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ABSTRACT
The complex multi-hop structure of WMNs requires a careful net-
work planning. In this paper, we investigate the usability of Genetic
Algorithms (GAs) for such a planning approach. The simplicity of
GAs allow us to examine a large number of network configurations
in order to optimize the network throughput and to fairly distribute
the resources. This is achieved with a max-min fair share through-
put distribution and by evaluating node positions, routing configu-
rations, and channel assignments. We adapt standard genetic opera-
tors and evaluate the influence of the operators on the performance.
The results show that GAs are well-suited for planning WMNs.

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWORKS ]: Net-
work Architecture and Design—Wireless communication

; G.1.6 [NUMERICAL ANALYSIS ]: General—Optimization

General Terms
Algorithms, Performance

Keywords
Wireless Mesh Networks, Planning, Optimization, Routing, Ge-
netic Algorithms

1. INTRODUCTION
Wireless Mesh Networks (WMNs) should have the so-called self*-

properties, i.e. they are self-organizing, self-configuring, and self-
healing and are thus gaining an increasingly important role in next
generation wireless networks. However, the complex structure of
WMNs and the huge parameter space require a careful planning
of these networks. The planning process includes node placement,
routing, channel allocation, and a fair resource sharing scheme for
the users.

The problem to solve here is NP-hard, which exacerbates to find
optimal solutions for networks consisting of more than a handful
of nodes. Until today, many linear programming algorithms have
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been proposed addressing parts of this optimization problem, e.g.
[1,6]. Due to the high complexity of these algorithms, they cannot
be applied to large-scale WMNs. Genetic Algorithms (GAs) are a
good alternative because of their simplicity and ability to optimize
large WMN scenarios.

GAs are based on the idea of natural evolution and are used to
solve optimization problems by simulating the biological cross of
genes. A randomly created population of individuals represents the
set of candidate solutions for a specific problem. The GA evaluates
the quality of each individual by applying a fitness function. The
best individuals are selected for the new population. However, the
selection without any other operation on the individuals would not
lead to a genetic optimization. Therefore, two operators, crossover
and mutation, are used to create additional new individuals.

In our previous works [9,10], we use genetic optimization to plan
the WMN backbone without considering end user location and with
fixed router and gateway positions. In this paper, we consider fixed
end user locations and build the wireless mesh backbone based on
the user distribution. Thus, the location and the number of gate-
ways and routers is not fixed and part of the genetic optimization in
addition to routing and channel assignment.

The remainder of this work is organized as follows. Section 2
introduces the WMN architecture, shows the challenges of wireless
network planning, and presents the work related to WMN planning.
This is followed by Section 3 describing our planning approach. In
Section 4 the influence of the genetic operators on the performance
of the WMN is evaluated and compared to the results of a greedy
algorithm. Finally, Section 5 concludes this paper.

2. BACKGROUND & RELATED WORK
Before reviewing the work related to WMN planning, we take a

look at the WMN architecture and show the challenges of wireless
network planning.

2.1 WMN Architecture
A WMN is normally organized in a tree-like structure shown in

Figure 1. At the root of the tree stands a Mesh Gateway (MGW).
An MGW bridges traffic between different WMNs or connects the
WMN to the Internet. Connected to the MGW are both, end users
and Mesh Routers (MRs). An MR is responsible for mesh relay-
ing, meaning that it is capable of forming an association with its
neighbors and forwarding traffic on behalf of other MRs. An MR
can be equipped with one or more wireless interfaces. Using sev-
eral wireless interfaces, the interference in a WMN can be reduced
but the complexity of the channel assignment for the interfaces in-
creases. In general, there can be more than one MGW, whereby
mesh routers connected to one gateway can be considered as a tree
and the complete WMN as a forest.
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Figure 1: Wireless Mesh Network Tree.

2.2 Wireless Network Planning
The planning of wireless mesh networks can be applied to a va-

riety of wireless networks, like WiMAX, WLAN, and sensor net-
works. Although the network technology changes, the planning
challenges remain similar. In contrast to traditional cellular net-
work planning, the planning and optimization of WMNs is much
more complex. A widely used concept for cellular network plan-
ning is the demand node concept introduced by Tutschku [14] and
illustrated in Figure 2(a).

The algorithm first looks for the demands of cellular services.
Therefore, different demographic areas are taken into account. For
example, more phone calls occur in urban areas than in rural ar-
eas. According to these demographic regions, a different number
of demand nodes are set up like shown in Figure 2(a). In addition
to the demand nodes, candidate sites for base stations are inserted
into the optimization algorithm. As each base station is able to
support a fixed amount of users in cellular systems of the second
generation, candidate sites are selected for base station placement
in such a way that all demand nodes can be served with a certain
probability.

In contrast, the planning of WMNs is much more complex. Not
only the covered area or the number of end users has to be con-
sidered, but also the capacity and the interference of the relaying
links. The capacity of a link does not only depend on the distance
between two mesh points, but also on the interference which in
turn depends on the used channels. Looking again at Figure 2(a),
we can see that the channel assignment has to be performed in such
a way that neighboring base stations do not use the same channel.
In WMNs, such as shown in Figure 2(b), each mesh point can be
equipped with multiple interfaces which can be assigned one chan-
nel each.

candidate site

selected site

demand node

(a) Cellular network planning. (b) WMN planning.

