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Abstract

Wireless Mesh Networks (WMNs) are a promising tech-
nology for providing broadband wireless access to the end
user. They offer a higher degree of flexibility compared to
traditional networks but on the expense of a more complex
structure. Thus, planning and optimization of WMNs is a
challenge. In this paper, we address this challenge using
genetic algorithms. Genetic algorithms are able to evaluate
and optimize large-scale WMNs in relatively small compu-
tation time. The results prove the effectiveness of the genetic
operators to optimize the routing and channel assignment in
WMNs.

1. Introduction

The wireless mesh networking paradigm is a very promis-
ing extension to common wireless technologies. It is a new
concept which helps to satisfy the user demands for more
coverage, bandwidth, and mobility. Different from tradi-
tional wireless networks, a data flow in a WMN traverses
several hops to connect to the Internet.

The complex multi-hop structure of WMNs induces the
need to investigate a large number of possible network
configurations. Hence, optimization approaches like linear
programming or simulated annealing soon reach their limits
when considering large WMNs. In contrast, genetic algo-
rithms are able to solve this optimization approach because
of their simplicity and ability to optimize even large WMN
scenarios.

Genetic algorithms (GAs) are based on the idea of natural
evolution and are used to solve optimization problems by
simulating the biological cross of genes. A randomly created
population of individuals represents the set of candidate
solutions for a specific problem. The genetic algorithm
applies a so called ”fitness function” on each individual to
evaluate its quality and to decide whether to keep it in the
new population. However, the selection without any other
operation will lead to local optima. Therefore, two operators,
crossover and mutation, are used to create new individuals.
These new individuals are called progenies.

In this paper we apply genetic algorithms on routing and
channel allocation in order to optimize the throughput of
WMNs. Our goal is to achieve a max min fair share resource
allocation. Therefore, we encoded the WMN, created new

crossover variants, and investigate their impact as well as the
impact of the mutation operator on the evolution. This way,
we explore the suitability of genetic algorithms for planning
and optimization of wireless mesh networks.

The remainder of this work is organized as follows. In
Section 2 the work related to wireless network planning is
reviewed. This is followed by Section 3 presenting genetic
algorithms in general and our modifications in particular.
In Section 4 the impact of the crossover and mutation
operator on the resulting solution is shown. Finally, Section 5
concludes this paper.

2. Related work

Wireless mesh networks have attracted the interest of
various researchers and Internet providers. Hence, a number
of papers have been published on the problem of planning
WMNs and estimating their performance.

Sen and Raman [1] introduce a variety of design con-
siderations and a solution approach which breaks down the
WMN planning problem into four tractable parts. These sub-
problems are inter-dependent and are solved by heuristics in
a definite, significant order. The evaluations of the presented
algorithms show that they are able to generate long-distance
WiFi deployments of up to 31 nodes in practical settings.

Other related works [2]–[4] deal with creating a wireless
mesh network model, planning its parameters, and evaluating
the solutions via linear programming. He et al. [2] propose
mechanisms for optimizing the placement of integration
points between the wireless and wired network. They de-
veloped algorithms to provide best coverage by making
informed placement decisions based on neighborhood lay-
outs, user demands, and wireless link characteristics. Amaldi
et al. [3] propose other planning and optimization models
based on linear programming. Their aim is to minimize
the network installation costs by providing full coverage for
wireless mesh clients. Thereby, traffic routing, interference,
rate adaption, and channel assignment are taken into account.
Another cost minimizing, topology planning approach is
presented by So and Liang [4]. They propose an optimiza-
tion framework which combines a heuristic with Benders
decomposition to calculate the minimum deployment and
maintenance cost of a given heterogeneous wireless mesh
network. Furthermore, an analytical model is presented
to investigate whether a particular relay station placement
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and channel assignment can satisfy the user demands and
interference constraints.

