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Abstract—The increasing broadband wireless Internet usage
and the limited wireless resources require a careful network
management and optimization of the wireless Internet Service
Providers (ISPs). Unfortunately, those providers often just have
statistics about the overall usage and limited knowledge about
the detailed application distribution as well as the traffic char-
acteristics.

In this paper we present user and traffic characteristics
measured at a broadband wireless Internet access. The results
show that the applications change quickly but the general
characteristics like packet size and TCP/UDP percentage have
not changed during the last years.

Index Terms—traffic measurements, traffic classification, home
networks, BWA, WLAN

I. INTRODUCTION

W IRELESS LAN based on the IEEE 802.11 standard is
becoming more and more popular as a broadband wire-

less Internet access. Laptops and other mobile devices provide
convenient wireless access to the Internet. Due to the simple
installation and integration into existing networks, Wireless
LAN is gaining popularity at home, in public facilities, and
in more and more areas of our everyday life. Along with the
increasing number of wireless Internet users, the number of
wireless ISPs rises.

These service providers have to continuously optimize their
networks in order to react to the increasing number of wireless
Internet users as well as changing application demands of
the mobile devices. The optimization highly depends on the
user behavior and the expected network traffic. According to
Cisco [1] there is a growth in volume of all applications as well
as a considerable variation in the traffic mix. Particularly, the
percentage of P2P file sharing traffic is decreasing in favor of
streaming and video traffic. Cisco expects about 40 % P2P file
sharing traffic in 2009 after 60 % in 2006. However, the total
volume of P2P file sharing traffic doubles between 2006 and
2009. Video traffic is estimated with approximately one quarter
of all consumer Internet traffic whereas over two third or 7700
petabytes of the entire monthly Internet traffic is estimated as
consumer traffic.

To see the changing application structure, we performed
measurements at an ISP for home users who provides broad-
band wireless Internet access. The goal is to react to the
changing traffic characteristics caused by new applications,
to optimize the network performance, and to reveal the user
behavior in a wireless broadband access network.

In this paper, we present the results of these measurements
like application distributions as well as changing traffic charac-
teristics caused by user demands and new services. The results
are used by a network service provider to optimize its network
performance in order to give QoS guarantees for home users
in its fixed wireless network.

The remainder of the paper is organized as follows. Sec-
tion II provides a background of traffic measurements and
shows the related work. This is followed by Section III,
introducing our measurement scenario and methodology. Sec-
tion IV shows the results of the measurements. Finally, con-
clusions are drawn in Section V.

II. BACKGROUND & RELATED WORK

It has been a challenge for years to structure a reliable and
feasible measurement architecture. First, a measurement has to
generate detailed traffic characteristics, including global and
special statistics, like application-based or user-based ones.
Second, a measurement always affects the measured data.

A. Traffic Measurements

Commonly, there are two different approaches to measure a
network: active polling and passive monitoring. The measuring
process of the active measurements generate new traffic and
inject it into the network, while passive measurements monitor
and capture the network traffic. Latter systems use the recorded
traffic to produce several statistics with the help of analysis
software. A well-known passive measurement architecture is
the OC3MON by MCI [2] that was used by Thompson et
al. [3] and McCreary et al. [4] to monitor optical ATM OC-3
links. The CoralReef suite [5] developed by CAIDA is based
on the OC3MON but supports GPS timing and allows only
link speeds of up to OC-12 (622 Mbps). One drawback is that
the use of passive measurements raises serious privacy and
security problems. Furthermore, such systems generate a lot
of traffic with large traces depending on the link rate.

