Not for redistribution. The definitive Version of Record was published in 4-th ACM Workshop on

©ACM 2009. This is the author’s version of the work. It is posted here for your personal use.

Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks (PM2HW2N 2009).

Measuring One-Way Delay in Wireless Mesh Networks -
An Experimental Investigation

Barbara Staehle, Dirk Staehle
Rastin Pries, Matthias Hirth~
University of Wiirzburg, Germany

Institute of Computer Science
{dstaehle,bstaehle,pries,hirth}@
informatik.uni-wuerzburg.de

ABSTRACT

Wireless Mesh networks are multi-hop networks mostly based on
IEEE 802.11 technology and are considered as a viable alterna-
tive for providing broadband wireless Internet access. As a conse-
quence, they require support for Quality of Service or advanced
mechanisms for selecting Internet gateways. One important re-
quired information is the one-way delay between different nodes.
In this paper, we have developed, implemented, and evaluated an
one-way delay estimation technique for wireless mesh networks
which is based on estimating intra node queuing and inter node
forwarding delay. An IP-header option field is used to accumulate
the per hop delay estimate to provide an end-to-end estimate. We
also outline problems with the implementation and compare results
with real one-way delays obtained from a 14 node mesh testbed.
We show how estimation accuracy depends on network load and
provide insights into further improvements.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion; C.2.3 [Network Operations]: Network monitoring

General Terms

Measurement, Performance

Keywords

One-Way Delay Measurement, Wireless mesh networks, IEEE 802.11

1. INTRODUCTION

Wireless Mesh Networks (WMNs) are an interesting option for
extending Internet access to areas where the deployment of wire-

*this work emerged from the COST-STSM-IC0703-3940

T Additional support was provided by the European Regional De-
velopment Fund through the Interreg IVB project “E-CLIC - Eu-
ropean Collaborative Innovation Centres for broadband media ser-
vices”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PM2HW2N’09, October 26, 2009, Tenerife, Canary Islands, Spain.
Copyright 2009 ACM 978-1-60558-621-2/09/10 ...$10.00.

Peter Dely, Andreas Kassler?
Karlstad University, Sweden
Computer Science Department
{peter.dely,andreas.kassler}@kau.se

line Internet access is either impossible, more costly, or simply
more cumbersome and less comfortable. WMNs establish access
to the Internet over multiple wireless hops. A mesh client connects
to a mesh router and the mesh routers form a mesh backbone con-
sisting of wireless links which may operate on different channels.
Some mesh routers are attached to the Internet via wire-line con-
nections and are hence called mesh portals or mesh gateways.

One of the key features of WMNs is self-organization in the
sense that mesh clients autonomously connect to mesh routers and
that the mesh backbone adapts to mesh routers being arbitrarily
switched on and off. As a consequence, routing and channel allo-
cation should not be static but adaptive to the current environment
and load situation in a much stronger way than in the wired Inter-
net. Even in a situation when the topology in terms of mesh routers
and clients remains stable, the networks load and also the channel
conditions may change on short time scales. For an optimal per-
formance, routing protocols and resource management algorithms
need to follow these changes. In a self-optimizing mesh network
the key performance parameters packet loss, one-way delay, and
available bandwidth have thus to be monitored continuously.

In this paper, we focus on the estimation of the one-way delay
which we define as the time between entering the mesh backbone
and the time when leaving it again at the mesh gateway or the last
mesh router in the case of intra-mesh traffic. One obvious way to
profit from one-way delay measurements would be to utilize it as a
routing metric as e.g. proposed by Draves et al. [9]. Furthermore,
one-way delay measurements could be used for selecting the op-
timal gateway for real-time applications or simply for monitoring
the WMN performance. Estimating and using one-way delay mea-
surements for packet prioritization was proposed by Li et al. [13].
In this way, their Adaptive per Hop Differentiation (APHD) mech-
anism is able to guarantee end-to-end quality of service. A more
elaborate description of APHD is given in Section 2.3.

The main contribution of this paper is a practical implementation
of one-way delay estimation in multi-hop mesh networks using an
IP options field. We also demonstrate how estimation accuracy de-
pends on network load. This is to the best of our knowledge the
first implementation and experimental evaluation in a real testbed
taking into account multi-hop contention. The rest of the paper
is structured as follows: Section 2 gives an overview of related
work by emphasizing the practical usage of one-way delay mea-
surements, by reporting on APHD and other approaches for one-
way delay measurements and the associated problems in WMNSs.
Section 3 provides a description of our Tool for One-way delay
Measurements (TOM) with the difficulties when actually imple-
menting APHD and the work-around used for solving the prob-
lems. Section 4 presents a study on the accuracy of the one-way de-

lay measurements achieved in spite of the required modifications.
Finally, Section 5 summarizes the key findings of this paper.

2. PROBLEM DESCRIPTION

The goal of this paper is that all mesh nodes within a WMN can
estimate the one-way delay each packet experienced so far. To-
gether with a target deadline or a remaining delay budget, this in-
formation can be used to improve the performance of the WMN.

In Section 2.1 we highlight why this problem is of major interest
for practical mesh networking. Existing approaches of measuring
the one-way delay are presented in Section 2.2. Section 2.3 con-
tains an overview of APHD which strongly inspired our work.