Ghosh et al. [5] are the first to use genetic algorithms
for wireless multi-hop optimization. They try to minimize
the costs and to maximize the link availability of a UMTS
network with optical wireless links to the radio network
controllers. Besides Gosh et al., Badia et al. [6] use genetic
algorithms for a joint routing and link scheduling for WMNs.
The packet delivery ratio is optimized in dependency of
the frame length. They examine that genetic algorithms
solve the studied problems reasonably well, and also scale,
whereas exact optimization techniques are unable to find
solutions for larger topologies. The performance of the
genetic algorithm is shown for a single-rate, single-channel,
single-radio WMN.

Vanhatupa et al. [7], [8] apply a genetic algorithm for
the WMN channel assignment. Capacity, AP fairness, and
coverage metrics are used with equal significance to opti-
mize the network. The routing is fixed, using either shortest
path routing or expected transmission times. They show an
enormous capacity increase with the channel assignment
optimization. Compared to manual tuning, their algorithm
is able to create a network plan with 133 % capacity, 98 %
coverage, and 93 % costs and the algorithm needs 15 minutes
for the optimization whereas the manual network planning
takes hours.

In contrast to the papers from Badia [6] and Van-
hatupa [8], we are evaluating the performance of a multi-
channel, multi-radio, multi-rate WMN using both channel
and route assignment. Our genetic algorithm optimizes the
throughput while still maintaining a max-min fair throughput
allocation between the nodes.

3. Wireless Mesh Network Planning and Opti-
mization via Genetic Algorithms

In this section we show the parameters which we have
to consider and to evaluate in order to optimize a WMN.
Optimization in our case means that the routes and channels
are optimized in order to provide a max-min fair share
resource allocation. A solution is max-min fair if no rate
can be increased without decreasing another rate to a smaller
value [9].

Fig. 1 clarifies the complete procedure of the genetic
algorithm for the planning and optimization of WMNs. First,
a random population is created with a predefined number of
individuals. The fitness of each individual is evaluated using
the fitness function and the individuals are ordered according
to the fitness value. The best individuals, the elite set, are
kept for the new population. Afterwards, the crossover and
mutation operator are used to create the remaining number
of individuals for the new population. The procedure is
recursively repeated until a sufficient solution is achieved.

In the next subsection we explain the steps of our WMN
optimization approach in more detail.
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Figure 1. Functionality of genetic algorithms.

3.1. Problem Formulation

We define a mesh network as a set of N nodes n1, ..., nN

and a set of links L connecting the nodes. A subset G ⊆
N contains the gateway nodes which are connected to the
Internet. Each node ni ∈ N \G has a fixed path and gateway
to the Internet. The path is denoted as Pi and consists of a
set of links, Pi ⊆ L.

A link (i, j) between nodes i and j exists, if a communi-
cation between these nodes is possible. Let ri,j be the data
rate of the link (i, j). The goal is now to optimize the paths
from each node ni ∈ N \ G to the gateway so that the
throughput in the WMN is maximized. Therefore, we first
need to encode the WMN.

3.2. Encoding

Our WMN representation includes only one link per user
and is easy to handle and evaluate. This link denotes the next
hop which the traffic of the considered node has to take in
order to reach the gateway. Thus, we always imply only
one possible path towards a gateway for the packets of each
node. The routing information is coded in the individuals
structure and does not need extra verification. Besides the
routing information, the channel allocation is also included
in the list representation. Fig. 2 illustrates an example for
the routing and channel encoding.
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Figure 2. Example network and its list representation.



3.3. Fitness Function

After having created the initial population using the
encoding scheme, the fitness of the population has to be
determined. Based on the fitness value, the GA decides
which individuals should be kept in the new population.
Hence, it rates the performance of the individuals and allows
only the best to be replicated.

