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Abstract—Statistical anomaly detection (SAD) becomes an information like the protocol type or the port number of the
increasingly important tool for the early recognition of potential  traffic passing over the link. Personal information, e.ge th
threats for security-relevant information systems. SAD systel® |p_address. are discarded. The measured counters are sent
heavily rely on the probing of potentially very large networks. I ' N .

Our contribution is an analysis of the resource requirements Periodically to the server, which performs an evaluation on
on the information sink which constitutes the bottleneck of the coherent data of different network probes. We call this

Client/Server-based SAD systems. In order to dimension the time which is needed to perform this evaluatieaction time
system appropriately, we investigate the trade-off between ac-
cumulated a_md distributed ar_rival pa?terns_, and the impact of Other SAD systems ar®acket Header Anomaly Detec-
the processing phase of the information sink. tion (PHAD) [2], the Application Layer Anomaly Detection
I. INTRODUCTION (ALAD) [3] or the Eyent Monitoring Enabling Responses
. . . to, Anomalous Live DisturbanceSystem (EMERALD), de-
Statistical anomaly detection (SAD) systems are deS|gn§ ibed in [6]. PHAD and ALAD are both models for SAD

to recognize threats by analyzing the behavior of potenti stems. In contrast to these models, EMERALD is a system
attackers. The basic principle is to monitor the data flo hich can be compared to the IAS '

in a network and to compare the statistical properties with
empirical values gained from past measurements. Thus, SADEMERALD introduces a hierarchically layered approach to
systems require firstly the permanent monitoring of networetwork surveillance. It includes a single analysis, a dama
nodes, and secondly an information processing instanceviRie analysis and an enterprise-wide analysis. Due to e hi
perform the required computations. Currently, the most-corsrchical approach of this system measurement data is ¢edlua
mon architecture approach for SAD systems follows a théd aggregated on the different layers. This means, that the
Client/Server design, where the network probes (the d)entaw data is not available on higher layers. This is the main
send their measured data to an information sink (the servegjifference to our specific application, where measurematat d
Unfortunately this design is prone to bottlenecks at thgre sent from the distributed probes to the evaluation Tihi.
server. Such bottlenecks can be avoided by an approprigt&formance evaluation presented in this paper is develfipe

dimensioning of the performance parameters. In this pager whe IAS, but can easily be extended to other SAD systems, like
investigate analytically the performance of such a systath ag.g. EMERALD.

give guidelines for dimensioning of the information sink.

An example for such a platform, originating from the By using a single server architecture the typical design
network security area, is the “Internet Analysis System®), questions arise. Which buffer size is needed to ensure a fully
[4]. This platform is based on a Client/Server architectuith  functional system? What is the blocking probability for a
one data sink and many data sources, which are distributéguests for a given buffer size? How long does it take to
over many different subnetworks. The aim of this systegvaluate the measurement data? In this work we examine the
is to derive the network harassment, like worm dispersidrade-off between the buffer occupation and its impact @n th
or distributed Denial-of-Service attacks, by using statéé reaction time of the SAD system. In general, the presented
anomaly detection based on measured data. In advancggesults can be used by administrators to design such a system
is also possible to take steps against a threat once itaid guarantee policy periods for evaluation and reactioegi

identified. In order to collect the necessary measuremeats . . .
probe monitors the network flow over a node and logs the The paper is structured as follows: Section Il discusses the

relevant data used for the evaluation. In order to satiséy tipvestigated application. In Section Ill we present the eiod

confidentiality regulations, this system counts only amoays [©" this application, and in Section IV we show the results of
our investigation. Finally, in Section V the paper is conmied

1work was started when K. Tutschku was with the University afaf¢burg  and an outlook for further research is given.



1AS harassment, it would be the best to synchronize the probes
and get all the measurements at once. However, due to buffer
restrictions, this could lead to buffer overflows, data lassl
delay. One the other hand, by distributing the arrival times
over the whole interval the buffer occupation would be kept
to a minimum. But this would slow down the examination of
the connected data sets. The aim of this work is to discuss
the trade off between buffer size and examination delay, and
to determine the impact of different arrival patterns on the
design of the system. In the investigated case we assunie, tha
the server and not the network is the bottleneck of the SAD
system.