Figure 2: Comparison of traditional cellular network planning
and wireless mesh network planning.

In addition to the more complex channel assignment in WMNs
compared to traditional cellular networks, also the routing has to
be considered. In a fixed wireless mesh network where each mesh
node is equipped with multiple interfaces, the Modulation and Cod-
ing Scheme (MCS), the interference from neighboring nodes, and
the number of flows traversing a link have to be taken into account
for the routing decision.

This complex planning has attracted the interest of various re-
searchers and Internet providers. Hence, a number of papers have
been published on the problem of planning WMNs and estimating
their performance. We divide the related work into three parts. The
first part shows general WMN planning approaches. In the second
part, the work related to channel assignment and routing is pre-
sented. Finally, we present papers working with genetic algorithms
for planning radio networks.

2.3 WMN Planning Using Optimization Tech-
niques

Sen and Raman [12] introduce a variety of design considerations
and a solution approach which breaks down the WMN planning
problem into four tractable parts. These sub-problems are inter-
dependent and are solved by heuristics in a definite, significant or-
der. The evaluations of the presented algorithms show that they
are able to generate long-distance WLAN deployments of up to 31
nodes in practical settings.

Other related works [1,6] deal with creating a wireless mesh net-
work model, planning its parameters, and evaluating the solutions
via linear programming. He et al. [6] propose mechanisms for op-
timizing the placement of integration points between the wireless
and wired network. The developed algorithms provide best cov-
erage by making informed placement decisions based on neigh-
borhood layouts, user demands, and wireless link characteristics.
Amaldi et al. [1] propose other planning and optimization mod-
els based on linear programming. The aim is to minimize the net-
work installation costs by providing full coverage for wireless mesh
clients. Thereby, traffic routing, interference, rate adaptation, and
channel assignment are taken into account.

2.4 Routing and Channel Assignment
One of the first contributions on channel assignment is presented

by Raniwala and Chiueh [11]. The channels are assigned according
to the expected load evaluated for shortest path and randomized
multi-path routing. It is shown that by using only two network
interface cards per mesh point, the throughput increases up to eight
times. In contrast to [11], Chen et al. [4] do not only consider
the expected load for the channel assignment, but also consider the
link capacities. Based on the link metrics, called expected-load
and expected-capacity, the channel assignment is optimized using
simulated annealing.

Raniwala and Chiueh [11] and Chen et al. [4] only consider non
overlapping, orthogonal channels. Mohsenian Rad and Wong [7,8]
instead also consider partially overlapping channels and propose
a congestion-aware channel assignment algorithm. It is shown that
the proposed algorithm increases the throughput by 9.8 % to 11.4 %
and reduces the round trip time by 28.7 % to 35.5 % compared to
the approach of Raniwala and Chiueh [11].

2.5 Genetic Algorithms for Radio Network Plan-
ning

Badia et al. [2] use genetic algorithms for joint routing and link
scheduling for WMNs. The packet delivery ratio is optimized de-
pending on the frame length. It is shown that genetic algorithms
solve the studied problems reasonably well, and also scale, whereas



exact optimization techniques are unable to find solutions for larger
topologies. The performance of the GA is shown for a single-rate,
single-channel, single-radio WMN.

Vanhatupa et al. [15] apply a genetic algorithm for the WMN
channel assignment. Capacity, AP fairness, and coverage metrics
are used with equal significance to optimize the network. The rout-
ing is fixed, using either shortest path routing or expected trans-
mission times. Compared to manual tuning, the algorithm is able
to create a network plan with 133 % capacity, 98 % coverage, and
93 % costs. Furthermore, the algorithm needs 15 minutes for the
optimization whereas the manual network planning takes hours.

In contrast to the related work, we combine the different opti-
mization approaches and optimize the node placement, the routing,
and the channel allocation to increase the overall throughput while
still maintaining a max-min fair throughput allocation between the
nodes. This is done for a multi-channel, multi-radio, multi-rate
WMN.

3. WMN PLANNING APPROACH
In this section, we show the parameters which we have to con-

sider and to evaluate in order to achieve a near-optimal WMN so-
lution, meaning that the throughput in the WMN is fairly shared
among the mesh points.

3.1 Problem Formulation
We define a WMN as a set ofN nodesn1, ..., nN , a set ofU

usersu1, ..., uU , and a set of linksL connecting the users to the
nodes and the nodes among each other. A subsetG ⊆ N contains
the gateway nodes which are connected to the Internet. The remain-
ing nodesni ∈ N \ G are either routers connecting the users via
a fixed path to a gateway or disabled nodes if no user is connected
to them. The path from userui to a gateway is denoted asPi and
consists of a set of links,Pi ⊆ L. Thus, the users and routers con-
nected to one gateway can be considered as a tree and the complete
WMN as a forest. This structure is used for the optimization with
genetic algorithms.