2.1 Why Measuring One-Way Delays?

Information about packet delays is vital in WMNs and can serve
different purposes. Having one-way delay information embedded
within Route Request messages, would e.g. enable the receiver to
select the path with the lowest delay. In a similar way, such in-
formation could be used by gateway selection protocols or mecha-
nisms trying to guarantee Quality of Service (QoS). Finally, it has
to be ensured that the delay requirements of real-time applications
like VoIP or video streaming are met, while best effort traffic is also
forwarded within acceptable time bounds.

A proactive delay assurance approach has e.g. been presented
by Cordeiro et al. [8]. In a simulation study, the authors used the
methodology of AdHoc Probe [14] to obtain the one-way delay on
each link. This information was used as a link metric for Opti-
mized Link State Routing (OLSR). The proposed protocol OLSR
Minimum Delay (OLSR-MD) was compared against OLSR with
the standard hop count and a minimum loss metric. The results
demonstrate that the minimum delay metric performs best in terms
of average packet loss probability. APHD which was introduced by
Li et al. [13] is an example for a reactive delay assurance solution.
As the idea for obtaining the end-to-end delay is the base of our im-
plementation efforts, we introduce APHD in detail in Section 2.3.

2.2 How to Measure the One-Way Delay?

For measuring a wireless path’s delay, two simple ideas which
are also widely spread in the wired world seem reasonable. One
could either add a timestamps to each packet before it is sent and
subtract the reception from the transmission time or use a probe
packet’s Round Trip Time (RTT) divided by two as the one-way
delay. A more sophisticated concept called Packet Pair (PP) was
proposed by Keshav [12]. The basic idea is that if two packets are
sent directly after each other, they are also queued one after the
other and the time which lies between the end of the reception of
the first packet and the start of the reception of the second packet,
the dispersion, is the transmission time.

If timestamps can be added to a packet directly before it is trans-
mitted, this method allows to determine the packet delay very eas-
ily and accurately without generating additional measurement over-
head. The downside of this method is that the clocks of the stations
have to be synchronized which is a challenge for any real-world
implementation, as hardware clocks are in general neither synchro-
nized nor equally fast. Clocks can be synchronized via the Network
Time Protocol (NTP) or GPS, but both methods are more suitable
for test bed setups than in a productive indoor environment.

The RTT method does not need synchronized clocks, as the sen-
der of a probe does only need to record the time until the packet
returns. Especially in a wireless environment, this method has sev-
eral disadvantages: it firstly assumes that the receiver of the probe
can immediately answer and that the links are symmetric. Thus, it
is not appropriate for an exact measurement of one-way delay in

wireless multichannel networks with asymmetric links and inter-
fering traffic like the KAUMesh test bed [4]. Secondly, significant
additional measurement traffic has to be generated for up to date
measurements. Probing packets are thirdly rather small, such that
the measurements may underestimate the delay of larger payload
packets. Fourthly, the delay information is only available at the
node which triggers the measurement, i.e. the measurement pack-
ets are of no use for forwarding or destination nodes.

The packet pair concept has been widely applied in wired and
wireless networks. Kapoor et al. [11] used e.g. the dispersion be-
tween packet pairs of equal length for estimating the link band-
width. While the idea worked well in simulations, experimental
studies showed that the estimator is only good in lightly loaded net-
works with wired and last-hop wireless links. Sun et al. [14] used
this idea as an inspiration for AdHoc Probe, a path capacity esti-
mation tool for wireless multi-hop ad-hoc networks. AdHoc Probe
obtains one-way delay measurements as the dispersion between the
packet pair with the smallest one-way delay sum of a number of
sent pairs, as this pair is assumed to have suffered the least amount
of congestion. The authors reported that AdHoc Probe allows to es-
timate the bandwidth in a 802.11b testbed, but no results are given
on the accuracy of the one-way delay measurements.

An experimental study using both RTT and PP for estimating
the link quality has been presented by Draves et al. [9]. The authors
used a wireless testbed in order to compare the performance of RTT
and PP when used as link quality routing metrics against the per-
formance of the link metrics Expected Transmission Count (ETX)
and hop count. The results showed that only ETX was able to out-
perform the hop count metric, whereas the two delay based metrics
performed poorly. No results on the accuracy of the measurements
were published, but both techniques tend to be inaccurate due to
queuing delays, congestion or retransmissions, introduce a signifi-
cant overhead and suffer from self-interference.

Observe that all summarized solutions suffer from one or sev-
eral of the following drawbacks: Probe packets cause additional
overhead, are smaller than normal payload packets, and are sent at
intervals not correlated to the payload traffic. This makes them un-
suitable for a real-time measurement of the delay experienced by
payload packets. Methods using timestamps suffer from problems
with clock drifts or skewness. Approaches using the round trip
time fail to give good one-way delay estimations in networks with
asymmetric links. In the next section we will therefore introduce
an algorithm which promises to solve many of those problems.

2.3 APHD

IEEE 802.11e is an approved amendment to IEEE 802.11 and
has been incorporated in the IEEE 802.11-2007 standard [10]. It
defines a set of MAC layer QoS enhancements for supporting delay-
sensitive applications, such as VoIP or Multimedia Streaming. This
is achieved by the Enhanced Distributed Channel Access (EDCA)
mechanism which enables service differentiation by introducing
four different priority queues with different backoff parameters.