The fitness of the WMN is estimated by using the al-
located throughputs obtained from the max-min fair share
algorithm. Several different fitness functions f(N ) can be
used to evaluate the individuals. Due to the fact that we
try to maximize the minimal throughput, we set the fitness
function to f(N ) = min(RN ) meaning that the fitness of
an individual is determined by the minimal throughput of
all end-to-end flows in the routing scheme RN .

In order to determine the throughput of an end-to-end
traffic flow in the WMN, we first have to define the collision
domain of each link (i, j). The collision domain Di,j of a
link (i, j) corresponds to the set of all links (s, t) which
can not be used in parallel to link (i, j) because of a too
strong interference [10]. The nominal load of such a collision
domain is the number of transmissions taking place in it. A
transmission tk,i,j corresponds to the hop from node i to
node j taken by the flow towards node k, i.e. (i, j) ∈ Pk.
The number of transmission λi,j of link (i, j) corresponds
to the number of end-to-end flows crossing it:

λi,j =
∣∣∣{k|(i, j) ∈ Pk}

∣∣∣. (1)

Fig. 3 shows an example for determining the link loads. Each
node on the way to the gateway produces traffic resulting in
a traffic load of 5 on the link between n2 and n1.

n6 n4 n2 n1

n5

 5,4=1

n3

 6,4=1  4,2=3  2,1=5

 3,2=1

Figure 3. Link load calculation depending on the carried
number of flows.

Correspondingly, the number of transmissions in collision
domain Di,j is

mi,j =
∑

(s,t)∈Di,j

λs,t. (2)

In order to fairly supply all network users, we share the
time resources among all transmissions taking place within
the collision domains of the corresponding links. Thereby,
we take the rates ri,j and the loads λi,j into account. The
throughput ti,j of link �i,j is then defined as:

ti,j =
1

∑
(s,t)∈Di,j

λs,t

rs,t

. (3)

Now, we follow the principle of max-min fairness and fix
the resources for the link with the smallest throughput. We
call it the bottleneck of the network and denote it with �u,v .
The time resources occupied by �u,v for supplying its λu,v

flows can now be calculated as

ρu,v (�i,j) = λu,v ·
tu,v
ri,j

. (4)

They differ depending on the link for which they are cal-
culated. Such links can be by �u,v bottlenecked connections
or parent-links on the path towards the gateway.

Having computed the occupied resources and having fixed
the bottlenecked connections, we have to consider that a
part of the time is now reserved. Hence, we must take this
into account in a new calculation of the link throughputs.
Moreover, we need to update λi,j by subtracting the flows
supplied through the bottleneck. When all network resources
are refreshed, we fix the next link with the smallest through-
put. This way, we calculate the throughput of each end-to-
end flow. The minimal throughput stands then for the fitness
of the individual. More information about this algorithm can
be found in [11].

3.4. Selection Principle

After the evaluation of a population, we select a set of
solutions, which have the highest fitness of all and keep
them in the new generation. This set is called the elite set. In
addition to the elite set, the rest of the population is created
by crossing and mutating the genes. Thereby, the number of
progenies per individual is proportional to its fitness value. It
is a function of the selection probability of this solution and
the number of needed new individuals. Let n be the size of
the population, m be the number of best ancestors to be kept
in the next generation, and s(x) the selection probability for
the individual x. The number of progenies of x is then given
by

g (x) = (n−m) · s (x) . (5)

The selection probability of the individual x is described by
the relation between the fitness of this solution and the sum
of the fitness values of all individuals from its population:

s (x) =
f (x)∑n
j=1 f (j)

(6)

This fitness dependent selection results in higher reproduc-
tion of genes from solutions with better performance.

3.5. Crossover Types

The crossover operator as well as the mutation opera-
tor are now applied to the selected number of individu-
als. For the cross of genes, we use the standard 2-Point
Crossover [12] and two other variants which we especially
created for the planning of WMNs, the Cell and the Subtree
Crossover.