3.2 Fairness and Capacity in Wireless Mesh
Networks

To achieve a fair resource distribution among the mesh points,
we use a max-min fair share approach introduced by Bertsekas
and Gallager [3]. A solution is max-min fair if no rate can be in-
creased without decreasing another rate to a smaller value. Max-
min fairness is achieved by using an algorithm of progressive fill-
ing. Firstly, all data rates are set to zero. Then, the data rates of
all flows are equally increased until one flow is constrained by the
capacity set. This is the bottleneck flow and all other flows have to
be faster than this one. Afterwards, the data rates of the remaining
flows are increased equally until the next bottleneck is found. This
procedure is repeated until all flows are assigned a data rate.

Before assigning the data rates to the flows, the capacity of the
network has to be estimated. Therefore, we first have to estimate
the link capacities. The capacity of a single link is determined by
the pathloss and the Signal to Noise Ratio (SNR). For the pathloss
calculation, we use a modified COST 231 Hata [5] pathloss model
for carrier frequencies between 2 GHz and 6 GHz. The model is
proposed by the IEEE 802.16 working group as the WiMAX urban
macrocell model, but is also valid for WLAN mesh networks and
is defined as

PL = 35.2 + 35 · log10(d(ni, nj)) + 26 · log10
(
f

2

)
. (1)

Here, f denotes the operating frequency andd denotes the eu-
clidean distance between mesh pointsni andnj . The pathloss
model is used to calculate the SNR which is required to determine
the maximum achievable throughput. The SNR is calculated as

γni,nj = Tx − PL(ni, nj , f)− (N0 + 10 · log10(W )), (2)

whereTx is the transmit power,N0 is the thermal noise spectral
density (-174 dBm/Hz), andW is the system bandwidth. Now, the
Modulation and Coding Scheme (MCS)mcs is selected with an
SNR requirementγ∗

mcs that is smaller or equal to the link’s SNR
γni,nj . The MCS is chosen in such a way that the frame error
rate lies below 1 %. If the SNR requirement for the most robust
MCS cannot be met, the two mesh pointsni andnj are not within
communication and interfering range.

Having computed the maximum data rate of each link accord-
ing to the pathloss, we now have to calculate the capacity of each
link taking interference from neighboring mesh points into account.
In [9, 10], we use collision domains for calculating the link capac-
ities. However, we showed in [13] that cliques can utilize the re-
source more efficiently while still achieving a max-min fair through-
put allocation.

The proposed algorithm, called extended Effective Load Based
Algorithm (extended ELBA), first calculates a contention graph for
links, which are not allowed to be active simultaneously. Then it
finds cliques in this graph and uses them to assign a max-min fair
throughput allocation to the flows in the network. The algorithm
uses end-to-end flows between users and gateways. A flowfi ∈ F
from a userui to a gatewayg is always fixed to a pathP ⊆ L,
which are all links traversed fromu to g. The algorithm assigns
throughputs rather to flows than to users, but the throughput as-
signed toflowi is the same throughput which nodeui receives.
Each link(i, j) has an individual link rateri,j defined by the under-
lying MCS. A flow with ratebk traversing this link would occupy
bk
ri,j

of the link’s bandwidth. Therefore, the link is active forbk
ri,j

of the time. Now, letKi,j be the set of flows traversing link(i, j).
Then the link is active for

Θi,j =
∑

k∈Ki,j

bk
ri,j

(3)

percent of time. Note that
∑

k∈Ki,j
bk ≤ ri,j as the link can be

active no more than 100 % of time. Using this, we can define the
activity percentage of a cliqueC as

ΘC =
∑

(i,j)∈C

∑

k∈Ki,j

bk
ri,j

. (4)

During the process of fixing flows, i.e. assigning fixed throughputs
to them, the maximum rate for unassigned flows in a clique has to
be known. From the fact that a clique can be active no more than
100 % of time, it can be stated that the maximum rate available for
unassigned flowsbC is

bC =
1−∑

(i,j)∈C
∑

k∈Ka
i,j

bk
ri,j∑

(i,j)∈C
∑

k∈Ku
i,j

bk
ri,j

(5)

whereKa
i,j is the set of unassigned flows andKu

i,j is the set of
assigned flows. Thus, we can define the load of a clique as

mC =
∑

k∈F

∑

(i,j)∈Pk∩C

1

ri,j
=

∑

(i,j)∈C

ni,j

ri,j
(6)

with ni,j as the number of flows traversing link(i, j).



Now the algorithm works in two steps. The first step is an initial-
ization phase. During the initialization all cliques are computed, all
flows are set as unassigned, the load of all cliques is calculated, and
the capacity of each link is set to 1. The second phase iterates over
the bottleneck cliques, one per step. In each step the bottleneck
clique C∗ is the cliqueC with the lowest throughputbC per flow
throughC. The rates of all flows in the bottleneck clique are then
set tobC and the flows marked as assigned (fixed). Next, the capac-
ity and the load of all cliques containing at least one link traversed
by at least one of the just assigned flows have to be recalculated.
Finally, all cliques with a load of no more than 0 are removed from
the clique corpus. Then, the throughputs per flowbC for all cliques
are recalculated and a new bottleneck clique is determined. This
iteration stops as soon as the clique corpus is empty. The algorithm
is shown in detail in Algorithm 1.

