YoMo: A YouTube Application Comfort Monitoring Tool

Barbara Staehle, Matthias Hirth, Rastin Pries, Florian Wamser, Dirk Staehle
University of Wiirzburg, Institute of Computer Science, Wiirzburg, Germany

{bstaehle,hirth,pries,wamser,dstaehle}@informatik.uni-wuerzburg.de

ABSTRACT

Out of the large number of multimedia content sharing plat-
forms YouTube is the most popular one. This is reflected
by the large number of studies which focus on analyzing
YouTube characteristics. Techniques for quantifying the in-
stantaneous YouTube QoE and predicting an imminent QoE
degradation have in contrast never been proposed. The lat-
ter task is even more important if network management ac-
tions shall be carried out to avoid a YouTube QoE degrada-
tion. In this work we describe YoMo, a tool which constantly
monitors the YouTube application comfort. This measure
quantifies the application operation condition and allows a
QoE prediction. Experiments show that YoMo is able to ex-
actly anticipate an upcoming YouTube QoE degradation.

1. INTRODUCTION

According to the 2009 Cisco Visual Networking Index [3],
30% of all customer Internet traffic consists of downloading
or streaming videos. According to Cisco Systems, this share
will increase to over 60% by the year 2013. For the case of
the U.S., roughly half of this Internet video traffic is due to
user-generated content whereof again roughly the half is due
to YouTube. Consequently, many authors try to find reasons
for the success of YouTube. The most prominent example
of this category of studies is the work of Cha et al. [1] who
analyze the distribution and evolution of the YouTube video
popularity and user behavior. Cheng et al. [2] compare the
characteristics of YouTube videos and the structure of the
underlying social network. Gill et al. [7] examine YouTube
usage patterns, file properties, and transfer behaviors.

In contrast, the QoE of YouTube has to the best of our
knowledge not yet been in the focus of research studies. The
large number of QoE models for video streaming [6] are not

This work was funded by the Federal Ministry of Edu-
cation and Research of the Federal Republic of Germany
(Forderkennzeichen 01 BK 0800, GLab). The authors alone
are responsible for the content of the paper.

applicable, as they assume UDP as transport layer proto-
col. In this case, delay, jitter, and packet loss are directly
related to the video QoE as they cause artifacts or missing
frames. YouTube videos, in contrast, are transported via
HTTP over TCP. No packets are lost or delivered out of or-
der, and the only quality degradation which may be caused
by the transmission, is a stalling of the video. For this case,
the approach of Gustafsson et al. [8] would be applicable
which allows to derive the QoE from video parameters, the
packet loss rate, and the number of buffering events after
the video has been terminated.

The YouTube player has no feedback loop which adapts
the video playback to the network conditions. Our goal is
therefore to use the YouTube QoE as an input for a net-
work management tool which allows to maintain the user
QoE. Therefore, we need to know the user satisfaction in
real time. Moreover, a management tool needs a prediction
of the QoE, i.e. it needs to be notified if the YouTube player
is about to stall in order to avoid this. Dalal et al. [4] already
proposed a QoE prediction mechanism UDP video stream-
ing. It however uses lost and retransmitted packets only, a
method which does not work in case of TCP streaming.

In this work we introduce the YouTube monitoring tool
YoMo. It constantly monitors the YouTube application com-
fort (AC) which is simply the amount of playtime buffered
by the YouTube player. In general, AC characterizes how
well the application is doing. This allows YoMo to derive
a simple binary YouTube QoE in real time which is either
“good” if the video plays and “bad” if the video stalls. Addi-
tionally, YoMo is able to predict a QoE degradation, namely
the stalling of the video. In an earlier study [5] on QoE-based
radio resource management, we showed that a cooperation
of YoMo and a bandwidth shaping tool allows a continuous
YouTube playback in a congested wireless mesh network.

The lack of literature on YouTube QoE is the reason why
we think that YoMo is interesting for more areas than net-
work monitoring. Therefore, we discuss the idea of using the
AC to predict the QoE and its implementation by YoMo in
the following. Section 2 gives an overview on the core idea
and implementation details. YoMo’s functionality is evalu-
ated in Section 3. Section 4 summarizes the contributions
of this paper and gives an outlook to future work.

2. MONITORING THE YOUTUBE AC

To be able to monitor the YouTube AC, YoMo has to
fulfill several tasks: Firstly, it has to detect that a YouTube
flow exists which has to be monitored. Secondly, it has to
collect as much information as possible about the YouTube

flow and thirdly, it has to monitor the YouTube AC. To make
our approach more easy to understand, we first of all analyze
the technology behind YouTube in Section 2.1, before we
introduce the main ideas of YoMo and their implementation
in Section 2.2. How the the amount of buffered playtime is
estimated is described in detail in Section 2.3.