B. Traffic Classification

After collecting the data, the services have to be classified.
Service classification has its own research group and with
the emergence of new services like P2P, it is getting more
and more difficult to identify packets. At the network link an
unordered mix of packets are collected that should be first
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grouped in connections and afterwards classified connection-
wise. There are several techniques to classify packets. We used
two recent methods which are described in the following:

Payload-based classification: It is also known as content-
based method and is a syntactic analysis of the applicative
layers of a packet. The classification entity is seeking deter-
ministic character strings in the IP packet payload with fast
regular expressions. The problem is that a detailed knowledge
of the application as well as the format of its packets are
needed. Several disadvantages are known: Character strings
are not always available or the payload may be encrypted.
However, this method only depends on a few characteristic
packets. Karagiannis et al. [6] developed a heuristic for
transport layer identification of P2P traffic which includes
payload based methods. Baset and Schulzrinne [7] tried to
detect among other techniques Skype up to version 1.4 with
some characteristic bytes. Ehlert et al. [8] proposed further
byte sequences for Skype version 2.0 in 2006. A Wiki devoted
to the identification of network protocols is used by the
Application Layer Packet Classifier for Linux (L7-filter) [9]
to allow a real-time classification.

Host behavior classification: Due to the limitations of the
payload-based classification, Karagiannis et al. [10] propose
another approach for traffic classification called BLINC. They
try to classify the popularity and the transport layer inter-
actions with the help of inherent host behavior. The focus
is shifted from classifying flows to associating hosts with
applications. The flows are then classified accordingly. They
specify three different levels. The social level includes the
popularity of a host. It describes whether a host is part of
a large group of clients that communicate with each other. A
group of clients is called a community. Second, the functional
level distinguishes service providers from service consumers.
This is done with the IP/port ratio of the connections of a host.
A service provider normally have a large amount of different
clients connected to a few local ports. Whereas a consumer
only opens a few ports per outgoing connection. Finally, at the
application level the interactions between particular hosts on
specific ports and IPs are examined to characterize a host. With
this method, Karagiannis was able to present some heuristics
to detect malware, P2P, web, chat, ftp, game, and streaming
traffic.

In the next section, we describe our measurement setup and
how we used the payload-based and host behavior classifica-
tion in combination.

III. MEASUREMENT SCENARIO AND METHODOLOGY

In this paper, we focus on traffic characteristics of home
users in a wireless network. The measurements have been
performed at a Germany-wide wireless access provider who
provides, along with business network access, private Internet
access in large housing estates.

A. Measurement Setup

The measurements were taken at an ISP switching center
providing access for 250 households. The customers got

access over Wireless LAN at several access points before
the traffic was multiplexed at an IEEE 802.11a radio link.
The dimensioning of the radio link is done by the provider
according to the upcoming traffic of the users. Measurements
of the provider confirmed that the link almost never operates
at full capacity.

The measuring unit was deployed right after the access
points in the hard-wired network. The monitoring point for the
measurement is shown in Fig. 1. We measured both directions
with the help of a receive-only network tap which ensures that
the productive network was not interfered by our measurement.
Our meter runs on a Linux system. It observes packet headers
using two commodity 100BaseT Ethernet cards via libpcap.

The measurement process basically consists of five steps.
First, raw traces are captured in pcap packet capture files.
Additionally, the real-time classification entity described in the
next paragraph stores detection data in log files. Second, the
traffic traces are filtered to suppress or to make sensitive infor-
mation anonymous. The anonymization module scrambles data
in order to raise effort needed to obtain sensitive information
about the internals of an operational network. Afterwards,
the filtered traces are checked for errors and submitted in a
database-driven repository. The last step was to analyze the
traces by running analysis scripts. The analysis is performed
offline at external computers. All further work is done either
within the database itself with the help of database languages
or by querying the database.

IEEE 802.11a
5 GHz

Ethernet
Ethernet

IEEE 802.11g
2.4 GHz

network tap

Internet

measurement
terminal

measurement platform

carrier /
ISP router

router
@ 54 Mbps

Fig. 1. Measurement setup

B. Service Classification

Our classification involves two levels of detection. On
the one hand we used a payload-based detection with the
Application Layer Packet Classifier for Linux. However, this
method requires the payload of the packets which we were not
allowed to store in capture files because of privacy concerns.