APHD, which was proposed by Li et al. [13] uses the 802.11e
based channel access to assure end-to-end delay requirements in
wireless multi hop networks. The basic idea of APHD is to estimate
the delay that each packet has experienced so far on a multi-hop
path at each intermediate link. In dependence on the target delay
and the delay experienced so far in the mesh, the priority of the
packet may be temporarily adapted. For this purpose, each packet is
extended by four header fields. The fields "e2e delay requirement"
and "e2e hops" are set by a packet’s sender and specify the time and
the hops within which the packet shall be delivered. The "delay so
far" and "hops so far" fields are updated by every forwarding node.

To update a packet’s delay so far field, a combination of mea-
surements and estimation is used which we visualize in Figure 1.
If, at time ¢;(B) packet p is received by the MAC layer of node B,
a node internal timestamp is recorded. Another local timestamp is
generated, when B accesses the channel to transmit the packet, i.e.
at time ¢, (B). The intra node delay can be computed as

tp = to(B) — ti(B). (1)

To avoid problems with drifting clocks, the inter node delay re-
quired for a transmission between B and its next hop C, tgc, is
not measured by node C, but estimated by node B as

tee =pi/r)

where p; is the packet length and r the used data rate. Both are
assumed to be known when the transmission starts. As depicted in
Figure 1, B updates the delay so far (dsf) field of p to

dsf =dsf +tp +tsc 3

before sending the packet to C. Additionally, the hops so far field
is increased. A requirement for the approach is to set the dsf field
in the packet as late as possible since otherwise the transmission
delay is not exactly known. In fact, the dsf field should be set just
before the node is actually accessing the channel which means after
the backoff phase. We will later see that modifying a packet at that
instant of time is hardly possible in praxis.

inter node delay

intra node delay inter node delay

tag=2ms tg=0.3 ms tge=1ms

Figure 1: APHD - Intra and inter node delay

Each forwarding node running APHD compares the information
on delay requirements with the already accumulated value. Based
on this analysis and the channel contention state, the node dynam-
ically adjusts the packet’s priority level in order to send already
delayed packets faster than not-delayed packets. In a simulation
study, the authors demonstrated that APHD is able to increase the
network performance, but did not indicate how well the delay esti-
mation approach matches reality. In the following, we describe our
contributions for realizing this task and elaborate the difficulties
that occur when implementing the concept on real nodes.

3. IMPLEMENTING TOM

To evaluate the achievable accuracy for APHD-like one-way mea-
surement tools in a real system, we implemented TOM (Tool for
One-way-delay Measurements). Our goal is to find out whether
we obtain a precision and timeliness which is suitable for packet
scheduling decisions like in APHD or rather for routing or resource
management decisions which take place on larger time scales and
require less timeliness. Results of our inquiry can be found in Sec-
tion 4. In the following we describe how we use two APHD ideas
for implementing TOM. Firstly, we estimate the one-way delay of a
packet as the sum of intra and inter node delay. Secondly, each data
packet carries delay information in its IP option fields for making it
immediately available and avoid additional measurement overhead
through e.g. active probing. In fact, the overhead induced by a

larger packet is much smaller than the one induced by an additional
packet since no additional MAC headers and no additional channel
access is required which are more critical in 802.11 networks than
the pure data transmission. Finally, we have implemented a flexi-
ble mechanism which allows to specify which flows should carry
such one-way delay estimates (such as just routing packets, VoIP
packets, or TCP packets). In the following we describe how we
implemented TOM on the nodes of the KAUMesh, a multi-radio
multi-channel mesh testbed at the Karlstad University [4].

In theory, the first task, i.e. estimating a packet’s transmission
delay as the sum of intra and inter node delays is simple. In prac-
tice, this task is non-trivial, as the in- and out-time of a packet at a
node have to be recorded. Retrieving the time ¢;(B) when a packet
is received by node B at MAC layer is not a problem, as this in-
formation can be retrieved from the MadWifi driver [5]. Getting
the time when a packet is sent out, ¢,(B), is more challenging. In
Section 3.1 we describe how we solved this issue.

The second task, embedding the delay information into packets
has to be transparent to the application generating the packet and to
nodes not running TOM. Furthermore, it has to minimize the over-
head. The method used for APHD, adding four additional fields
to an existing packet header [13], fails to meet both requirements:
all machines not running APHD are not able to interpret the addi-
tional header fields and are thus not able to process the modified
packets payload. Moreover, the four header fields carry informa-
tion which are not required for one-way delay measurements and
are quite large. In Section 3.2 we describe our lightweight approach
which is also tolerated by machines not running TOM.

3.1 Estimating the Transmission Delay

An ideal one-way delay measurement tool should run on all hard-
and software and should guarantee a precise delay estimation. For
an implementation of the delay estimation as depicted in Figure 1
these two goals are conflicting. Information on when a packet is
sent and at which transmission rate can only be gathered within the
network card driver. Major modifications of an existing driver or
implementing an own network card driver would provide those in-
formation, but also limit the tool portability. Even if possible from
an implementation point of view, there is still the question whether
adding a timestamp to a packet just in the moment when the access
to the wireless channel is granted would be possible from a tech-
nical point of view since even a small additional delay for setting
the timestamp might cause synchronization problems in the phys-
ical layer. Implementing TOM in the user space would make the
tool hardware independent, but not give the possibility to monitor
packets which do not pass the user space but are only forwarded by
the IP layer. Moreover, a user space program has no access to the
used data rate and can record the last timestamp only after having
passed the packet to the kernel.