2.1 The Technology Behind YouTube

The YouTube player is a proprietary Flash application
which concurrently plays a Flash video (FLV) file and down-
loads it via HT'TP. At the beginning of this so-called pseudo
streaming, the client fills an internal buffer and starts the
video playback as soon as a minimum buffer level, ~, is
reached. During the time of simultaneous playback and
downloading, the buffer grows as long as the download band-
width is larger than the video rate and shrinks otherwise.
If the buffer runs empty, the video stalls and the YouTube
player state changes from “playing” to “buffering”. This
state is hidden to the normal user, but can be retrieved
from the YouTube API by JavaScript or ActionScript.

Each YouTube video is encoded as an FLV file which is a
container format for media files developed by Adobe Sys-
tems. An FLV file encapsulates synchronized audio and
video streams. The header starts with an FLV signature
and contains information about the tags in the body of the
file. The tags encapsulate the data from the streams and
contain information on their payload. This information in-
cludes the payload type, the length of the payload, and the
time to which the tag payload applies. FLV files may also
contain metadata encapsulated in a tag with a script data
payload. The available properties depend on the software
used for the FLV encoding and may include the duration of
the video, the audio and video rate, and the file size.

2.2 The Main YoMo Functionality

The YouTube player opens a new TCP connection each
time it downloads a new FLV file or if the user jumps to
another time in the video. Each FLV file has a header with
the FLV signature, the beginning of a new YouTube video
flow is hence marked by this signature. YoMo runs at the
client and parses all incoming TCP flows in order to detect
this signature. Once a flow containing FLV data is recog-
nized, the data is continuously parsed in order to retrieve
the available meta information from the FLV file. Detecting
the YouTube flow is thus easily done. The AC monitoring
task is more complex and will be explained in the following.

The YouTube AC is defined as the buffer status of the
YouTube player. This is simply the time, 3, the player
can continue playing if the connection to the server is in-
terrupted. Fig. 1 shows [as the difference between the
currently available playtime 7" and the current time of the
video t. YoMo constantly computes and visualizes § in a
GUI and checks whether § falls below an In such a situa-
tion, like the one depicted in Fig. 1, the QoE is still good,
as the video is playing, but the AC is bad, as 8 < 3, and
the video is about to stall soon. Hence, YoMo predicts an
upcoming stalling and has to notifiy a network management
tool or decrease the video bandwidth in order to avoid this.

2.3 Estimating the Buffered Playtime

YoMo computes the buffered playtime as 8 =T —¢. It
decodes the FLV tags in real time, and hence exactly knows
the currently available playtime 7" which is the time stamp

Madagascar | like to move music video 2

0391249 4| o | 52

t B<By, T t

Figure 1: The YoMo Parameters

of the last completely downloaded tag. Intuitively, ¢t could
easily be calculated as the time difference between the ac-
tual time and the time when the player starts to play the
video. During our measurements we found that this is not
as easy as assumed. The reason for this is that the play-
back of a YouTube video does not start immediately after
the player has loaded, but only after an amount ~ of bytes
has been downloaded. In [5], we show results from experi-
ments with different videos and different connection speeds.
The experiments reveal that v is varying between 50 and
300 kB and is independent of the connection speed but is
different for each of the 10 considered videos. We analyzed
the coefficient of correlation between v and different video
characteristics including information about the frame types
of the original H264 file embedded in the FLV tags, but were
not able to find a clear correlation which allows to derive ~y
from the properties of the displayed video.

It is hence not possible to calculate the amount of time
which lies between the time when the user issues the request
for the video and the time when the video actually starts to
play. We therefore implemented two different methods for
calculating ¢t which we discuss in the following. Method 1
uses the assumption that the video starts to play as soon as
the first FLV tag is completely downloaded. Clearly, this in-
troduces a small error in the calculation of 5 which decreases
however with an increasing connection speed. Method 2
stands for the way of obtaining ¢ from the YouTube player
API which can be accessed by scripting languages only. In
order to make YoMo applicable for the use in productive en-
vironments, it has to work with the original YouTube web
page which can not be modified. It is also unrealistic to
redirect all YouTube traffic to a dedicated web page where
scripts for YoMo are running. Hence, YoMo uses a Fire-
fox plugin which runs a JavaScript that retrieves ¢ from the
YouTube player. The plugin additionally sends the actual
value of ¢ to YoMo.

3. THE YOMO ACCURACY

YoMo and the Firefox plugin may be downloaded from
the G-Lab website'. In the remainder of this section, we in-
vestigate how exactly YoMo can predict a QoE degradation.
For this purpose, a client is connected to the Internet via a
proxy which is able to modify the connection speed. The
proxy may also interrupt the connection and thereby cause
a video to stall. The client does not access the original

"http://www.german-lab.de/go/yomo

20 =+

N
10
) :
=2 0""@'"%“%"*“‘""
< T
-10 : i ot
! +
+

03 04 05 1.0 3.0
bandwidth [Mbps]

Figure 2: Stall Time Estimation Error, Method 1

YouTube side, but runs a measurement web page which em-
beds the YouTube player. This allows to dump the YouTube
player state and thereby to get the exact stalling time. The
client additionally runs YoMo which logs the estimated stall
time which we consider to be the time when g < 0.5 sec.
This is due to an experiment with 100 randomly chosen
videos where observed that 8 = 0 sec is a sufficient but not
a necessary condition for a stalling video as many videos
already stall if 8 = 0.5 sec.