The payload-based classification is done in the following
way: The first classification method is performed in real-time.
A connection tracking assigns the packets to flows. If a new
flow is detected, the classification scans the first N packets of
this flow and the first M bytes within these packets for payload
signatures. This is done online before the capturing. First, the
traffic is checked for P2P data cause it may use arbitrary ports.
Then, it is scanned for well-known common applications. At
the very end we try to detect Skype traffic. If the payload
does not match at all, the packet is classified as “unknown”,



especially all encrypted and new protocols are classified as
unknown in the payload-based detection.

Our second classification method is a host behavior analysis
similar to the proposed one by Karagiannis [10]. The connec-
tions of a host were investigated as in the functional level
approach. We recorded the usage of ports and IP addresses
per host and compared the results of unknown hosts to
already classified hosts. Thus, we were able to distinguish
P2P traffic from web and streaming traffic. The host behavior
classification is done after capturing at the data repository. The
major advantage is that it is also capable to detect encrypted
traffic. However, a detection of certain applications is in turn
not possible. Therefore, a traffic class called ”unclassified P2P”
is shown in Section IV which is P2P file sharing traffic of an
unrecognized application.

C. Limitations

The monitoring and classifying of unknown traffic has
always some difficulties and limitations which have to be taken
into account. Several issues occurred during the measurement
which are enumerated below for completeness.

Classification payload patterns: The traffic patterns tend
to underestimate or overestimate the traffic. It is difficult to
find reliable packet signatures that match only the intended
protocol. In all cases, a random encrypted stream may fit to
several patterns. The other way round, some patterns are only
able to match a part of the whole desired traffic. Namely, in
our case the Skype pattern was one of the pattern that tend to
overestimate. Furthermore, some badly designed unimportant
application patterns are simply left out.

Anonymization, packet capture length: During the capturing
of packets the capture length is set to 96 bytes to make sure
that the whole header is included in the traces. Due to privacy
issues, the IP and payload anonymization cleared the rest of the
payload in such a way that only the packet headers remained
in the trace files. Consequently, we had no usable information
about the payload during the offline analysis.

Measuring times: The traces are not collected equally
distributed over the week. They differ in duration and time
of capturing.

D. Trace Description

The measurements were made from July 13th, 2007, till
July 24th, 2007. The whole measurement last about 7 days and
about 150 GB measurement data was collected. Further on, the
Internet service provider gave us Cisco Netflow statistics of
routers, which proved our measurements in data volume and
packet count. The billing system was flat rate. Moreover, the
packet loss during the capturing of packets in trace files was
negligible and sums up to 0.18 % in downlink direction and
0.09 % in uplink direction.

IV. MEASUREMENT RESULTS

This section presents the results of the traffic measurements
at the broadband wireless Internet access. The general traffic
statistics are included in the first part and the second part deals
with the traffic classification.

A. General Traffic Statistics

The general traffic statistics involve daily traffic fluctuations
as well as packet size distributions. The traffic fluctuations of
one day are shown in the upper figure of Fig. 2. The traffic
statistics were gathered on July 23th, 2007, and the curve
presents a 5 min average. Although the results are shown for
one day only, we have seen a similar characteristic during all
our days of measurement.

We can observe that the downlink bandwidth varies during
the day. Comparing the figure to the results presented by
Perenyi et al. [11] where the throughput triples between 6
and 12 o’clock, we can see a decrease of the ratio caused by
the constant nighttime P2P file sharing traffic. In our result,
the traffic increases in the late afternoon up to midnight. This
is obvious because the measurements have been performed in
a home network in contrast to a business network. During the
day, the users are not at home and use the Internet only in the
evening. This becomes even more obvious when classifying
the traffic. We observed almost no YouTube streaming traffic
during the day, but in the evening hours with a peak at 10 pm.
A similar daily behavior was seen for web browsing and email
traffic. P2P file sharing was the only protocol that was used
constantly all day long.

A complete week with focus on the weekend can be seen
in the lower figure of Fig. 2. Looking at the statistics both,
the daily variations and the weekend can be identified. Due to
the fact that a lot of users spend their weekends not in front
of a PC, the total average throughput is lower compared to
the weekdays. Concluding the results of the daily fluctuations,
we have seen a difference between our measurements and the
measurement results taken in the backbone. The differences
come from the fact that our results just include the home
users and the backbone measurements include both, home and
business Internet usage. P2P file sharing was used all day and
streaming applications are mainly used in the evening.