3.5.1. 2-Point Crossover. The 2-Point Crossover is the
simplest realization of the genetic cross. It is an exchange
of gene subsets which are randomly chosen sublists of the
individuals list representation, the genotype. The start and
end intersection points denoting the range of the sublist are
chosen each time when the operator is applied.

Fig. 4 shows an example of the 2-Point Crossover between
two network solutions. The intersection points are at the
second and fifth position in the individuals code and enclose
the sublist of genes for the nodes n2 to n5. These denote
the area which will be exchanged during the crossover. The
resulting progenies of the individuals show one characteristic
of this reproduction approach. It created solutions, which
contain user locations with no connection to any gateway.
This happens due to the unregulated and absolutely arbitrary
selection of the gene subset which is meant to be exchanged.
In Fig. 4 we can observe how the cross of two genotypes
containing subgraphs with no gateway connection results
in a reasonable solution (progeny of individual 1) or in an
unconnected solution (progeny of individual 2).
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Figure 4. 2-Point Crossover between two individuals.

Since the 2-Point Crossover may lead to unconnected
solutions, we have to be careful when evaluating the fitness
of the resulting solutions. Thus, we adapt the fitness function
to

f̃(N ) = f(N )− conless (RN ) . (7)

which includes now the conless (RN ) term denoting the
number of nodes with no connection to any gateway. Hence,
the throughput contained in f(N ) presents the positive costs
of the network while conless (RN ) stands for the penalty
costs.

3.5.2. Cell Crossover. The Cell Crossover represents a
connectivity dependent exchange of genes. The crossover
operator randomly chooses a gateway and exchanges the
entire cell meaning that the routing information as well

as the channel allocation is exchanged. Fig. 5 shows an
example for the crossover of two solutions. Black nodes
denote the network gateways and the gray areas mark the
chosen cell which is exchanged. The nodes which links
have changed are marked gray in the resulting progenies.
It is obvious that the number of nodes belonging to the cell
differ between the individuals. Therefore, we have to attach
unconnected nodes after the cell crossover (see progeny of
individual 1).

crossover

individual 1 individual 2

progeny of individual 1 progeny of individual 2

Figure 5. Cell Crossover between two individuals.

3.5.3. Subtree Crossover. The Subtree Crossover ex-
changes connectivity components with respect to the net-
work structure. The crossover operator chooses a random
position of the individuals code and exchanges the entire
subtree with the node at the chosen position as root. Thereby,
the channel allocation is exchanged together with the routing
information.

Fig. 6 shows an example for the Subtree Crossover with
two positions whose corresponding subtrees are meant to be
exchanged. The gray nodes denote the subtrees which are
going to be crossed. In the example, the crossover results on
the one hand in a solution with good routing performance
(progeny of individual 1) and on the other hand in a progeny
with medium routing performance and still existent potential
for further reproduction (progeny of individual 2).

3.6. Mutation

The mutation, i.e. the arbitrary modification of genes, is
a very important part of the evolution process. The number
of mutations is chosen based on the scenario size. For our
WMN optimization, we use two mutation operators; the
mutation of the routing and the mutation of the channel al-
location. Both mutation operators are applied independently
from each other.

For the routing scheme, the mutation operator substitutes
some randomly chosen positions of the routing code with
new information taken from a set of potential neighbors
which would not cause the creation of cycles and would



crossover

individual 1 individual 2

progeny of individual 1 progeny of individual 2

Figure 6. Subtree Crossover between two individuals.

not harm the tree structure of the solution. An example
for the mutation of the routing scheme from three nodes
is shown in Fig. 7. Here, the link towards the gateway of
the three gray nodes is mutated. For the channel allocation,
the mutation operator randomly chooses a channel from a
list of possible channels and substitutes randomly chosen
links from the WMN.

individual mutated individual

Figure 7. Mutation of the routing parameters.

4. Performance Evaluation

In this section we evaluate the influence of the three
different crossover types and the mutation operator on the
minimal throughput.

