
FoG and Clouds: Optimizing QoE for YouTube
Tobias Hoßfeld

1,3
, Florian Liers

2
, Thomas Volkert

2
, Raimund Schatz

3

1University of Würzburg, Institute of Computer Science,Würzburg, Germany, hossfeld@informatik.uni-wuerzburg.de
2Technical University of Ilmenau, Ilmenau, Germany, [florian.liers;Thomas.volkert]@tu-ilmenau.de

3Telecommunications Research Center Vienna – FTW, Vienna, Austra, [hossfeld,schatz]@ftw.at

I. INTRODUCTION

Video streaming dominates global Internet traffic and is expected

to account for 57% of all consumers Internet traffic in 2014 [1]. It can

be distinguished between delivery of live video streaming with on-

the-fly encoding, like IPTV or Facetime, and delivery of pre-encoded

video, so called Video-on-Demand (VoD). The most prominent VoD

portal is the YouTube cloud which accounts for more than two billion

video streams daily. In order to attract users, the quality of experience

(QoE) of the video playback is a very important criterion for such

portals. YouTube QoE is different from traditional UDP-based video

streaming, since it transmit the videos with TCP. Therefore, only the

video playback itself is delayed while the transmitted audiovisual

content remains unaltered. If available network data rate is lower than

the video bit rate, video transmission becomes too slow, gradually

emptying the playback buffer until underruns occur. Then, the user

notices interrupted video playback, commonly referred to as stalling.

This work focuses on optimizing QoE for YouTube video

streaming. We consider a bottleneck scenario, in which the available

network data rate is limited to B. When downloading a video which is

encoded with a certain video bit rate V<B, stalling may occur.

However, stalling may also occur if the network data rate is sufficient

on average to download the video during the playout time because of

the variable video bit rate. To compensate such effects, a video player

typically implements a video buffer. Thus, if the video is buffered

long enough, no stalling will occur. From the end user’s point of

view, it is more convenient to experience no stalling at all during the

playout even at the cost of an increased initial delay, than having

small initial delays but also stalling [2]. The question arises how to

set up the initial delay such that stalling occurs with low probability.

In Section II, we model the impact of variable bit rate encoding on

stalling. Then, we derive an approximation for the initial delay, such

that stalling will likely not occur. Next, we discuss in Section III the

interaction between application and network stack. In particular, we

discuss how to exchange required information using the GAPI

interface and propose the FoG (“Forwarding on Gates”) stack as

possible implementation solution which is currently work in progress.

II. STALLING VS. INITIAL DELAYS CONSIDERING QOE

A. Influence of Video Bit Rates on Stalling

Figure 1 shows the CDF of the video bit rate of typical YouTube

videos. However, we distinguish here whether stalling occurs or not

during the video playout when streaming over a bottleneck. In the

experiment with B = 384 kbps, about 300 videos were completely

downloaded from the YouTube platform and analyzed. No stalling

occurs for 116 videos corresponding to 38.67%. In this case, the

video bit rate is mostly smaller than the bottleneck data rate, V<B.

However, there were two videos without stalling, although the video

bit rate was significantly larger than B. These videos were quite short

with a duration of 10.8s and 9.8s, respectively. In these cases, the

filled video buffer was able to compensate for insufficient network

data rates.

In addition, Figure 1 shows that for some videos with video bit rate

V<B stalling still occurs. In that case, stalling is caused by the

variability of the video bit rate, which is illustrated in the following.

The video files consist of two different types of frames, called “key

frames” and “interframes”. A key frame is spatially compressed and

the main reference frame for the following interframes. The

interframes are temporally compressed and significantly smaller than

the key frame. Let us approximate the size of the key frames and the

interframes by a normal distribution K~ NORM(μK,σK) and I ~

NORM(μ I,σ I) with corresponding mean and standard deviation,

respectively.

Figure 1. Stalling occurrence depending on video bit rate for

two different bottleneck capacities

We assume that the video data is constantly delivered with

bandwidth B = V and the video frames are played out with a constant

frame rate, which is typically F= 30 frames/s. We further assume that

all key frames are followed by Ni interframes. A key frame and its

interframes form a so-called group of pictures (GOP). The entire

video consists of NG GOPs. Thus, the average video bit rate V follows

as V = 1/(NI+1)(µK + NI µI) F under the assumption that the random

variables of the key frame and interframe sizes are independent. The

video buffer status S indicates the amount of video data in the video

buffer yet not played out. During the playout time of a frame 1/F, V/F

bytes of video data are downloaded at constant speed. Since the linear

combination of independent normal random variables follows again a

normal distribution, the video buffer status follows as S ~ NORM(0,

NG(σK
2 + NI σI

2)). Although the network capacity is sufficient on

average, i.e. B=V, stalling occurs with probability P(S < 0) due to the

variable bit rate of the video.

B. Approximation of Initial Delay

Another influence factor on stalling is the implementation of the

buffer of the video player. The video player buffers W seconds of the

video before playing out the video, i.e., video data of size VW is

buffered with video bit rate V. The corresponding initial delay T0 for

buffering the video data follows as T0 = VW / B. Consequently,

stalling occurs, if the remaining video data, i.e. DV −WV, cannot be

downloaded faster than the video lasts itself, (DV-WV)/B>D.

However, due to the variable bit rate encoding, we further have to

c ©
2
0
1
1

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

K
u

V
S

5
th

G
I/

IT
G

K
u

V
S

F
a
ch

g
es

p
rc

h
N

G
S

er
v
ic

e
D

el
iv

er
y

P
la

tf
o
rm

s,
2
0
1
1
.

increase the initial delay to avoid stalling. We approximate the buffer

size C with the normal distribution as described above and set the

initial delay T0 to be set to S/C for a network data rate B.