We decided to cope with this trade-off between portability and
precision by slightly modifying the algorithm how inter and intra
node delay are obtained. We describe our estimation algorithm in
Section 3.1.4. The measurement and packet modification routines
are realized as hard- and software independent Linux kernel mod-
ules, the measurement and shared module. The measurement mod-
ule relies strongly on the Linux netfilter IPv4 hooks whereof we
summarize the key properties in Section 3.1.1 before we describe
the modules more closely in Section 3.1.2. To achieve a more pre-
cise prediction of the delay we furthermore decided to make some
very small modifications to the open source network card driver
MadWifi which we describe in Section 3.1.3.

3.1.1 Linux Netfilter

Netfilter is a framework for packet filtering inside the Linux
2.4.x and 2.6.x kernel series. In depth details can be found on the
project’s homepage [7], we only summarize some ideas. The net-
filter features which we use in our work, the so called "hooks" are
well-defined points a packet traversing a networking protocol stack
will pass. If a packet passes a hook, the protocol calls netfilter using
both the packet and the hook number. Kernel functions can register
to listen to different hooks. When a packet is passed to the netfilter
framework, any function which has registered for that protocol and
hook gets the chance to perform tasks like examining, modifying,
or discarding the packet.

From Link Layer

Linux Netfilter

NF_IP_PREROUTING

To User,
Yes NF_IP_LOCAL_IN = Space ™

No

NF_IP_FORWARD

NE_IP_LOCAL OUT)t 0T USer__
- - = Space
NF_IP_POSTROUTING

To Link Layer

\J

Figure 2: Linux netfilter IPv4 hooks

The five available hooks for IPv4 which we used for TOM are
located at different positions within the network stack, as it can be
seen in Figure 2. The NF_IP_PREROUTING hook is passed by all
packets delivered by the network device driver, before any further
routing decisions are done. After an analysis of the packets desti-
nation address, the routing algorithm decides, whether the packet
has to be sent to a local process or to an outgoing interface. Every
packet going to the user space passes the NF_IP_LOCAL_IN hook,
and the NF_IP_FORWARDING hook is passed by every packet
forwarded to another node. Locally generated packets pass the
NF_IP_LOCAL_OUT hook. Afterwards, those packets join the
forwarded packets for passing the NF_IP_POSTROUTING hook,
before they are handed over to the network card driver. Not all
packets pass all hooks, but each packet traversing the IPv4 stack
will pass one hook at the connection to the user space and at the
border to the link layer. These are the points where the measure-
ment module registers with suitable callback functions.

3.1.2 The TOM Kernel Modules

Linux kernel modules can be easily integrated into a running sys-
tem, as they can be loaded into the kernel on demand and provide
their functionality without the need of rebooting or recompiling.
Our modules have this flexibility and are moreover completely in-
dependent from the underlying hard- and software.

The shared module is a function library which is the heart of
TOM. It provides all functions which are needed for recording and
storing timestamps, computing the delays and estimators, and mod-
ifying the delay information carried by each packet. The measure-
ment module uses the callback functions provided by the netfilter
hooks to call the appropriate functions from the shared module. In
the case of the NF_IP_PREROUTING or the NF_IP_LOCAL_OUT
hook, the shared module is responsible for recording a timestamp.
If a packet passes the NF_IP_POSTROUTING hook, a shared mod-
ule function updates the delay information carried by the packet.

3.1.3 Modifications of the MadWifi Driver

For implementing TOM, we use the MadWifi driver [5]. Mad-
Wifi is an open source Linux driver for wireless network devices
with Atheros chipsets. The reasons for choosing MadWifi are that
it allows us to make more precise measurements by adding two
calls for shared module functions which record timestamps and up-
date the packet information. Moreover, the internal data structure
was extended to save timestamps. TOM will thus not run with the
unmodified MadWifi driver, but it is easy to port these small modi-
fications to any other system.

MadWifi is open source, but one key component, the Hardware
Abstraction Layer (HAL) was available in binary only at the time
of the implementation. The HAL can be imagined as a black box,
where all direct access to the Atheros hardware is routed through. It
can be seen as wrapper around the hardware registers and prevents
the user from tuning the card to frequencies or transmission powers
which violate regulatory restrictions.

3.1.4 Intra and Inter Node Delay Derivation

For our implementation, the lack of HAL source is an additional
challenge: packets can only be accessed as long as they have not
been handed over to the HAL methods. As discussed, it is doubtful
whether this would be a valid approach even when possible from a
pure implementation point of view. Hence, exactly implementing
the ideas proposed for APHD is not suitable, as it is not possible
to exactly determine the time ¢, (B) when the card of node B cap-
tures the channel to transmit the packet. To solve this problem, we
slightly modify the definitions of intra and inter node delay as de-
picted in Figure 3. As we can access the packet the last time before
it is handed over to the HAL, i.e at time

tm(B) = to(B) — 9, @
we derive the intra node delay of packet p at node B as
t = tm(B) — ti(B).)

inter node delay intra node delay inter node delay
thg=2.2ms tg=02ms tgc=12ms

_
|
|
|

e R
sdr dr
974 y
’ t
L+ eee coe — —

Figure 3: TOM - Intra and inter node delay

¢ denotes the queuing and random access delay which occurs
on the networking and MAC layer and which is unknown at time
tm (B). We therefore alter the definition of the inter node delay

tho =0 + tia, (©6)

where ¢+, denotes the time which is required for transmitting the
packet to the next hop C'. Recall that in APHD t,, is estimated as
the fraction of packet length and link data rate. To make our estima-
tion of one-way delays more exact and to incorporate the queuing
delay while still avoiding clock drift problems, we use a different
approach. The HAL does not notify the MadWifi driver when the
packet is sent, but only when the acknowledgment for the transmit-
ted packet is received. We thus obtain an estimate for tz as the
time between t,,,(B) and the time when the acknowledgment for

the transmitted packet is received and processed. As acknowledg-
ments are small, this is an insignificant measurement error.