Algorithm 1 Extended ELBA

Input: network solutionN
Output: a throughput allocation forN
Variables:
F – Set of all flows inN
O – Set of all unassigned(open) flows inN
ΩC

∗ – The clique corpus, i.e. the set of all collision cliques inN
ri,j – max. rate of link between node i and node j
ni,j – number of flows traversing the link between node i and node j
mC – load of cliqueC
pC – capacity of cliqueC
bC – throughput per flow through cliqueC
B – set of bottleneck flows (all flows traversing the bottleneck clique)

1: O = F {all flows are unassigned}
2: ΩC

∗ = ΩC {the clique corpus}
3: mc =

∑ ni,j

ri,j
, C ∈ ΩC

4: pc = 1, C ∈ ΩC

5: while Ω∗
C 6= ∅ do

6: bc = pc/mc for all CinΩC

7: C∗ = minC∈ΩC
∗ bC

8: B = {k ∈ O|Pk ∩ C∗ 6= ∅}
9: bk = bC∗ for all k ∈ B

10: O = O \ B
11: pc = pc −

∑
k∈B

∑
(i,j)∈Pk∩C

b∗C
ri,j

12: mc = mc −
∑

k∈B
∑

(i,j)∈Pk∩C
1

ri,j

13: ΩC
∗ = C ∈ ΩC

∗|mc > 0
14: end while

3.3 Genetic Algorithm Model
The throughputs per flow are needed to estimate the goodness

of a WMN solution found by the genetic algorithm. In the follow-
ing, we explain the steps of the genetic algorithm for the WMN
optimization.

The complete procedure of our genetic algorithm is shown in
Figure 3. Firstly, a random population is created which contains
a predefined number of individuals. The fitness of each individual
is evaluated using the fitness function and the individuals are or-
dered according to the fitness value. The best individuals, the elite
set, are kept for the new population. Afterwards, the crossover and
mutation operator are used to create the remaining number of indi-
viduals for the new population. The procedure is repeated until a
satisfying solution is achieved. In the next sections, we explain the
steps of our WMN optimization approach in more detail.

Evaluation via
fitness function Crossover

Mutation

Progenies of 
selected individuals

Elite set (best individuals)

Generation i+1

Initial
population

Generation i

Individuals of next 
generation

Generation 0

Figure 3: Basic functionality of our genetic algorithm.

3.3.1 Individual Encoding
Each individual of a population represents a WMN deployment.

In order to perform the crossover and mutation operations, the WMN
has to be encoded in such a way that a simple modification of genes
is possible. We use a two-dimensional string of integers, where the
node locations are ordered along the first dimension, whereas the
second dimension represents a location’s properties, the node ID,
the ID of the next hop towards the gateway, the channel of the link
to the next hop, and the type of the location.

If the ID of the next hop is set to -1, either the node is a gate-
way or the node is not connected to any other node. The type can
be either “user”, represented by -1, “unused candidate location”,
represented by 0, “gateway”, represented by 1, or “router”, repre-
sented by 2. Table 1 shows an example of the second dimension of
an individual coding.

Table 1: Individual Encoding example.

conn. disconn.gateway router unused
user user

node-ID 2 12 13 45 52
next hop -1 2 -1 12 -1
channel -1 1 -1 2 -1
type 1 2 0 -1 -1

3.3.2 Creation of Initial Population
Most commonly, the initial population is created randomly and

the optimization is left to the GA. The random creation of an in-
dividual has four steps: Firstly, the gateways are placed. For this
purpose, a random number of gateways is set up among randomly
chosen candidate locations. In the second step, the routers are con-
nected to the gateways. Afterwards, the users are connected to the
routers or gateways. Finally, all unnecessary routers are disabled.
In Section 3.5 we describe another, more intelligent possibility for
creating the initial population.

3.3.3 Evaluation via Fitness Function
The fitness of an individual is estimated using the allocated end

user throughputs obtained as shown in Section 3.2. A simple fitness
function which would lead to a max-min fair throughput allocation
could be

f1(I) = min(τ(ui)|ui ∈ U(I)), (7)

whereτ(ui) is the throughput of userui of individual I. This fit-
ness function however, would only take the worst throughput in the



network solution into account, without regarding all other users.
Therefore, the mean network throughput should also be considered.
This leads to the following fitness function

f2(I) =

∑
ui∈U(I)∗ τ(ui) · iα∑

ui∈U(I) i
α

, (8)

whereui is thei-th user in a list of all users ofU(I)∗ ordered by
their throughput in a descending order.

This fitness function considers all throughputs received by the
users, but weights them according toα. Forα = 0 all throughputs
are weighted equally. Forα → ∞ only the lowest throughput will
be relevant which is equivalent tof1.

