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I. INTRODUCTION  

Video streaming dominates global Internet traffic and is expected 

to account for 57% of all consumers Internet traffic in 2014 [1]. It can 

be distinguished between delivery of live video streaming with on-

the-fly encoding, like IPTV or Facetime, and delivery of pre-encoded 

video, so called Video-on-Demand (VoD). The most prominent VoD 

portal is the YouTube cloud which accounts for more than two billion 

video streams daily. In order to attract users, the quality of experience 

(QoE) of the video playback is a very important criterion for such 

portals. YouTube QoE is different from traditional UDP-based video 

streaming, since it transmit the videos with TCP. Therefore, only the 

video playback itself is delayed while the transmitted audiovisual 

content remains unaltered. If available network data rate is lower than 

the video bit rate, video transmission becomes too slow, gradually 

emptying the playback buffer until underruns occur. Then, the user 

notices interrupted video playback, commonly referred to as stalling.  

This work focuses on optimizing QoE for YouTube video 

streaming. We consider a bottleneck scenario, in which the available 

network data rate is limited to B. When downloading a video which is 

encoded with a certain video bit rate V<B, stalling may occur. 

However, stalling may also occur if the network data rate is sufficient 

on average to download the video during the playout time because of 

the variable video bit rate. To compensate such effects, a video player 

typically implements a video buffer. Thus, if the video is buffered 

long enough, no stalling will occur. From the end user’s point of 

view, it is more convenient to experience no stalling at all during the 

playout even at the cost of an increased initial delay, than having 

small initial delays but also stalling [2]. The question arises how to 

set up the initial delay such that stalling occurs with low probability. 

In Section II, we model the impact of variable bit rate encoding on 

stalling. Then, we derive an approximation for the initial delay, such 

that stalling will likely not occur. Next, we discuss in Section III the 

interaction between application and network stack. In particular, we 

discuss how to exchange required information using the GAPI 

interface and propose the FoG (“Forwarding on Gates”) stack as 

possible implementation solution which is currently work in progress. 

II. STALLING VS. INITIAL DELAYS CONSIDERING QOE 

A. Influence of Video Bit Rates on Stalling 

Figure 1 shows the CDF of the video bit rate of typical YouTube 

videos. However, we distinguish here whether stalling occurs or not 

during the video playout when streaming over a bottleneck. In the 

experiment with B = 384 kbps, about 300 videos were completely 

downloaded from the YouTube platform and analyzed. No stalling 

occurs for 116 videos corresponding to 38.67%. In this case, the 

video bit rate is mostly smaller than the bottleneck data rate, V<B. 

However, there were two videos without stalling, although the video 

bit rate was significantly larger than B. These videos were quite short 

with a duration of 10.8s and 9.8s, respectively. In these cases, the 

filled video buffer was able to compensate for insufficient network 

data rates.  

In addition, Figure 1 shows that for some videos with video bit rate 

V<B stalling still occurs. In that case, stalling is caused by the 

variability of the video bit rate, which is illustrated in the following. 

The video files consist of two different types of frames, called “key 

frames” and “interframes”. A key frame is spatially compressed and 

the main reference frame for the following interframes. The 

interframes are temporally compressed and significantly smaller than 

the key frame. Let us approximate the size of the key frames and the 

interframes by a normal distribution K~ NORM(μK,σK) and I ~ 

NORM(μ I,σ I) with corresponding mean and standard deviation, 

respectively. 

  
Figure 1.  Stalling occurrence depending on video bit rate for 

two different bottleneck capacities 

We assume that the video data is constantly delivered with 

bandwidth B = V and the video frames are played out with a constant 

frame rate, which is typically F= 30 frames/s. We further assume that 

all key frames are followed by Ni interframes. A key frame and its 

interframes form a so-called group of pictures (GOP). The entire 

video consists of NG GOPs. Thus, the average video bit rate V follows 

as V = 1/(NI+1)( µK + NI µI) F under the assumption that the random 

variables of the key frame and interframe sizes are independent. The 

video buffer status S indicates the amount of video data in the video 

buffer yet not played out. During the playout time of a frame 1/F, V/F 

bytes of video data are downloaded at constant speed. Since the linear 

combination of independent normal random variables follows again a 

normal distribution, the video buffer status follows as S ~ NORM(0, 

NG(σK
2 + NI σI

2)). Although the network capacity is sufficient on 

average, i.e. B=V, stalling occurs with probability P(S < 0) due to the 

variable bit rate of the video. 