The problem is of course that when packet p enters the queue,
no estimation for ¢z which will actually be experienced by p is
available. We assume that the delay experienced by packet p is
similar to the delay experienced by its predecessors. Therefore,
an exponentially weighted moving average of the previous packets
accumulated inter node delays, ' Be, is used to estimate the trans-
mission delay. When receiving an ACK, and hence a new value for
t’5¢, the inter node delay estimator is updated to

t'pec=w-t'pc+ (1 —w)- the (7

where the smoothing factor w is set to 0.5 in the measurement stud-
ies. Before forwarding a packet to the HAL, the end-to-end delay
requirement (edr) field is set to

edr = edr — [{'sc + (tm(B) — ti(B))]. ®)

What makes the estimation of one-way delay even more compli-
cated is the fact that if packets p, g, r are passed directly after an-
other to MadWifi, the delay information of packet ¢ is presumably
not available if packet r is passed to the HAL as ¢ is still in the hard-
ware queue. This means that the one-way delay estimation which
is embedded into packet r does not incorporate the transmission
delay experienced by packet g, but only the delay experienced by
packet p and its predecessors.

‘We would like to point out that the sources of error we listed in
this section are the price we pay for the flexibility and ease of trans-
portation of TOM. Using the freely available open source MadWifi
driver makes our tool portable to a large number of systems, but re-
stricts the points where the packets can be modified due to the black
box HAL. Recently, the HAL source code has been published [5].
Future implementation work will thus be dedicated to making the
one-way delay estimations more precise by using HAL methods.

3.2 Embedding Delay Information

To avoid additional probe packets or signaling traffic, every pay-
load packet has to carry its own delay information. The most trivial
solution for this problem is to add an extra header between the IP
header and the header of the next higher layer which contains the
required information, as it is done for example by AODV-UU [1].
The next obvious method is adding extra fields to an already ex-
isting protocol header, as e.g. proposed for APHD [13]. The ma-
jor drawbacks of both solutions is that they are not transparent to
nodes not running the measurement tool. That means, if node A
runs the tool and B does not, these nodes cannot communicate, be-
cause each packet sent by A is encapsulated with a new header or
carries additional header fields which can not be understood by B.

To overcome this problem, TOM uses IP option fields to store
the delay information. If a node receives a packet with an unknown
IP option, the option data will be ignored but the packet data is pro-
cessed normally [3]. Using IP options thus facilitates integrating
TOM in an existing network. It is possible that only some of the
nodes are equipped with the measuring software, but are still able
to communicate with the rest of the test bed. If a packet is sent
along a path where some nodes run TOM and some do not, the de-
lay information will not be updated and is consequently wrong. For
a setup with a purely wireless testbed where all nodes are remotely
administrated via the same wireless LAN interface which is also
used for the measurements, this is however advantageous. A mea-
surement tool adding a supplementary header to all payload traffic
sent by the nodes would make remote administration impossible
without installing the tool also on the management server.

In contrast to the original APHD design, our proposal adds more-
over only one supplementary header (which is coded as an IP op-
tion) to the packets. This allows to minimize the additional over-
head while we are still capable of measuring the one-way delay.
Out of the fields proposed by [13], we only use the edr field. As
depicted in Figure 3, each node which forwards the packet updates
this field by subtracting the measured intra node delay and the es-
timated inter node delay. If delay measurements are required, the
field is initialized with a high constant value ¢ which allows to ob-
tain the estimated delay at each time as ¢ — edr. In Figure 3, edr
is exemplarily initialized to ¢ = 100 ms. If a functionality similar
to APHD is required, the edr field is initially set to the target delay
which should not be violated.

4. EXPERIMENTAL EVALUATION

As already mentioned earlier, we implemented and evaluated
TOM in the KAUMesh [4] testbed, whereof a network map is de-
picted in Figure 4. The testbed includes 14 Cambria GW2358-4 [2]
nodes running Linux with a customized kernel version 2.6.22.2 de-
ployed within the lecture building. The mesh backbone is built
using IEEE 802.11a to avoid disturbances from the wireless IEEE
802.11 b/g access network of the university.

Figure 4: KAUMesh topology

To determine the quality of the one-way delay estimations ob-
tained by TOM, we considered scenarios with varying number of
hops and traffic intensities. Both the measured and the interfer-
ing traffic are generated using the Multi-Generator (MGEN) [6].
MGEN is an open source tool which generates real-time traffic pat-
terns for IP performance tests. It generates packets with timestamps
which we use as a simple method for obtaining reference one-way
delay measurements. Drifting and asynchronous clocks are the ma-
jor danger for this method, therefore continuous NTP updates using
the wired administration backbone of the KAUMesh are performed.
During all tests, the packet size is set to 1 kB.