4.1. Simulation Settings

For the creation of the results presented in this section, we
use the two scenarios introduced in Table 1. Although we
evaluated a large number of different scenarios, we highlight
only the two most different ones here. The first one consists
of 2 gateways and 71 users distributed over an area of 2 km
to 1.2 km. Thereby, the minimal distance between users is
60 m and between the two gateways 700 m. For the sake of
readability we call this topology G2U71. The second city
contains a smaller number of users and a larger number of
gateways. We choose this clearly different topology in order
to show the influence of the crossover operators depending
on the number of nodes. The 38 subscribers and 6 gateways
of the second city are allocated in an area of 1.5 km to 1 km.

The minimal distance between users is 60 m and between
gateways 450 m. We call this topology G6U38.

The differences in the settings of the two configurations
depend on the used topology of the corresponding scenario.
Due to the larger number of nodes contained in G2U71,
we configure Scenario S1 with more mutations and more
exchanged subtrees than Scenario S2. Thereby, we keep the
relation between crossover and mutation at a fixed level
suitable for the investigation of the genetic operators. The
fitness function f(N ) = min(RN ) calculates the minimal
throughput of all end-to-end flows from the routing scheme
RN .

Table 1. Simulation Scenarios.

Parameter S1 S2
city topology G2U71 G6U38
population size 150
elite set size 50
number of generations 400
crossover type Subtree CO

Cell CO
2-Point CO

number of crossed subtrees 7 5
number of mutations 20 10
fitness function f(N ) = min(RN )

The parameters of the transmission technology affect only
the characteristics of the network connections. They are
listed in Table 2 and denote the used carrier frequency, the
channel bandwidth, and the available channels. They decide
to some extent the performance of the user connections in a
network solution but they do not affect the effectiveness of
the genetic algorithm which we investigate in this section.
Therefore, we do not consider their impact on the resulting
solutions.

Table 2. General Parameter Settings.

parameter value
Transmission technology WiMAX

carrier frequency 3500 MHz
channel bandwidth 20 MHz

maximum throughput 67.2 Mbps
available channels 3500 MHz; 3510 MHz

antenna power 25 dBm
WiMAX urbanpathloss model

macrocell model

4.2. Population Evolution

Examining the evolution of the population is an important
consideration needed to demonstrate the effectiveness of the
genetic algorithm. The growth of the fitness of the new
generations must be observable in order to prove the correct
functionality of the GA. Thereby, different genetic operators
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Figure 8. Generations progress by Subtree, Cell, and
2-Point Crossover tested on the G2U71 topology.

can affect the evolution by more or less stimulating it but
none of them should disturb it.

Fig. 8 shows the minimal throughput growth during the
evolution for different crossover types. For generating the
results of Fig. 8, we used Scenario S1 from Table 1.

The x-axes show the individuals sorted by fitness while
the y-axes present the minimal flow throughput of the
solutions. The different crossovers show the evolution of the
generations 1 to 20 in steps of 5 generations, and 50 to 400
in steps of 50 generations.

We have to mention that the fitness values are not compa-
rable, due to the penalty costs used for the 2-Point Crossover.
Hence, we consider only the minimal throughputs which
only present the positive costs. This is also the reason for
the strongly varying curves on the left side of Fig. 8(c). The
individuals have a large minimal throughput but there are a
lot of unconnected nodes which results in a lot of penalty
costs and thus in lower fitness.

In all subfigures we can observe how the minimal through-
put of the elite set grows with every generation. This is due
to the selection principle which keeps the ancestors of the
prior generation in the next one. The elite selection approach
creates new populations with an elite set that is definitely
better than the previous one.

The higher the generation number, the smaller the fitness
growth. The slowdown of the evolution is caused by two
reasons. The first one is the similarity of the individuals due
to the reproduction of similar or equal genes leading to better
fitness. The second reason is the need of small and selective
changes to improve the solutions fitness, which is hard to
achieve accidentally. Though, the speed of the evolution
depends also on the topology structure in combination with
a suitable crossover principle. However, after about 400

generations, all crossover types show only a small fitness
growth with every new generation.