3.3.4 Selection Principle
After the evaluation of a population, we select a set of individu-

als, which have the highest fitness of all and keep them unchanged
in the new generation. This set is called the elite set. To get to the
same population size, the remaining individuals are created from
selected members of the previous generation.

Let the population size bep, the elite set sizee, then thee best
individuals from generationi are transfered to generationi + 1.
Additionally, p − e progenies are created from individuals of gen-
erationi. Thee members of the elite set and thep − e progenies
form the new population at generationi + 1, again of sizep. The
parents from which the progenies are created are selected the fol-
lowing way. One parent is chosen with a probability proportional to
its relative fitness among all individuals of its generation. The other
parent is chosen with a uniformly distributed probability among all
individuals. This method ensures that “good” individuals are cho-
sen as parents more often. However, choosing the second parent
with a uniform probability ensures that not only the best solutions
are taken to create new individuals. This is done in order to prevent
the algorithm from running into local optima.

3.3.5 Crossover
To create the progenies, different crossover operators are now ap-

plied to the selected number of individuals. For the cross of genes,
we introduce three different mesh-specific crossover variants, the
Area Crossover, theCell Crossover, and theSubtree Crossover be-
cause we have already shown in [9] that the standardTwo-Point
Crossover does not perform well for WMNs. In contrast to [9],
only one progeny is created by the crossover variants.

Area Crossover
The Area Crossover selects a random area in the topology and
copies the complete structure in one individual, i.e. the configu-
ration of all nodes contained in the area as well as all links between
all nodes in the area. Links crossing the border of the area have to
be regarded separately because they can either lead to candidate lo-
cations which are unused or create circles in the connection graph.
Therefore, a repair function is designed. Its purpose is to bring the
network back into a consistent state with only minimal changes.

Figure 4 shows an Area Crossover, where the marked area of in-
dividual I2 is copied intoI1. The black squares are the gateways,
the gray ones the enabled routers, and the users are shown as a
circle. The lower left figure shows the resulting progeny after the
crossover. Useru12 is not connected to any router. In order to con-
nectu12 to a gateway, a repair function is applied which activates
the routerr5 and connects useru12 over the router to gatewayg3.

Cell and Subtree Crossover
The Cell Crossover selects a random gateway from individualI2
and copies its whole cell, i.e. all nodes connected to the gateway

Resulting progeny before repair Resulting progeny after repair

crossover

individual 1 individual 2

d1 d2

r4

g7 r8 r6

d5

g3u10 u11

u12u13

u14

u16 u15

u9 g1 r2

r4

r7 d8 g6

r5

d3u11

u12u13

u14

u16 u15

u9

u10

g1 r2

r4

g7 r8 r6

d5

g3u11

u12

u14

u16 u15

u9

u10

u13

g1 r2

r4

g7 r8 r6

r5

u11

u12

u14

u16 u15

u9

u10

u13

g3

Figure 4: Area Crossover fromI2 into I1.

into individual I1. The Subtree Crossover instead only copies a
subtree and not the complete cell into another individual, i.e. copies
the type (router) of the node as well as the types of its children
(router, user). Thus, a Subtree Crossover with a selected gateway
is the same as the Cell Crossover.

An example of the Subtree Crossover is shown in Figure 5. Router
r2 is chosen for the crossover. All routers and users whose path to
the gateway crossr2 are copied to the resulting progeny. Useru6

which was connected to node 2 in individualI1 is still connected to
node 2 similar to useru11 who is connected to node 4. As routerr1
is not relaying any traffic in the resulting progeny, it is disabled. Fi-
nally, a randomly selected router, in our case routerr2, is converted
to a gateway.

Resulting progeny after repair

crossover

individual 1 individual 2

r4 g3

r1

r5

g2

u11

u12

u10

u7

u9

u8

u6

r4 g3

g1

r5

r2

u11

u12

u10

u7

u9

u8

u6

r4 g3

d1

r5

g2

u11

u12

u10

u7

u9

u8

u6

Resulting progeny before repair

r4 g3

r1

r5

r2

u11

u12

u10

u7

u9

u8

u6

Figure 5: Subtree Crossover fromI2 into I1 with r2 as root.

3.3.6 Mutation
In contrast to crossover operations, mutations only slightly mod-

ify the individuals and do not create completely new ones. The
following six mutations have been created.



Change Channel
The most simple mutation operation is Change Channel. As the
name implies, it changes the channel used by a randomly selected
link. The new channel is chosen randomly from a set of available
channels with the only restriction that the previously used channel
is not allowed.

Change Parent
This mutation operation changes the parent, i.e. the next hop of a
randomly chosen active non-gateway node. “Active” means that the
node can be either a user or a router, but not a disabled candidate
location. The new next hop is chosen randomly from the set of
potential neighbors of the node. To avoid circles, these nodes must
not part of the node’s subtree.

Router to Gateway
This mutation randomly chooses a router and changes its type to
gateway. Its complete subtree remains unchanged and only the
links between the new gateway and its parent are deleted. A re-
pair function is applied in order to achieve a good balance in terms
of number of nodes between old and new gateway.