Due to the different methodology, the one-way delays obtained
by MGEN and TOM vary in several aspects. For a better under-
standing, we introduce some terms used during the discussion of
the measurement results. The term offset refers to the difference be-
tween the packet delays measured by MGEN and TOM. The term
spike is used for delays noticeably higher than the average delay,
whereas peak is used for extremely high delays of single packets,
which are several times larger than the spikes. If the delay curve of
TOM shows the same trend as the delay curve of MGEN but both
curves are out of sync, we refer to the difference as shift.

To obtain numerical results, we consider three increasingly com-
plex test setups: firstly, we analyze the single hop case without in-
terfering cross traffic before we focus on a single hop setting with
cross traffic of varying intensity. Finally, we examine the quality of
delay estimations in the multi-hop case.

4.1 Single Hop, no Cross Traffic

In this simple setup, node 7 generates 50, 100, and 200 packets
per second and sends them to node 10 for 100 seconds. No other
nodes are interfering. Figure 5 shows all packet delays obtained
from the experiments with 100 packets per second. We show results
for all considered 10000 packets, but for sakes of readability limit
the y-axis to 15ms, as the MGEN traces contained some peaks
over 100 ms which were not observed by TOM. In the following we
discuss this issue and the offset between MGEN and TOM delays.

peak—>|

[=)

one-way delay [ms]
(4]

0 2e3 4e3 6e3 8e3 10e3
packet number

(a) all packets

o 08
8 «~—TOM
o
So6
(5]
o
%0,4
§ <«———MGEN
o2
s 2 PY: 3

5
measured one-way delay [ms]
(b) histogram of one-way delays

Figure 5: Single hop one-way delays, no cross traffic

The height of the peaks which could not be fully shown is be-
tween 48ms and 140 ms. They were found in every measurement
performed during the evaluation, independent of the used sending
packet rate and the receiving node. A clock synchronization prob-
lem can be excluded, because the synchronization period is smaller
than the period of the peaks. Noticeable is also the fact that TOM
does not show the peaks, but it does show the smaller spikes. An
analysis revealed that both spikes and peaks are due to an MGEN
problem: from time to time, the tool fails to write timestamps in
time and thus produces sending and receiving patterns with near to
identical timestamps for a number of consecutive packets. If this
occurs for the sending pattern, a spike results as packets experience
a larger queuing delay. This is also recorded by TOM. If the er-
ror occurs however for the sending pattern only, the packets were
received normally, but MGEN recorded wrong timestamps and the
resulting peaks are not shown by TOM. Debugging MGEN is not
our goal, we therefore ignore the peaks in the further discussion
and deal with them as measurement errors.

The second point which is noticeable concerning the results is
a constant offset of roughly 0.5 ms between the delays measured
by MGEN and TOM. This offset is the same for all runs we exe-

cuted for the one hop experiment and independent of the number
of packets sent per second. As TOM measures the one-way delay
in kernel space, while MGEN measures the delay in user space,
we assume that this method includes the transition times from the
user space to the network interface. Our kernel modules operate
below the user space and enable thus a more accurate characteriza-
tion of the networking layer. In order to make the offset better vis-
ible, Figure 5(b) shows histograms of the one-way delays obtained
by MGEN and TOM. TOM produces a peak at about 1.75 ms and
MGEN at about 2.25 ms. The peak of TOM is concentrated on one
50 ps bin with around 80% of the packets, while the peak of MGEN
is a little more dispersed and two 50 us bins cover a little more 80%
of the values. The distribution of the values above the peaks looks
also a little different. While the frequency of packets is roughly
geometrically decreasing with an increasing delay for TOM, there
is a smaller peak around 2.4 ms for MGEN. Values above 2 ms for
TOM or 2.5 ms for MGEN do not occur with significant frequency.

3.5

3.0

one-way delay [ms]

[
&)

800 900 1000 1100 1200 1300
packet number

(a) zoom level 1

w »
W o s~ o

one-way delay [ms]
n
o

4
5%1 5 5920 5925 5930 5935 5940
packet number

(b) zoom level 2

Figure 6: Single hop one-way delays, no cross traffic (zoom)

Figure 6(a) shows some packet delays measured during the ex-
periment already visualized in Figure 5(a). We added a correction
term of 0.5 ms to each delay measured by TOM to discuss two as-
pects which were less clear in Figure 5. Observe that the mean
MGEN and the mean corrected TOM delay are approximately the
same. This allows to see that firstly, the MGEN delays are suffer-
ing from clock drifts and that secondly, the spikes in the MGEN
measurements are larger than in the TOM measurements.

The curve depicting the one-way delays obtained from the MGEN
traces illustrates the inherent problem of measurements using times-
tamps. The delays are slightly increasing for about 300 packets,
then suddenly decrease by roughly 0.06 ms and start increasing
again. This pattern repeats throughout the experiment and is due to
the NTP updates which are performed every three seconds, or ev-
ery 300 packets in this case respectively. This sub structure could
be observed in every run and independent of the number of packets
sent per second. In contrast, the measured TOM delays do not suf-
fer from such synchronization problems. An NTP update every 3

seconds is not imaginable in a purely wireless environment and also
the accuracy of the NTP update would suffer from the variability
in the delay of multi-hop wireless transmissions. Figure 6(a) gives
thus only a weak impression on the errors due to clock drift which
would sum up in a less frequently synchronized setting.