Presentation

RTS : Transfer - System for Raw data
AM : Analyising Modul

IAS : Internet-Analyse-System

DB :Database

I11. M ODEL

Fig. 1. Architecture of the IAS-SAD-system. A. Abstract Server Model

We consider scenarios with multiple clients and one server.
In particular the clients are network probes which send a
Il. SYsTEM DESCRIPTION packet consisting of measurement counters in periodig-inte

The IAS is an intrusion and malware identification systewals to the server. The server stores the data in a databate. D
based on statistical anomaly detection. This kind of temii arriving at the server while it is busy is stored into a queue,
is described in [5]. The architecture of the IAS, which isvhich we assume to be infinite throughout this work. This
illustrated in Figure 1, is separated into three parts:owsi assumption simplifies the analysis of the system and allows
network probes a central information sink, the transfetesys us to discuss overall processing times and buffer sizes.
for raw data and an evaluation and presenting system. We assume that the server processes each counter within

The network probes are spread over the investigated netwarkconstant processing time. Since the number of counters
and serve as information providers. They extract and kegfriving in each packet is varying, the processing time of a
counters for predefined communication parameters. Thiklcopacket is also varying.
be, for instance, the number of TCP and UDP packets passing
over the observed link. Its also possible to capture e.g. tRe
number of packets belonging to a special IP address rangdVe assume that the network probes transmit their observed
used as bot-nets or special ports which are known to beunter measurements in equally spaced time slices ofarinst
used for controlling trojan horses. The number of observéehgth 7. There arem network probes in the system which
communication parameters can reach up to tens of thousarsgsd their data to the server. The number of countrs

In periodic intervals, counter data are sent to the Raw Dagant by sensor nodeto the server per time slice is variable
Transfer-System, where they are collected and forwardedand follows a probability distributiom; (x) with mean E[C;]
the evaluation. The measurements are senkmmentifier— and standard deviation STO;]. The processing time. for
counter-tuples with a size o8 byte. Since counters are reset counter at the information sink is constant, such that the
after transmission, they describe the difference of thewlesl service time for probe data follows as B; = t. - C; with
parameters with respect to the previous counters. In omlerdistribution b;(t) = [e¢;(t/t.)]. In this work we assume
reduce the amount of data, counters which have not changke counter distribution to be independent and identically
in the current interval are not transmitted. This leads to distributed, i.ec;(z) = ¢(x),i € {1,...m}.
variation of the number of counters which are sent to theeserv The relevant performance metrics are thaffer occu-
in each interval. pancy O at the information sink and thesaction time R,

The collected data is stored into a database and thdefined as the time between the beginning of a time slice and
made available for the anomaly detection algorithms. Theiee completed processing of the last probe data, belonging
algorithms perform a comparison of the current counterk wito this time slice, at the RTS. Thus, after the interfalthe
predefined thresholds in order to identify local threats. Teystem has a decision on the current threat level in the metwo
achieve additionally a superior view of the network, chron@nd may react accordingly.
logically correlated data from several network probes ar
evaluated. For that reason, the data of each sensor comger
one measurement interval must be available at the RTS ayVe consider three different arrival patterns for the counte
fast as possible to allow a fast and effective evaluatiore THformation data at the sink. These patterns describe wien t
time which is lost during the analysis of the measuremerat ddtetwork probes are scheduled to send their measuremedts, an
is time which is also lost for the protection of the observedre categorized as follows:
system. 1) Super batch arrival patterhis pattern is depicted in

In order to achieve a fast overview over the network Figure 2(a). The measured data of the network probes

Definitions and Performance Metrics

. Arrival Patterns
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Fig. 2. Arrival patterns for network probe data at the infotiom sink.