As the daily fluctuations differ from the backbone measure-
ments, we want to evaluate if this is also the case for the packet
size distributions. Thompson et al. [3] show a trimodal packet
size distribution where nearly half of the packets are 40 to
44 bytes, 20 % are 576 bytes, and 10% are 1500 bytes in length.
Sean McCreary and kc claffy [4] show that about 80 % of the
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Fig. 2. Daily and weekly downlink throughput
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Fig. 3. Cumulative IP packet size distribution

packets are smaller than 600 bytes but have observed the same
trimodal packet size distribution as Thompson. The newest
backbone traffic packet distribution we found is presented by
John and Tafvelin [12] in 2007. In contrast to the previous
two papers, they show a bimodal traffic distribution where
40 % are of size smaller than 44 bytes and another 40 % of the
packets are between 1400 bytes and 1500 bytes. Their results
are similar to our measurements at the broadband wireless
Internet access, shown in Fig. 3(a).

Looking at the figure, we can observe several things.
First, 90 % of the UDP packets are smaller than 500 bytes.
This might be P2P control or real-time streaming traffic.
Second, looking at the curve for all packets, we observe
a bimodal packet size distribution. The first peak occurs at
around 40 bytes and the second step at 1500 bytes. This shows
that most packets are transmitted via TCP, with the 40 bytes
Acknowledgments and the 1500 bytes Ethernet Maximum
Transfer Unit (MTU), which is also underlined with the TCP
packet size distribution curve. However, we can also observe
three small steps at 576 bytes, 1180 bytes, and 1300 bytes.
These packet sizes are used by P2P file sharing protocols as
shown in Fig. 3(b).

Packets of size 1180 bytes are only used by the eDonkey
protocol which was also observed by Karagiannis et al. [6].
Furthermore, they have shown a similar packet size distribu-
tion for BitTorrent. 1300 bytes is the MTU recommended by
some ISPs for DSL connections. Therefore, we think that these
packet sizes result from downloads from clients of such ISPs.

Finally, we take a look at the protocol distribution on the
transport layer. Almost 88 % of all measured packets are
transmitted via TCP, only 11.6 % via UDP, and less than one
percent is used for ICMP control traffic. Considering the total
throughput in bytes, 95 % of the complete data is transmitted
via TCP.

B. Traffic Classification

After we evaluated the general traffic statistics and com-
pared them to the related work, we want to evaluate if the ap-
plication distribution differs compared to fixed-line networks.
In 2005, P2P file sharing traffic overtook HTTP traffic in terms
of traffic volume. Perenyi et al. [11] measured 60 % to 80 %
P2P file sharing traffic of the total broadband traffic in 2006.
Cisco Systems also estimates the whole P2P file sharing traffic

unknown (2%)
streaming media (4%)
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Skype
(19%)

P2P file sharing
(62%)

(a) Relative application distribution
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Fig. 4. Application distribution

for the year 2006 to about 60 % or 1358 PB per month [1].
However, according to Cisco’s traffic forecast, P2P will fall
behind HTTP in the next years. They estimate for 2009 about
40 % P2P traffic and a strong increase of streaming and video
traffic.

The measurements presented in Fig. 4 show that still 62 %
of the complete traffic is used by P2P file sharing applications.
The large percentage of P2P file sharing traffic results from
the measurements in a broadband home network. Mainly, this
is especially interesting for home network service providers to
optimize their services.

According to Karagiannis et al. [6], web traffic consumes
with 50 % the largest amount of traffic in the core. In our
measurement however, only 13 % web traffic was measured.
Fig. 4(b) shows the exact data volume of the traffic categories
and further distinguishes between downlink and uplink vol-
ume. Web traffic includes browsing and file downloads with
HTTP but not streaming over HTTP. Surprisingly, we noticed
a new user download behavior. Some customers use extreme
HTTP downloads from large file-hosting sites as an alternative
to P2P file sharing. Most notably, during the prioritizing and
the shaping of the traffic, this was detected as a problem.
HTTP proxies may help to limit the outbound traffic.