Gateway to Router
This operation is the counterpart to the previous operation. A ran-
domly selected gateway is mutated to a router. A parent is chosen
to attach the complete subtree to another gateway with performing
as few changes as possible.

Move Gateway
This operation randomly chooses a gateway from all gateways of
the individual and generates a list of possible new locations. Possi-
ble new locations are all direct neighbors which are routers of the
gateway’s subtree. One of them is randomly chosen and its type
changed to gateway. The old gateway’s type is changed to router.

Disable Router
One method to improve the performance of the network is to dis-
able unnecessary routers. This operation disables one randomly
chosen router and deletes the link from the node to its parent. Af-
terwards, its whole subtree is disabled. Finally, the repair operation
tries to find a new routing for those nodes.

The description of the mutation operators closes the circle of the
genetic optimization. In order to compare the results gathered by
the genetic algorithm, we developed a greedy algorithm which is
explained in detail in the next subsection.

3.4 Greedy WMN Planning
Our greedy algorithm works in four steps. In step one the gate-

ways are placed, in step two all routers are connected to the gate-
ways so that every router has the shortest possible path to one gate-
way. In the next step, the users are connected to the network and
finally, all unused routers are disabled.

3.4.1 Gateway Placement
The gateways are placed according to a user-density function.

For each candidate locationci, a valueg (ci) is calculated indicat-
ing its qualification to become a gateway. The value represents how
many user locationsuj are close to the candidate location. There-
fore, a maximum distancelimit is defined. All users within this
distance are used to calculateg (ci), all other users are not taken
into account.Limit depends on the lengthlcity and widthwcity

of the underlying city and number of gateways to be placedng. It

is calculated as

limit =

√
(lcity/ng + 1)2 + (wcity/ng + 1)2. (9)

Let us now denote the relevant set of user locations with a dis-
tance to candidate locationci smaller thanlimit as Relci and
the euclidean distance between any two locationsl1 and l2, as
dist (l1, l2). g (ci) for a candidate locationci is then

(ci) =
∑

uj∈Relci

limit− dist (ci, uj)

limit
. (10)

This works well for just one gateway, but if more gateways have
to be placed, this function would always select the same candi-
date location. Even if that location would be removed from the set
of possible candidate locations after placing a gateway, the second
gateway would probably be placed very close to the first one. To
prevent this, the set of relevant users of already existing gateways
must be removed from the set of relevant users when searching for
the next gateway candidate location. This leads to an equal distribu-
tion of gateways within the topology if the users are uniformly dis-
tributed. Otherwise, the gateways are located in areas with higher
user density.

3.4.2 Connecting the Routers
Once the gateways are placed in the city, the routers have to be

connected to them. This is done in a shortest-path manner, i.e. each
router is connected to exactly one gateway in a way that the number
of hops from router to gateway is minimal.

In the first step, all routers directly connectible to a gateway are
connected to the closest gateway. Afterwards, the routers which
can be connected on a two-hop path to the gateway are attached to
the tree. This is repeated until all routers which can be connected
to a gateway are added. The resulting backbone network is only
temporary, as some routers may be disabled later if no user is con-
nected to them after the next step.

3.4.3 Connecting the Users
For connecting the users, all possibilities are tested and evalu-

ated and the best one is chosen. All possibilities means all possi-
ble channel configurations for all possible next hops of the users.
The possible next hops are those candidate locations in the user’s
neighborhood, which are gateways or routers connected to gate-
ways. This search is repeated until all connectible user are attached.

3.4.4 Channel Allocation
Whenever a link from a router or user is created, the greedy algo-

rithm has to choose a channel for this link. We designed two ways
of determining the channel. The first one always chooses the least
used channel. The second way includes the search for a channel in
the evaluation. This is only possible when creating links between
users and routers. Using this method means, not only all users and
all possibilities of next hops for each user are tested and evaluated,
but also all possible channels for the links. This, of course multi-
plies the number of solutions which have to be tested and thus, the
runtime of the algorithm.

3.5 Greedy Creation of Initial Population
Besides the comparison of the genetic algorithm with a greedy

algorithm, we implemented a greedy algorithm for the creation of
the initial population. Using the randomly creation of the popula-
tion, very different individuals are created and the population con-
tains several individuals with low fitness. To start with an initial
population with higher fitness compared to the randomly created



population, we use a randomized greedy algorithm. The creation
works as follows.

3.5.1 Gateway Placement
The gateway placement works similar to the greedy WMN plan-

ning. However, for every gateway to place, the randomized algo-
rithm does not only seek the best candidate location. Instead, it
finds the five best locations and one of them is selected randomly
to place a gateway. Fewer than five locations would result in too
similar solutions, more than five would result in a higher probabil-
ity of too bad solutions which would be contradictory to the idea
of creating individuals with the rather time-consuming greedy al-
gorithm.