2)

3)

time the buffer requirements are reduced if compared to
the super batch arrival pattern. We will see later how

are sent synchronously and arrive simultaneously at the the parameter’ can be used to tune the system either
server. Because of different latencies between probes and  for buffer efficiency or for shorter processing times, and
sink, the measurement data arrive in a small interval at ~ thus for faster reactions.

the server and not exactly at the same time. However, in  Furthermore additional probes can be easily added to
our analysis we assume perfectly synchronized arrivals. ~ an existing installation by scheduling them after the last
Although this pattern has stringent requirements on the probe arrival. In this case, the length of the transmission
clock synchronization in the network probes, it has the ~ Phase changes.

advantage that additional probes can be easily addetho
an existing installation without overly large configura-"
tion. A disadvantage is that the cumulated arrivals of all We model the SAD system as 2/GI/1 delay queuing
probe data at the same time leads to increased demafygiem as shown in Fig. 3. We assume an infinite queue with
on the buffer capacity of the server. a first-come-first-served order, i.e. no probe data will ts.lo
Distributed arrival patternThis arrival pattern is de- We compute the desired system parameters buffer occu-
picted in Figure 2(b). Here we assume that the intepancyO and the reaction timé with a discrete-time analysis
arrival time between the probes is constant and equalld [7]. The state space is defined by means of the number of
distributed in the intervat. The inter-arrival time of two unprocessed counters in the systdim, Transitions between
requests is”. The advantage of this pattern is that théifferent states are described with state transition mweri
network utilization as well as the buffer occupation camhe time diagram of the investigated process including the
be expected to be lower than in the case of super ba@fiate transitions is depicted in Figure 4. We assume anlgqual
arrivals. Since the request arrival times are spread ov#aced inter-arrival time\t between the requests in a time
the whole time slice, it is likely that a request has beeslice. Depending on the arrival pattern, the inter-arrivae
processed completely before the next request arrivesiakes valuesit < [0, =]. We will use the following notation,
disadvantage of this pattern is that the information sirikhich is also used in Figure 4.

may have to wait for incoming probe data, thus wasting

time which could be used for data processing. Thus,u’“(x)

Performance Model

= unfinished work at the begin of time slide

in high load situations it may also happen that the last2(7) = state transition matrix between two
probe data has not been processed with the beginning observation points
of a new time slice. Also, the installation of additionalp(A¢) = state transition matrix between two arrivals

probes in the network requires the re-configuration of all

probes due to the changed transmission order and tim‘g.(At) - sta'Fe_tranS|t|on matrix d_epmtmg a reduction of
Distributed arrival pattern with processing phasith unfinished work for an interval of lengtht
this arrival pattern the time slice is divided into two ty; = point of thei-th arrival in time slicek

intervals7’ andr — 7’ which we denote agansmission ] ) ) ]
phaseand processing phaséThis approach is shown in We define the start points of each interval as observation
Fig. 2(c). In the transmission phasé, all probes are points. At this regeneration points the remaining work load
sending their data to the information sink with constarf{s ¢an be computed, cf. [8], as

inter-arrival timesr’/m, similar to thedistributed ar up(r) = up—1(z) - Q. )

rival pattern over the whole intervat. The processing

phaser — 7’ is then exclusively used for processing the We assume that the counter distributions and for that reason
data. This pattern has the advantage that the idle tirakso the service times are independent and identicallyilgtist
between two probe arrivals is reduced, and at the sammed, i.e.c;(t) = ¢(¢t) andb;(t) = b(t). Thus the steady state
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Fig. 5. Mean buffer occupancy and mean reaction timer{s.

distribution for the unfinished work load is
thus, we assume i.i.d. service times. We further assume the

u(z) = u(z) - Q. (2)  counter distribution to follow a negative binomial distrtton.
The state transition matri@ between the observation points This allows for a S'.mple ca}lculayon of the maximum
: ) number of probes the information sink can process. Under
is computed as: T ) .
stable conditions, i.ep < 1, this number can be expressed as
Q = PM(AL)-S(t—m-At), (3)

— { T J , ©)

i.e. itis composed of m data arrivals and a variable prongssi E[B]

phase. Note, that for the arrival pattetistributed arrivalno  the length of a time slice divided through the mean processin
additional processing phase is used. In this case, thexn&tritime of one probe.

becomes the Identity matrix. P(At) consists of two parts.  accordingly, the load can be expressed by the approximate
First an arrival adds additional work with distributiéft. ;) to  equation

the information sink. This work distribution is represehtzy o~ m_ (10)
the state transition matri®. Secondly work can be processed Mmaz
between two successive arrivals, which is denoted by the sta As an example, let us assume a scenario with,, = 200
transition matrixS(At). This yields supported network probes. That leads to an average progessi
PAL) = B-S(Ab), (4) time for each counter df = BT 200+ Under this assumption,
the number of network probes can be computed for a given
with system loadp.