B. Approximation of Initial Delay 

Another influence factor on stalling is the implementation of the 

buffer of the video player. The video player buffers W seconds of the 

video before playing out the video, i.e., video data of size VW is 

buffered with video bit rate V. The corresponding initial delay T0 for 

buffering the video data follows as T0 = VW / B. Consequently, 

stalling occurs, if the remaining video data, i.e. DV −WV, cannot be 

downloaded faster than the video lasts itself, (DV-WV)/B>D. 

However, due to the variable bit rate encoding, we further have to 
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increase the initial delay to avoid stalling. We approximate the buffer 

size C with the normal distribution as described above and set the 

initial delay T0 to be set to S/C for a network data rate B.  

 
Figure 2.  Scatter plot of the optimal initial delay T0

*and the 

approximated initial delay T0 

Figure 2 shows the numerical results for the approximated initial 

delay T0 compared with the optimal value T0
* derived by analyzing 

the video file frame-by-frame. Although in most cases the 

approximation is close to the optimum, there are several cases (about 

25%) which still lead to stalling. The reason behind this phenomenon 

lies in scene changes with the video clips. Thus, the required 

parameters for the approximation, i.e. mean and variance of key 

frame and interframe sizes, have to be specified for each scene to 

improve the approximation. This is only necessary for a fraction of 

the YouTube videos, which often consist only of a single scene (in 

terms of video encoding). Another option is to send the size for each 

frame or aggregated for N consecutive frames before the video is 

transmitted. This information enables the computation of the optimal 

initial delay. Since there is an upper limit on the duration of YouTube 

videos to be uploaded [3], which is now 15 minutes, the number of 

maximum frames per video is below 27,000 at a frame rate F = 30 

frames/s. In addition, the parameter N adjusts the trade-off between 

signaling overhead and accuracy of the approximation. 

III. INTERACTION BETWEEN NETWORK AND APPLICATION 

A. Requirements for the transmission 

Based on the QoE consideration, the video player is able to derive 

its requirements for the video transmission. Foremost, it requires an 

average network data rate with a limited variance. Since the frames 

have to be shown in order and the player does not want to sort them 

by itself, they must be delivered by the network stack in order, too. If 

the transmission is done in order, is transparent for the application 

and can be decided by the network. Despite today’s usage of error 

and loss free transmission via TCP, the video codec might be able to 

deal with some loss or bit errors. The maximum amount of bit errors 

or lost packets depends on the video codec and on the required QoE 

level. 

Such detailed requirements cannot be passed to the network stack 

with today’s APIs. Therefore, new APIs like the GAPI [4] lend itself. 

The GAPI was developed in the SIG Functional Composition of the 

German Lab Project [5] especially to provide applications a way to 

specify their requirements for communication associations. With the 

help of the GAPI function Subscribe, the player is able to specify the 

name of the server and its list of requirements. 

Finally, the network stack must be able to react to these 

requirements dynamically. On the one hand, the stack must be able to 

buffer data locally, in order to sort them and to reduce the variance of 

the data rate. One the other hand, the network must be able to reserve 

data rates and to fast retransmit lost or corrupted packets. Both must 

be done in a scalable way in order to support the large amount of 

YouTube users. 

B. Forwarding on Gates 

One possible dynamic stack is provided by the “Forwarding on 

Gates” (FoG) framework [6]. It is a scaling inter-network system, 

based on dynamic composition of functional blocks. An application is 

enabled to define special requirements for a data transmission as 

described before. The network stack of FoG uses this information to 

select appropriate existing functions for the upcoming transmission. 

If needed functionality isn’t available yet, FoG’s routing directs each 

packet to the next intermediate node where new function instances 

can be placed in order to fulfill at least one of the desired 

transmission requirements. Packets are used as data input for the 

placed functions. In general, this system for placing functional blocks 

in the network can be used to direct packets through a chain of 

function instances, needed for video transcoding or buffering. 

In addition to the creation of new instances, the system is also able 

to re-use existing function instances and their states for multiple 

connections in order to improve scalability. Finding existing and 

creating new function instances is done during the signaling process 

for setting up a communication association. The requirements are 

described in the header of the first signaling packet. A demo has 

shown that the re-use is possible without per-connection state 

information on the hosts which provide the desired functions [7]. 

This proof-of-concept for automatic function placement places 

functions on the first node along the communication route, whose 

policy allows this. A more sophisticated placement algorithm that 

places functionality with focus on potential reuse is developed in 

current work.  

IV. FUTURE STEPS 

Currently, we are able to derive the parameters for the video player 

and the network communication association theoretically. As 

concerns future work, we plan to setup a demo showing QoE-enabled 

video playback based on the GAPI and FoG. The different QoE 

levels of a YouTube video are in the main focus of this demo and will 

be compared in a live demonstration. 
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