3.5.2 Connecting the Routers
This step works exactly like the greedy WMN planning.

3.5.3 Connecting the users
In contrast to the greedy WMN planning, the randomized algo-

rithm does not evaluate every unfixed user location for its next hop,
but it chooses a user node randomly and evaluates all possible ways
of linking it with the network. The least used channel at that mo-
ment is chosen for that link. This leads of course to worse individ-
uals but it is a lot faster than searching for the best user in every
step. A comparison of a randomly created initial population with
an initial population created with the randomized greedy algorithm
can be found in the next section.

4. PERFORMANCE EVALUATION
The performance of a genetic algorithm is an umbrella term for

the efficiency of the genetic operators and the influence of the fit-
ness function on the resulting solution. In this section, we evaluate
the influence of all genetic operators and compare our optimized
GA with the greedy algorithm.

4.1 Simulation Settings
Before showing the influence of the GA parameters on the fitness

value, we list the parameters of the underlying physical characteris-
tics. These parameters only affect the characteristics of the network
connections and not the performance of the GA. Therefore, we do
not consider their impact on the resulting solutions. The parame-
ters are listed in Table 2 and denote the used carrier frequency, the
channel bandwidth, the available channels, and the antenna power.

The functionality of the genetic algorithm is evaluated for dif-
ferent topologies. The user and candidate locations are created ran-
domly on a grid, meaning that the locations are distributed along the
area of the topology according to a uniform distribution. The five
different topologies used for the evaluation are shown in Table 3.
We limit the maximum number of allowed gateways in dependence
of the topology to reduce the costs for the provider.

Table 2: Fixed parameters for all simulations of the GA.

Parameter Value

carrier frequency 3500 MHz
channel bandwidth 7 MHz

3500 MHz; 3510 MHz;available channels
3520 MHz; 3530 MHz

antenna power 25 dBm

Table 3: Testing topologies.

User Candidate Max.Name Dimension
locations locations gateways

city_25_25 250 m x 250 m 25 25 2
city_25_40 400 m x 400 m 25 40 2
city_42_37 425 m x 250 m 42 37 2
city_60_80 1000 m x 480 m 60 80 3

city_100_100 1200 m x 800 m 100 100 5

4.2 Influence of Crossover and Mutation Rates
Firstly, we want to find out the main effects of the crossover and

mutation operation using fitness functionf1 and thecity_42_37
topology. The main effects are shown in Figure 6. For the crossover
operations a 0 means that this specific crossover is not used and 1
means that it is performed. From the figure we can see that a higher
rate of Area Crossover has a negative influence on the genetic al-
gorithm performance. In contrast, the Subtree Crossover and the
Cell Crossover have a positive effect. The Change Parent Mutation
and the Router Off Mutation have a significantly negative effect on
the genetic algorithm if the higher rates are chosen. The Router
Off Mutation of course influences the fitness of the mutated indi-
vidual negatively for the applied fitness function, because fewer
routers mean more disconnected users and fewer routing paths and
the hardware costs are not included in the fitness function. The
negative influence of the Change Parent Mutation can be explained
with the fact that this mutation significantly changes the structure
of the network which should be avoided for later generations.
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Figure 6: Influence of crossover and mutation operations on
the fitness value.

4.3 Fitness Function Analysis
Now, we want to take a closer look at parameterization of fitness

functionf2 which tries to maximize the minimal throughput. The
goal of the following simulations is to evaluate how the GA reacts
on different input parameters, i.e. how it optimizes the searched
network for different requirements.

The main parameter of fitness functionf2 is α which indicates
how strong smaller throughputs are weighted over higher through-
puts. Therefore, it seems reasonable to varyα and to observe the
minimal throughput a user receives as well as the mean through-
put and the total throughput in the network. We are also interested
in knowing how many users could not be connected. Each sim-
ulation was performed for two different topologies,city_25_40
andcity_60_80 and repeated 10 times. In Figure 7 the results are
shown for values ofα between 0 and 3 in steps of 0.5.

As we can see from the figures, with an increasingα, the min-
imal throughput in the network increases at the cost of a decrease
of both the mean and the total throughput. Furthermore, the num-
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Figure 7: Influence ofα on various network parameters.

ber of disconnected user nodes is 0 forα > 1 for both topologies.
This means that the genetic algorithm tries to connect every user
because a disconnected user would have the worst impact on the
fitness function as it would be counted as a throughput of 0 Mbps
received at the node. Looking at the minimal throughput, the best
results are achieved with a value ofα between 2 and 3. From the
small confidence intervals forα = 3 we might conclude that the
resulting networks do not vary much which means that only a few
optimization runs have to be performed. To underline this, we take
a closer look at the variance of the best network solutions in the
next subsection.

4.4 Variance
When the fitness of the best individuals strongly varies, it is nec-

essary to have a number of runs to find the best result with the ap-
plied parameters, otherwise one run would be enough. For this rea-
son, we performed test runs with fitness functionsf2 for topology
city_25_40 andcity_60_80, settingα to 3. The run was repeated
10 times. In Figure 8 the best results from each of the 10 runs are
compared for both of the aforementioned topologies. Additionally,
the mean of all 10 samples as well as the standard deviation are
plotted.
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Figure 8: Fitness variance of the best solution found for fitness
function f2.