The reason why the spikes reported by TOM are only half the
height of the MGEN spikes and shifted by one packet is due to the
exponential moving average which is used for estimating the inter
node delay. Furthermore, the delay estimation is used for the next
packet, which results in the fact that the curve of TOM is shifted by
one packet to MGEN. This can be best observed in Figure 6(b) that
shows two peaks on packet level. The two peaks are seen by TOM
with a shift of one packet and only one half. Since after the peaks
the following one-way delays are constant again, the peak flattens
geometrically. Here, the 0.5 ms offset is also nicely visible when
comparing the minimum one-way delays.

4.2 Single Hop and Cross Traffic

For a more realistic scenario, we use the test setup as described
above, but add an interfering traffic flow between node 15 and node
21. The size of the packets in this cross traffic flow is also set to
1kB and its rate is set to 140 packets per second.

>
o

MGEN

e
&)

one-way delay [ms]

N
[l

TOM
1.5) o

1050 1100 1150 1200 1250
packet number

Figure 7: Single hop one-way delays and cross traffic

Figure 7 shows some of the packet delays obtained for the mea-
surement with node 7 sending 200 packets per second and node
15 sending 140 interfering packets per second. Observe first that
the one-way delays obtained from both methods are varying more
strongly than for the setting with less measurement traffic and no
interfering traffic. This is an indicator for the congestion on the
channel and is captured to a similar degree by both TOM and MGEN.
As in the last experiment, the offset between both tools is about 0.5
ms. The shift between the MGEN and the TOM delays is also one
packet and again the delay spikes have only the half height due the
moving average approximation. Observe the effect of resynchro-
nizing the clocks on the MGEN curve at packet number 1150.

Figure 7 visualizes a potential downside of our approach: We use
an exponential weighted moving average for the inter node delay
estimation, a spike thus only weakly affects the immediate delay
estimation, but in turn still impacts the delay estimations of the
succeeding packets. This is a problem for accurate per-packet delay
information. If however, the one-way delays are needed for routing
or QoE ensuring mechanisms, than a less oscillating measurement
as it is obtained by TOM is more advantageous.

4.3 Multi-Hop

Finally, the performance of TOM is investigated in a multi-hop
environment. The measurement traffic is again generated at node 7
with a fixed packet size of 1 kB at rates of 50, 100, and 200 packets
per second. The destination varies between node 10, 11, and 14 to

examine the delay estimations for one, two, or three hops. The in-
terfering flow between node 15 and node 21 is sent at rates between
0 and 140 packets per second.

80
‘@
E
> 60
©
©
°
% 40
i
2
520

TOM
0

2100 2200 2300
packet number

Figure 8: Three hop one-way delays and cross traffic

Figure 8 shows a part of a measurement run where node 7 is
sending 200 packets per second over 3 hops to node 14. The cross
traffic intensity is 80 packets per second. Observe that this time,
the shift between the estimation of TOM and the MGEN delays is
larger than one packet. Due to the increased channel contention,
queuing delays and MAC layer retransmissions accumulate. This
has the effect that the acknowledgment of the immediately preced-
ing packet is frequently not yet received when a packet’s inter node
delay is estimated. Consequently, this estimation has to work with
the information of the older packets.

Another effect of an increasing degree of channel contention are
higher and more variant queuing delays and MAC layer retrans-
missions. The assumption that a packet suffers the same queuing
delays as its predecessors and successors does not hold anymore
which introduces an error in the TOM delay estimation in compari-
son to the MGEN method. As the delay values are oscillating faster
than in the previous experiments, the spike flattening effect of the
moving average method increases the offset between the MGEN
and TOM estimations. Next, a packet traveling over three hops is
queued three times instead of one time in the single hop case. Con-
sequently, the shift between the measured delay using MGEN and
the estimated delays using TOM is increasing. All in all, Figure 8
shows that TOM is able to follow the larger scale variations in the
one-way delay. It seems thus to be possible to use TOM measure-
ments for routing metrics or for selecting optimal gateways.

For such purposes, a good estimation of the one-way delay av-
erage of medium time scales is required. Therefore, we now in-
vestigate the capability of TOM to correctly measure the average
one-way delay of packets sent within one second by comparing it
with the average one-way delay measurements observed by MGEN
during this second. Figure 9 visualizes the difference between
the average one second one-way delays obtained from MGEN and
TOM. The results were obtained from experiments with different
hop counts and varying cross traffic intensities. For each hop count
and traffic intensity, five measurements of 100 seconds duration
were done. The bars of each group show the offset averaged over
all five runs for one specific cross traffic intensity together with the
corresponding 95% confidence intervals. The mapping between
colors and cross traffic intensity is shown on the right. Each sub-
figure shows a different amount of measurement traffic.

