occurs and the buffer occupancy increases with decreasingτ ′.
For τ ′ = 0 the arrivals correspond to the super batch arrival
scheme, i.e. the measurement data of all probes arrive simul-
taneously at the information sink and the buffer occupancy
reaches its maximum. Accordingly, the mean reaction times
correspond to the average processing timeτ ′∗.

For τ ′ > τ ′∗ the mean buffer occupancy isE[C] indepen-
dent of the transmission phase length. The probe inter-arrival
time is large enough to allow a complete processing of the
measurement data of one probe before the next data set arrives.
At most one data set has to be stored in the queue. Since the
reaction time is dominated by the processing time of the last
probe data, it increases linearly with the transmission phase.

We observe that the curves are congruent for values ofτ ′

far from τ ′∗.
Now let us investigate the influence of the length of the

transmission phaseτ ′ on the mean buffer occupancy and on
the mean reaction time for a constant load valueρ = 0.5 and
different valuescv = 0.4, 1, 2, 3. The results are depicted in
Fig. 6. The solid lines indicate the average buffer occupancy
given as multiples of the mean packet sizeE[C]. The dashed
lines show the corresponding reaction time, i.e. the time until
the last probe data has been processed. The reaction time, as
well as the transmission phaseτ ′ is presented as fraction of
the time slice lengthτ .

However, for values ofτ ′ close to τ ′∗ the mean buffer
occupancy and the mean reaction time increase with increasing
cv. We can conclude that for a highcv the value ofτ ′ has to be
chosen smaller thanτ ′∗ in order to achieve the same reaction
time as for a lowcv. It should be noted, that this leads to a
higher buffer occupancy, as indicated by the solid lines.

B. Buffer and Reaction Time Distributions

Let us now investigate the trade-off between the buffer
occupancy and the reaction time for selected values of the
transmission phase for a fixed system load ofρ = 0.5
and cv = 0.4. Figure 7 shows the cumulative distribution
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function of the buffer occupation. Note that the x-axis is scaled
logarithmically. Forτ ′ 6= 0.5 the curves rise quickly, i.e. the
variation is small. Forτ ′ > 0.5 this is due to the small
variation of the counter data and forτ ′ > 0.5 this is due
to the aggregation of the probe data in the queue.

If the transmission phase is identical to the average process-
ing time, the shape of distribution follows from the superposi-
tion of probe data still queued from previous arrivals, and from
the arrival of the last probe data. This leads to a comparatively
large variation.

The distribution of the reaction time is shown in Fig. 8.
The variation clearly decreases and the average reaction time
increases with the transmission phase. The curves with short
transmission phases ofτ ′ = 0.3 · τ and τ ′ = 0.4 · τ show
the largest variation which corresponds to the observationthat
in this case the processing time is dominating the reaction
time. In case ofτ ′ = 0.6 · τ , the reaction time is nearly
deterministic and equal to the transmission phase. Note that
this behavior is a desirable property for real-time systems. In
case of a transmission phase equal to the processing time, the
variation is smaller than in case of lower values ofτ ′. The
distribution is right-skewed due to the processing of queued
data probes from previous arrivals.
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The distributions of the buffer occupancy and the reaction
time for selected values ofτ ′ are depicted in Figure 9 and
Figure 10. The system load and the variation are fixed toρ =
0.5 andcv = 2.

Let us investigate how to use the evaluated results for
the design of the presented system. We want to identify the
interaction of the reaction time and the buffer occupancy.
Let us assume a buffer size of60 · E[C] for the system
and a desired90%−quantile for the reaction time of0.6 · τ .
First we consider a small variation of the counter distribution
c(x). In Figure 7 we can see that we always have a buffer
occupancy smaller than60 · E[C] for the presented values of
τ ′. Note that forτ ′ = 0.2 · τ , the buffer occupancy exceeds
the given buffer constraint. From Figure 8 we can conclude
that only for a value ofτ ′ = 0.6 ·τ , the desired90%−quantile
for the reaction time is exceeded. From this it follows that
τ ′ ∈ {0.3, 0.4, 0.5} · τ fullfilles the given requirements. From
this values, the reaction times forτ ′ ∈ {0.3, 0.4} · τ are equal
and smaller than the others. That means, that in order to reduce
the buffer occupancy a value ofτ ′ = 0.4 · τ should be used
to tune the system.

Now we want to investigate the system with the same
constraints for a higher variation ofc(x). From Figure 9 we
can conclude, that only forτ ′ ∈ {0.5, 0.6} · τ the buffer size
requirement is fulfilled. But, in Figure 10 we see, that for these,
and also for the other values, the90%−quantile of the reaction
time is exceeded. Due to the high variation, the requirements
can not be guaranteed. In order to fulfill the requirements the
server would have to be dimensioned faster or the variation
of the counter distribution would have to be reduced. Without
such an extension,τ ′ = 0.5 · τ would be most suitable for
the system. For a slightly larger buffer,τ ′ = 0.4 · τ would be
possible and speed up the mean reaction time considerable.

V. CONCLUSION & OUTLOOK

In this paper we investigated and developed a mathematical
model for a SAD system. This approach can be used not only
to design the presented application, but also other systems
composed of multiple data providers and one information
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sink. With the introduced analytical method we compute the
reaction time, an important performance metric for such a
system. We further describe the trade-off between the reaction
time and the buffer occupancy.

We investigate the system for different system loads, differ-
ent variations of the counter distributions and different arrival
patterns. We further show how the to use the presented results
for the design of the system and explain how to tune the system
to fulfill the given requirements.

Further work will have to deal with different types of sensor
probes, classified by different counter distributions. Another
open issue is the investigation of transmission failures and their
influence on buffer occupancy and reaction times. Last but not
least the model of the system could be extended by including
an additional random service time denoting the influence of
the operating system on the reaction times.
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