In Fig. 2 and Fig. 3, we depict the estimation error At be-
tween the time when YoMo considers the video to stall and
the video actually stalls for Method 1 and 2 respectively. For
each considered bandwidth, a box depicts the inter quartile
range of the estimation errors and whiskers which are 1.5
times longer than the interquartile range. Values beyond
this range are shown by red crosses. Let’s discuss Fig. 2
which represents the estimation accuracy of Method 1, first.
It shows that the error decreases with an increasing band-
width. This is just a logical consequence of neglecting the
time required for downloading 7y, which gets smaller if the
Internet connection is fast. While this method is thus suffi-
ciently accurate for a broadband Internet access, it results in
YoMo estimating the video to stall up to 20 seconds earlier
as it actually did in the case of a slower connection.

The results for the experiment with estimation Method 2,

shown in Fig. 3, in contrast visualize an bandwidth-independent

error. Moreover does YoMo estimate the video on average to
stall only roughly 0.1 sec earlier than it actually did, which
is a significant improvement over Method 1. In most cases,
YoMo underestimates the remaining play time, i.e. predicts
the time of stalling earlier than it actually happened. The
maximal estimation error in this direction is 0.5 sec. In
some cases, YoMo overestimated the remain play time with
a maximal error below 0.5 sec. Taking the inherent error of
our assumption that a video stalls if 8 < 0.5 into account,
these results demonstrate that YoMo, with Method 2 for
the buffer estimation, is working as intended. In [5] we are
moreover able to show that this accuracy is suitable for a
QoE guaranteeing radio resource management.

4. CONCLUSION AND OUTLOOK

Application comfort monitoring presents an approach to
monitor the usage of applications, their quality requirements
and the experienced application comfort at the client. AC
monitoring allows a QoE prediction which is very valuable

input for network management tools. In the scope of YouTube,

or more generally, Flash video streaming over TCP, the AC

06
N
0.3 T i ’ T :
— ! - T ! !
) A N
= THETTn
03 o+ 4
RN
06

03 04 05 1.0 3.0
bandwidth [Mbps]

Figure 3: Stall Time Estimation Error, Method 2

is measured as the buffered playtime. YoMo consists of a
Java application and a Firefox plug-in. This plug-in mon-
itors the state, in particular the current playtime, of the
Flash player. A packet sniffer detects new Flash video trans-
fers, extracts the videos metadata, and monitors the avail-
able playtime. Both components together allow to deter-
mine exactly the buffered playtime.

We were able to demonstrate that YoMo is able to accu-
rately estimate the time when the YouTube player is stalling.
YoMo is lightweight and easy to install while it provides
valuable information to an ISP. If users run YoMo, both
parties may greatly benefit as the provider gets information
for free which it can use for improving the user QoE. Our
future work will therefore be dedicated to examining the
suitability of YoMo for QoE-based network management in
various scenarios more closely.

S. REFERENCES

[1] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon.
I Tube, You Tube, Everybody Tubes: Analyzing the
World’s Largest User Generated Content Video System.
In SIGCOMM’07, San Diego, CA, USA, October 2007.

[2] X. Cheng, C. Dale, and J. Liu. Statistics and Social
Network of YouTube Videos. In IWQ0S5’08, Enschede,
The Netherlands, June 2008.

3] Cisco Systems Inc. Cisco Visual Networking Index -
Forecast and Methodology, 2008-2013. White Paper,
June 2009.

[4] A. C. Dalal, D. Musicant, J. Olson, B. McMenamy,

S. Benzaid, B. Kazez, and E. Bolan. Predicting
User-Perceived Quality Ratings from Streaming Media
Data. In ICC’07, Glasgow, Scotland, UK, June 2007.

[5] B. Staehle, M. Hirth, F. Wamser, R. Pries, and
D. Staehle, “YoMo: A YouTube Application Comfort
Monitoring Tool,” University of Wiirzburg, Tech. Rep.
467, March 2010.

[6] U. Engelke and H. J. Zepernick. Perceptual-based
Quality Metrics for Image and Video Services: A
Survey. In NGI’07, Trondheim, Norway, May 2007.

[7] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube
Traffic Characterization: A View From the Edge. In
SIGCOMM’07, San Diego, CA, USA, October 2007.

[8] J. Gustafsson, G. Heikkila, and M. Pettersson.
Measuring Multimedia Quality in Mobile Networks
with an Objective Parametric Model. In ICIP’08, San
Diego, CA, USA, December 2008.