Figure 2. Scatter plot of the optimal initial delay T0

*and the

approximated initial delay T0

Figure 2 shows the numerical results for the approximated initial

delay T0 compared with the optimal value T0
* derived by analyzing

the video file frame-by-frame. Although in most cases the

approximation is close to the optimum, there are several cases (about

25%) which still lead to stalling. The reason behind this phenomenon

lies in scene changes with the video clips. Thus, the required

parameters for the approximation, i.e. mean and variance of key

frame and interframe sizes, have to be specified for each scene to

improve the approximation. This is only necessary for a fraction of

the YouTube videos, which often consist only of a single scene (in

terms of video encoding). Another option is to send the size for each

frame or aggregated for N consecutive frames before the video is

transmitted. This information enables the computation of the optimal

initial delay. Since there is an upper limit on the duration of YouTube

videos to be uploaded [3], which is now 15 minutes, the number of

maximum frames per video is below 27,000 at a frame rate F = 30

frames/s. In addition, the parameter N adjusts the trade-off between

signaling overhead and accuracy of the approximation.

III. INTERACTION BETWEEN NETWORK AND APPLICATION

A. Requirements for the transmission

Based on the QoE consideration, the video player is able to derive

its requirements for the video transmission. Foremost, it requires an

average network data rate with a limited variance. Since the frames

have to be shown in order and the player does not want to sort them

by itself, they must be delivered by the network stack in order, too. If

the transmission is done in order, is transparent for the application

and can be decided by the network. Despite today’s usage of error

and loss free transmission via TCP, the video codec might be able to

deal with some loss or bit errors. The maximum amount of bit errors

or lost packets depends on the video codec and on the required QoE

level.

Such detailed requirements cannot be passed to the network stack

with today’s APIs. Therefore, new APIs like the GAPI [4] lend itself.

The GAPI was developed in the SIG Functional Composition of the

German Lab Project [5] especially to provide applications a way to

specify their requirements for communication associations. With the

help of the GAPI function Subscribe, the player is able to specify the

name of the server and its list of requirements.

Finally, the network stack must be able to react to these

requirements dynamically. On the one hand, the stack must be able to

buffer data locally, in order to sort them and to reduce the variance of

the data rate. One the other hand, the network must be able to reserve

data rates and to fast retransmit lost or corrupted packets. Both must

be done in a scalable way in order to support the large amount of

YouTube users.

B. Forwarding on Gates

One possible dynamic stack is provided by the “Forwarding on

Gates” (FoG) framework [6]. It is a scaling inter-network system,

based on dynamic composition of functional blocks. An application is

enabled to define special requirements for a data transmission as

described before. The network stack of FoG uses this information to

select appropriate existing functions for the upcoming transmission.

If needed functionality isn’t available yet, FoG’s routing directs each

packet to the next intermediate node where new function instances

can be placed in order to fulfill at least one of the desired

transmission requirements. Packets are used as data input for the

placed functions. In general, this system for placing functional blocks

in the network can be used to direct packets through a chain of

function instances, needed for video transcoding or buffering.

In addition to the creation of new instances, the system is also able

to re-use existing function instances and their states for multiple

connections in order to improve scalability. Finding existing and

creating new function instances is done during the signaling process

for setting up a communication association. The requirements are

described in the header of the first signaling packet. A demo has

shown that the re-use is possible without per-connection state

information on the hosts which provide the desired functions [7].

This proof-of-concept for automatic function placement places

functions on the first node along the communication route, whose

policy allows this. A more sophisticated placement algorithm that

places functionality with focus on potential reuse is developed in

current work.

IV. FUTURE STEPS

Currently, we are able to derive the parameters for the video player

and the network communication association theoretically. As

concerns future work, we plan to setup a demo showing QoE-enabled

video playback based on the GAPI and FoG. The different QoE

levels of a YouTube video are in the main focus of this demo and will

be compared in a live demonstration.

V. REFERENCES

[1] Cisco Systems Inc.,:Cisco Visual Networking Index: Forecast and
Methodology, 2010-2015, June 2011.

[2] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia:
Quantification of YouTube QoE via Crowdsourcing. IEEE International
Workshop on Multimedia Quality of Experience - Modeling, Evaluation,
and Directions (MQoE 2011), Dana Point, CA, USA, December 2011.

[3] T. Hoßfeld and K. Leibnitz: A Qualitative Measurement Survey of
Popular Internet-based IPTV Systems. Second International Conference
on Communications and Electronics (HUT-ICCE 2008), Hoi An,
Vietnam, June 2008.

[4] F. Liers, T. Volkert, D. Martin, H. Backhaus, H. Wippel, E. Veith, A. A.
Siddiqui, R. Khondoker: GAPI: A G-Lab Application-to-Network
Interface, 11th Würzburg Workshop on IP (EuroView), Germany,
Würzburg, August 2011.

[5] G-Lab Project, http://www.german-lab.de.

[6] F. Liers, T. Volkert, A. Mitschele-Thiel: A Flexible Abstraction for the
Future Internet, 8th Würzburg Workshop on IP (EuroView), Würzburg,
Germany, August 2008.

[7] F. Liers, T. Volkert, A. Mitschele-Thiel: Scalable Network Support for
Application Requirements with Forwarding on Gates, EuroView2011,
Würzburg, Germany, August 2011.