Although VoIP and FTP are prioritized by the ISP, the
usage is very low. In case of VoIP this has several reasons.
First, the network can not meet the user expectations and
second, IP phones and VoIP devices mainly provide hard-
wired interfaces. Surprisingly, we have not seen any gaming
traffic. This might result from the fact that gamers normally
use a DSL connection with smaller delays compared to the
measured multi-hop broadband wireless Internet access.

The high percentage of measured Skype traffic shown in
Fig. 4(a) results from the heuristics to detect the traffic. It is
difficult to detect Skype traffic as it uses a large variety of
ports and the protocol changes with every version. Therefore,
we think that the used heuristics can not be trusted and we
have to count Skype traffic to the unknown traffic.

In addition to conversational Skype traffic, we measured
about 4 % streaming traffic which does not fulfill our expecta-
tions and was lower than in the core. Similar to VoIP traffic,
real-time streaming traffic needs higher QoS requirements.
Consequently, it is not surprising that the fraction of non-live
streaming as Flash Videos was measured with 14 % of the
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whole streaming traffic. The exact distribution of the streaming
traffic is shown in Fig. 5.

It is rather complicated to assign specific media players to
the different protocols since most players are able to handle
several protocols. The biggest portion, RTSP and RTP are used
by Quicktime, Real Player, and the Windows Mediaplayer.
However, all players support HTTP video as well. The only
difference between these two groups is how the connection is
established. Fig. 6(a) shows the percentage of the streaming
traffic. The 14 % Flash Video belong to YouTube videos.
Surprisingly, SHOUTcast, an audio streaming service, is still
frequently used.

Finally, the P2P differentiation is shown in Fig. 6(b).
Compared to old statistics with the largest portion of eDonkey
traffic, this has changed in our network. Now, about 45 % of
the P2P traffic belong to BitTorrent. The 23 % unclassified P2P
file sharing traffic has been detected by the P2P host behavior
statistics as P2P traffic but the filter was unable to assign the
traffic to eDonkey or BitTorrent.

Summarizing, our measurements still underline the traffic
characteristics of previous published papers with a high frac-
tion of P2P file sharing traffic. However, we expect an increase
of streaming traffic in the near future.
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Flash 
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 (14%)

HTTP video (28%)

RTP/  
RTSP  
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(a) Streaming media

other (3%)

unclassified 
P2P (23%)        

eDonkey
(28%)  

BitTorrent
 (45%)    

(b) P2P file sharing

Fig. 6. Subcategory application distribution

V. CONCLUSION

This paper presents the results of our Internet traffic mea-
surements in a commercial broadband wireless network for
home users. The results show that the daily traffic fluctuations
differ from measurements in the backbone. As the measure-
ments were taken in a home network, the overall throughput
increases during the evening hours in contrast to backbone
measurements with a traffic increase between 9 am and 12 pm.
The increase is mainly caused by web and streaming traffic

which are frequently used in the evenings. In contrast, P2P
file sharing traffic is used all day and night.

Similar to the latest backbone measurements [12], we ob-
served a bimodal packet size distribution. 43 % of the packets
have a length of 40 bytes and 30 % of the packets contain
1500 bytes of information. This results from the 88 % mea-
sured TCP packets, containing 95 % of the complete measured
traffic.

Our second part, the traffic classification has shown that
over 60 % of the measured traffic belongs to P2P file sharing
applications. This percentage underlines other results from
backbone measurements with 60 % to 80 % P2P file sharing
traffic [11]. Surprisingly, eDonkey with 28 % is not the most
popular P2P file sharing application anymore. BitTorrent is
now responsible for the largest portion of the P2P traffic.

In contrast to P2P file sharing traffic, VoIP and online games
are used very seldom which is seen as characteristic in a
broadband wireless network at the moment. Finally, we have
to point out that we detected a different download behavior.
Some customers use extensive file downloads as alternative to
P2P and FTP. To reduce the traffic of such downloads HTTP
proxies should be considered.
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