We show the influence of different system loadand coef-

o ficients of variations of the counter distributien = ST%S[]C]
Bij = P(B=j-1), () onthe investigated system parameters buffer occup@nagnd
1,if j = max{0,i — At/t.} reaction timeR.
Sij(At) = { (6)
0,else A. Macroscopic Behavior
Thus, we compute the buffer occupancy distributig) First, we investigate the influence of the length of the
after the last packet arrival in a time slice as transmission phase’ on the mean buffer occupancy and on
the mean reaction time as shown in Fig. 5. We assume different
0(z) = om(x) = u(z) - PV (AL) - B. (7) load values ap € {0.25,0.5,0.75} with a corresponding

The reaction timeR comprises the service time of the Iaspumber of probesn & {50,100,150}. The coefficient of

request within a time slice and the unfinished work which i\éar_iati(.)n of.the_ counter distribution is set tg = 0.4, The
queued in the buffer, i.€® — (m — 1) - At + Oy, + B solid lines indicate the average buffer occupancy given as
’ . v m m-e

Therefore we compute the reaction time distribution as ~ Multiples of the mean packet sizB[C]. The dashed lines
show the corresponding reaction time, i.e. the time ungl th

r(t) =0t — ((m — 1)At)) ® oy (z/t.) ® (L) (8) last probe data has been processed. The reaction time, las wel
as the transmission phasé is presented as fraction of the
time slice lengthr.

Let us now have a look at some numerical results in orderLet us definer’™ = p - 7 as average time the sink needs
to get an impression of the system performance. We considerprocess all datavithout consideration of any idle phases.
homogeneous scenarios where the probability distribatfon Thus, the curves are divided into two parts, one withc 7/
the number of counters of all network probes are identicallgnd one withr’ > 7/*.

IV. NUMERICAL RESULTS



For the caser’ < 7'*, the arriving measurement data can 1
not be entirely processed in the transmission phase, aggeuin
occurs and the buffer occupancy increases with decreasing
For 7/ = 0 the arrivals correspond to the super batch arrival
scheme, i.e. the measurement data of all probes arrive simul
taneously at the information sink and the buffer occupancy
reaches its maximum. Accordingly, the mean reaction times
correspond to the average processing tirtie

For 7/ > 7"* the mean buffer occupancy i5[C] indepen-
dent of the transmission phase length. The probe interadrri
time is large enough to allow a complete processing of the
measurement data of one probe before the next data setsarrive 107 10° 10t
At most one data set has to be stored in the queue. Since the Buffer occupancy / E[C]
reaction time is dominated by the processing time of the laét Buffer occupation for the arrival pattern distriedtarrival with
probe data, it increases linearly with the transmissiorspha passive phase for different, ¢, = 0.4

We observe that the curves are congruent for values’ of
far from 7'*. 1

Now let us investigate the influence of the length of the
transmission phase’ on the mean buffer occupancy and on
the mean reaction time for a constant load value 0.5 and
different valuesc, = 0.4,1,2,3. The results are depicted in
Fig. 6. The solid lines indicate the average buffer occupanc
given as multiples of the mean packet siz&”]. The dashed
lines show the corresponding reaction time, i.e. the timé@ un
the last probe data has been processed. The reaction time, as
well as the transmission phasé is presented as fraction of
the time slice lengthr. ‘ ‘ ‘