4.3. Effectiveness of the Crossover Operator

In this section we compare the performance of the three
crossover operators depending on the number of users and
gateways in the network. Furthermore, we want to find out if
there is an interaction between the efficiency of the crossover
types depending on the topology.

The results for both scenarios from Table 1 are presented
in Fig. 9. Fig. 9(a) shows the evolution of the best individual
during 400 generations with different crossover types and
for not using the crossover operator at all for the G2U71
topology. Thereby, it illustrates the results of 20 seeds
applying a 95% confidence interval.

This scenario includes a high number of user nodes which
are distributed in the coverage cells of only two gateways.
This results in deep tree structures with long ways over mul-
tiple hops towards the corresponding gateway. Such network
structures seem to be crucial for the effectiveness of the
crossover types. We can observe that the subtree crossover
leads to a better solution than the other two crossover types.
The better performance of the subtree approach is a result
of the exchange of small connectivity components which
causes reasonable gene variations without disturbing the
tree structure. The other two crossover types show a lower
performance whereby the unregulated 2-Point Crossover
even outperforms the intelligent Cell Crossover approach.
This results from the small number of gateways which
causes the cross of only one cell per new progeny and
quickly leads to similar individuals.

The results from Scenario S2 are shown in Fig. 9(b).
In contrast to the previous scenario, the higher number
of available gateways cause a better efficiency of the Cell
Crossover. Moreover, the small number of nodes belonging
to one gateway allows a larger variety of individuals. This
is due to the fact that small changes in the routing structure
cause higher changes in the network performance than in the
G2U71 topology. However, the Cell and Subtree Crossover
which exchange only connectivity components show a better
performance than the 2-Point Crossover.
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Figure 9. Effectiveness of the crossover operator.



The comparison of the crossover types shows that the
crossover operator should be selected based on the con-
sidered topology to achieve the best solutions. In the next
section we take a look at the influence of the mutation
operator on the evolution of the population.

4.4. Effectiveness of the Mutation Operator

The mutation is an important part of the natural evolution.
In the organic world as well as in genetic algorithms, it
accomplishes the gene diversity and helps the evolution to
grow. In the following, we investigate the influence of the
mutation operator considering Scenario S1.

From Fig. 10 it is easy to see how crucial the usage of the
mutation operator is for the success of the evolution. Without
using mutation, the solution reaches a local optimum after
about 20 generations. In contrast, when activating the muta-
tion operator, the fitness of the solution grows even after 400
generations and there is still potential for further evolution.
The reason is that the mutation only slightly changes the
routing scheme and channel allocation but thereby creates
new unexplored genes and fosters the evolution. In contrast,
abandoning the mutation operator quickly leads to very
similar individuals containing the same gene combinations
evaluated at the beginning of the evolution as the best ones.
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Figure 10. Mutation ON/OFF in combination with three
crossover types tested on the G2U71 topology.

5. Conclusion

In this paper we present an approach for planning and
optimizing WMNs using genetic algorithms. Different ge-
netic operators are introduced which we especially designed
for WMNs. The performance of these operators is evaluated
in different scenarios and the two most different scenarios
are shown in this paper. The results illustrate that our
WMN-specific Cell and Subtree Crossover lead to better
solutions compared to the well-known 2-Point Crossover.
However, they have to be applied according to the network
topology. The Subtree Crossover shows the best performance
in scenarios with a small number of gateways whereas
the Cell Crossover leads to the best solutions in scenarios
with a large number of gateways. Finally, we have shown
that a reasonable network optimization is only possible by

using mutation. We tested the influence of this operator in
combination with all crossover types and proved that in all
cases it strongly forces the evolution. The results show that
the best genetic algorithm configuration uses crossover and
mutation in combination.
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