We can see that the variance of the fitness of the best individual
is not depending on the topology. In both figures, the best result is
about 20 % better than the worst one. Thus, as the results found by
the different runs differ up to 20 %, the statement from the previous
subsection that a few runs are sufficient is disproved. It is required
to perform several runs of the GA for one problem to retrieve a
good network solution.

4.5 Individual Creation
The variance of the resulting network solutions also strongly de-

pends on the initial population. As described in the previous sec-
tion, the easiest way is to create the initial population in a com-
pletely random manner. This means that the number of gateways
is chosen randomly between one and a predefined maximum num-
ber. The positions of the gateways are chosen randomly, too. Then,
the routers are added to a random next hop, already connected to a
gateway. Finally, the users are added in a random manner. Those
individuals are very different from each other and such a population
contains several solutions with low fitness. To start with an initial
population with higher fitness compared to the completely random
created population, we use a randomized greedy algorithm. By this,
a better initial population is created whose members are still suffi-
ciently different from each other. Alone by calculating the five best
gateway positions per step and choosing one of them randomly, the
emerged individuals have completely different gateway positions
and subsequently a complete different routing. This is sufficient to
satisfy the demand for a diverse initial population.

In Figure 9, the Cumulative Distribution Function (CDF) of the
fitness of the randomly created individuals and the individuals cre-
ated with the greedy algorithm, is shown. For evaluation, fitness
functionf2 was used. The GA is applied for two different topolo-
gies, one with 42 possible router/gateway positions and 37 users
and the other topology with 25 router/gateway positions and 25
users.
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Figure 9: Comparison of the CDF of the fitness values of a
randomly created starting population to the fitness values of
a greedily created starting population.

The results show that the initial fitness is much higher for both
scenarios. In thecity_25_25 scenario, the fitness of the randomly
created individuals varies between 0.15 and 0.5, whereas the indi-
viduals created with the greedy algorithm varies between 0.8 and
1.8. In addition to the higher fitness, the large variation of the fit-
ness values indicate that the created individuals satisfy the demand
for a diverse initial population.

4.6 Performance Comparison with Greedy Al-
gorithm

In the previous subsection, we have seen that an initial popula-
tion created using a greedy algorithm has a higher average fitness.



In this subsection, we want to see if the resulting network solutions
whose initial population is created with the greedy algorithm, also
have a higher fitness. Therefore, we use two variants of the ge-
netic algorithm, the first variant of the GA (GA Simple) and a GA
where the initial population is created using a simplified form of
the greedy algorithm (GA Improved).

To have an indication for the overall performance of the genetic
algorithm, we compare both mechanisms with a greedy algorithm
introduced in Subsection 3.4. The optimal network solution cannot
be shown because of the large number of nodes and the mutual
influences of the different parameters.

The greedy algorithm was appliedmaxGW times, withmaxGW
as the maximum number of allowed gateways, cf. Table 3. For each
number of gateways between 1 andmaxGW , one run was per-
formed. The best result of all those runs was taken. In Figure 10(a)
the results found by the two GA variants and the greedy algorithm
are compared for the 5 different topologies. In Figure 10(b) the
runtimes for finding those solutions are shown.
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Figure 10: Comparison of greedy algorithm and GA.

Looking at the figure, we can see that GA Improved is better
than GA Simple. Depending on the topology, it outperforms GA
Simple by 10-20 %. For the topologies shown in Figure 10, the total
throughput of the network solutions is also about 10-20 % better,
depending on the topology.

Both variants are visibly better than the solution found by the
greedy algorithm. Depending on the topology, the difference lies
between 15 % and 200 %. However, the greedy algorithm is a lot
faster than the genetic algorithm. While the genetic algorithm ran
for several hours, depending on the topology, the greedy algorithm
ran only for a few seconds or minutes. Finally, we can state that
the GA is visibly better than the greedy algorithm, altough it needs
more computation time. However, as establishing a WMN requires
some planning and has no real-time requirements, a computation
time of about 30 hours for a large network, with 100 user nodes
and 100 candidate locations, is acceptable.

5. CONCLUSION
In this paper, we introduced a genetic algorithm for planning and

optimizing WMNs. The GA is used for the location planning of
WMN gateways and routers as well as for the optimization of the
routing and channel allocation. We introduced different crossover
and mutation variants and evaluated their influence on the resulting
network solution. In addition, we saw that the fitness values of the
best individual varies for each evaluation run and thus recommend
to perform several runs of the GA.

In order to compare the resulting network solutions, we intro-
duced a greedy algorithm. The results show that the GA outper-
forms the greedy algorithm by 10-20 % using the normal GA, and
about 15-200 % when using an improved GA, whose initial popu-
lation is created with a greedy algorithm.

In future work, we want to include the monetary costs for gate-
ways and routers in the fitness function and try to find a trade-off
between throughput maximization and cost reduction.
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