However, for values ofr’ close to7’« the mean buffer J45 05 055 0.6 0.65
occupancy and the mean reaction time increase with incrgasi Reaction time (1)
¢, We can conclude that for a high the value ofr’ has to be Fig. 8. Reaction time for the arrival pattern distributedvarwith passive
chosen smaller thar'x in order to achieve the same reactiophase for different’, ¢, = 0.4
time as for a lowe,. It should be noted, that this leads to a
higher buffer occupancy, as indicated by the solid lines.
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B. Buffer and Reaction Time Distributions logarithmically. Forr’ # 0.5 the curves rise quickly, i.e. the
Let us now investigate the trade-off between the bufferariation is small. Forr” > 0.5 this is due to the small
occupancy and the reaction time for selected values of thariation of the counter data and fof > 0.5 this is due
transmission phase for a fixed system load pof= 0.5 to the aggregation of the probe data in the queue.
and ¢, = 0.4. Figure 7 shows the cumulative distribution If the transmission phase is identical to the average pssces
ing time, the shape of distribution follows from the supesipo
tion of probe data still queued from previous arrivals, amadrf

Fig. 6.
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_® ‘ A the arrival of the last probe data. This leads to a compaatgtiv

g 5oL~ ~Reaction time //// :0'9 large var_latl_on._ . . . _ _

= Ve 108 The distribution of the reaction time is shown in Fig. 8.

% 20! s /’ 0-7g The variation clearly decreases and the average reactien ti

g 3% 06% increases with the transmission phase. The curves witht shor

2 30F---- 058 transmission phases of = 0.3-7 and 7’ = 0.4 - 7 show

g 6,043 048 the largest variation which corresponds to the observatiah

%20— 038 in this case the processing time is dominating the reaction

< lo2= time. In case of’ = 0.6 - 7, the reaction time is nearly

g1 ¢ 204 loa deterministic and equal to the transmission phase. Note tha
v this behavior is a desirable property for real-time systeims

Mean buffer occupancy and mean reaction timer{gor different

0 0.2 0.4 0.6 0.8

Transmission phase T’ (1)

case of a transmission phase equal to the processing time, th
variation is smaller than in case of lower values7df The
distribution is right-skewed due to the processing of qdeue
data probes from previous arrivals.
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Fig. 9. Buffer occupation for the arrival pattern distridtarrival witl phase for different, c, = 2

passive phase for different , ¢, = 2

The distributions of the buffer occupancy and the reactiotink- ,With, the intrqduced analytical method we compute the
time for selected values of are depicted in Figure 9 andeaction time, an important performance metric for such a
Figure 10. The system load and the variation are fixed to system. We further describe the trade-off between theiogact
0.5 ande. — 2. time and the buffer occupancy.

Let us investigate how to use the evaluated results for Ve investigate the system for different system loads, diffe

the design of the presented system. We want to identify tfat variations of the counter distributions and differemival
interaction of the reaction time and the buffer occupano?attems' We further show how the to use the presented sesult

Let us assume a buffer size &b - E[C] for the system or the design of the system and explain how to tune the system
and a desired0%—quantile for the reaction time df.6 - 7.

to fulfill the given requirements.
First we consider a small variation of the counter distiiut Further work will have to deal with different types of sensor
¢(z). In Figure 7 we can see that we always have a buff@

fobes, classified by different counter distributions. theo
occupancy smaller thadp - E[C] for the presented values ofoPen issue is the investigation of transm|§3|or_1 failuresthair

/. Note that forr’ = 0.2 - r, the buffer occupancy exceedénﬂ“ence on buffer occupancy and reaction times. Las_t but no
the given buffer constraint. From Figure 8 we can concludg2St the model of the system could be extended by including
that only for a value of’ = 0.6-7, the desired0%—quantile " additional random service time denoting the influence of
for the reaction time is exceeded. From this it follows th

a{pe operating system on the reaction times.
7' €{0.3,0.4,0.5} - 7 fullfilles the given requirements. From ACKNOWLEDGMENTS
this values, the reaction times fof € {0.3,0.4} - 7 are equal
and smaller than the others. That means, that in order t@eed
the buffer occupancy a value ef = 0.4 - 7 should be used
to tune the system.
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