Within one subfigure we show results for a varying number of
hops and a cross traffic strength between 0 and 140 packets per
second. Observe that the difference between TOM estimations and
MGEN measurements is always above 0.5 ms, which we identi-

0 pkis
Il 20 pkis
[40 pkts
[60 pkis
[] 80 pkts
1100 pkts
[120 pkts
Il 140 pkts

5l

o
[

estimation difference [ms]

o

1 2 3
hop count

(a) measurement traffic: 50 packets per second

- o N

o
3

estimation difference [ms]

[l 140 pkts

o

1 2 3
hop count

(b) measurement traffic: 100 packets per second

@
£ 0 pkis
810 Il 20 pkts
1] I 40 pkis
L [60 pkts
k] [80 pkts
§5 100 pkts
5 [120 pkts
% Il 140 pkts
L)

1 2 3

hop count

(c) measurement traffic: 200 packets per second

Figure 9: Mean offset between MGEN and TOM

fied as delay between user space and kernel space. TOM addition-
ally underestimates the average delay measured by MGEN, as this
method shows peaks which are not shown by TOM. These peaks in-
crease the delay measured by MGEN by a non negligible amount,
as they are up to 90 times bigger than the average delay. The offset
between MGEN and TOM from a second where MGEN observed
a peak is also much higher as normal which explain the large confi-
dence intervals in in Figure 9(a) and Figure 9(b). This effect is less
visible in Figure 9(c) as the offset is already higher in this case.
Further, the delay spikes measured by the tool are flattened due to
averaging the values. This also leads to an underestimation of the
delay which is especially severe for highly varying delays.

Interestingly, for medium traffic intensities depicted in Figure 9(a)
and Figure 9(b), the delay variation is almost independent of the
hop count and the disturbing traffic. As a result, the offset between
the delays estimated by TOM and the delays measured by MGEN
is nearly constant for every hop count and disturbing traffic. Con-
sequently, the difference of the mean delays is also constant. At a
measurement traffic of 200 packets per second, the variation of the
delays increases with the amount of cross traffic if all packets have
to traverse three hops. In this case the delay estimation of TOM
looses accuracy as the queuing delay is increasing and highly vari-
ant. Thus the difference between the mean delays of the tool and
MGEN increases as illustrated by Figure 9(c).

We would like to point out that the results of the error analysis
shown in Figure 9 are conform to results known from literature.
With an increasing degree of channel contention and hop count,
delay estimations become more challenging. For TOM this is the
price of flexibility we pay, as we decided for portability reasons to
use MadWifi with the HAL as built-in black box.

S. CONCLUSION

In this paper, we presented a robust and lightweight approach
for measuring the one-way delay in wireless networks, which we

called TOM. In contrast to other approaches in this field, neither
clock synchronization nor additional measurement traffic is required
and the delay estimation also works for asymmetric links. Using a
number of open source building blocks, we implemented TOM in
an IEEE 802.11-based wireless mesh network. Experimental re-
sults demonstrated that the one-way delay estimations provided by
TOM are pretty accurate in normal load scenarios and still capture
the path delay behavior in highly loaded multi-hop environments.

We found that TOM may deliver valuable information for rout-
ing, admission control, or gateway selection algorithms. However,
TOM is currently not able to provide measurements of a precision
and timeliness to be useful for an APHD like packet scheduling.
From the experiments we conclude that the principle idea of mea-
suring the one-way delay by embedding the accumulated per hop
delay into the data packets using an IP header option is very promis-
ing. The estimation of the inter-node delays, however, should be
improved (a) by moving the time when updating the delay informa-
tion in the packet closer to the time when it is actually scheduled or
(b) by a more sophisticated estimation algorithm. Also, the goal of
the current implementation was on reproducing the idea of APHD.
The future development of TOM will shift towards improving the
one-way delay estimates on a medium time scale which was not the
primary goal so far.

6. REFERENCES

[1] AODV-UU. http://core.it.uu.se/core/index.php/AODV-UU.

[2] Gateworks, Cambria GW2358-4.
http://www.gateworks.com/products/cambria/datasheets/
gw2358-4ds.pdf.

[3] Internet Protocol Specifications, RFC 791.

[4] P. Dely, and A. Kassler. KAUMesh - A Multi-Radio
Multi-Channel Mesh Testbed. In ADHOC 09, Uppsala,
Sweden, Mai 2009.

[5] Madwifi Project. http://madwifi-project.org.

[6] Multi-Generator. http://cs.itd.nrl.navy.mil/work/mgen/.

[7] The netfilter.org project. http://www.netfilter.org/.

[8] W. Cordeiro, E. Aguiar, W. Moreira, A. Abelem, and
M. Stanton. Providing Quality of Service for Mesh Networks
Using Link Delay Measurements. In /CCCN’07, Honolulu,
HI, USA, August 2007.

[9] R. Draves, J. Padhye, and B. Zill. Comparison of Routing
Metrics for Static Multi-Hop Wireless Networks. In
SIGCOMM °04, Portland, Oregon, USA, September 2004.

[10] IEEE Computer Society. IEEE Standard for Information
technology —Telecommunications and information exchange
between systems — Local and metropolitan area networks —
Specific requirements. Part 11: Wireless LAN MAC and
PHY Specifications, June 2007.

[11] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi.
CapProbe: A Simple and Accurate Capacity Estimation
Technique. ACM SIGCOMM Computer Communication
Review, 34(4), October 2004.

[12] S. Keshav. Adaptive Per Hop Differentiation for End-to-End
Delay Assurance in Multihop Wireless Networks. ACM
SIGCOMM Computer Communication Review, 21(4), 1991.

[13] J. Li, Z. Li, and P. Mohapatra. Adaptive per hop
differentiation for end-to-end delay assurance in multihop
wireless networks. Ad Hoc Networks, 7(6), May 2008.

[14] T. Sun, G. Yang, L. Chen, M. Sanadidi, and M. Gerla. A
Measurement Study of Path Capacity in 802.11b based
Wireless Networks. In WitMeMo’05, Seattle, WA, USA,
June 2005.

