
Integration of LISP and LISP-MN into INET∗

Dominik Klein
University of Wuerzburg, Germany

dklein@informatik.uni-wuerzburg.de

Michael Hoefling
University of Tuebingen, Germany

hoefling@informatik.uni-tuebingen.de
Matthias Hartmann

University of Wuerzburg, Germany
hartmann@informatik.uni-wuerzburg.de

Michael Menth
University of Tuebingen, Germany

menth@informatik.uni-tuebingen.de

ABSTRACT
The Locator/Identifier Separation Protocol (LISP) is a new naming
and addressing architecture which is currently standardized in the
IETF and which is deemed to improve the scalability and flexibility
of the current routing architecture. LISP mobile node (LISP-MN)
is an extension to the basic LISP architecture and enables mobile
nodes to roam into LISP and non-LISP domains. The basic LISP
architecture is currently deployed in a beta-network which can be
used to test the protocol behavior on a smaller scale. However, a
realistic simulation model for the LISP architecture and its various
extensions is still missing. Such a simulation model could be used
by researchers to quickly test new extensions on a larger scale for
different load and network scenarios.

In this paper, we describe the implementation of our model of
the LISP architecture and its various extensions in the INET frame-
work for OMNeT++. We present performance results to show the
correctness of our model. As a first application, we used the simu-
lation model to assess proposed improvements to LISP-MN and to
verify our proposed NAT traversal mechanism for LISP-MN.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Protocol verification, Routing protocols; I.6.4 [Simulation
and Modeling]: Model Validation and Analysis

General Terms
Design, Experimentation, Standardization, Verification
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OMNeT++, INET, LISP architecture, LISP-MS, LISP-INT, LISP-
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1. INTRODUCTION
The current interdomain routing faces scalability and flexibil-

ity problems. More and more edge networks want to do multi-
homing, traffic engineering, and provider changes without renum-
bering their equipment. This requires provider-independent ad-
dresses which adds more entries to the rapidly growing BGP rout-
ing tables [11]. The maximum allowed IP prefix length is lim-
ited by ISPs so that companies with a relatively small provider-
aggregateable address space are still very restricted in using such
advanced techniques. These are drivers for a more scalable and
flexible Internet addressing and routing.

The currently favored solution is the separation of global and lo-
cal routing and addressing in edge networks [14]. Communication
sessions with other nodes are established using endpoint identifiers
(EIDs), which might also be used for local routing. EIDs are not
advertised in global BGP routing. Therefore, a globally routable lo-
cator (RLOC) is added to each packet before sending it to another
domain over the Internet. This architecture decouples the combined
identification and location functions of today’s IP addresses but re-
quires a mapping system to store and distribute the mapping from
endpoint identifier to globally routable locator.

The Internet Engineering Task Force (IETF) currently works on
LISP [3] as experimental standard. It implements routing separa-
tion and fits well into today’s Internet routing concept. Interwork-
ing between LISP domains and the legacy Internet is supported [9].
Furthermore, an architecture for the integration of mobile nodes
(MNs), LISP-MN, is also proposed [4]. It allows multi-homing for
mobile nodes and does not need home and foreign agents like in
Mobile IPv4 [15] so that triangle routing can be avoided to some
extent. To further avoid breaking existing transport connections af-
ter roaming events, mobile nodes may use different mechanisms to
tell their communication partners about their new location. In prin-
ciple, these update mechanisms ensure transport connection surviv-
ability regardless of the involved domains. However, the mobility
extension itself does not support that mobile nodes roam into non-
LISP domains behind a NAT box while maintaining their existing
connections. To solve this problem, we developed a NAT traversal
mechanism for LISP mobile nodes [7].

In this paper, we present the integration of LISP into the INET
framework for OMNeT++. We implemented LISP, the LISP-MN
architecture with its different update mechanisms, and our NAT
traversal mechanism. Our goal was to verify the interoperability
of the different LISP protocol mechanisms, and to test the trans-
port connection survivability in various communication scenarios
including non-LISP domains behind a NAT box.

The paper is organized as follows. In the next section, we briefly
describe the implemented LISP architecture parts, give an intro-
duction to LISP-MN, and explain our NAT traversal mechanism.
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Figure 1: Packet flow sequence with LISP.

Section 3 describes our simulation model in detail and shows the
necessary changes to the INET framework. In Section 4, we present
an evaluation of the handover performance of the LISP-MN archi-
tecture. Finally, Section 5 concludes this work.

2. LISP OVERVIEW
In this section, we give a short overview of the implemented

LISP architecture parts and its most important extensions. The fo-
cus of our implementation is the mobility architecture LISP-MN
and hence, we describe this extension in more detail.

2.1 Basic Architecture
LISP separates the current IP address range into two different

subsets. LISP domains are edge networks that are connected via
LISP gateways to the core of the Internet, where RLOCs are used to
forward packets. EIDs identify end-hosts on a global scale and are
used to forward packets locally inside LISP domains. Communi-
cations between LISP nodes in different domains require tunneling
between the different LISP gateways. The gateways either act as
ingress tunnel router (ITR) or as egress tunnel router (ETR). ITRs
tunnel packets to other LISP gateways which then act as ETRs.

Figure 1 shows a packet flow sequence for the communication
between two LISP clients located in different LISP domains. ITR A
receives packets addressed to EID 2 from an end-host in its own
LISP domain. It keeps the inner header (IH) untouched and adds
a UDP header addressed to the default LISP data port 4341 and
an outer LISP header (OH) with its RLOC (RLOC A) as source
and RLOC B as destination address so that the packets are globally
routable. This procedure requires a mapping lookup to learn the
appropriate RLOC (RLOC B) for the destination EID (EID 2).

2.2 Mapping Service
The mapping service is the central component of the LISP ar-

chitecture as it provides the required mapping from EID to RLOC.
LISP does not mandate a specific mapping service but instead intro-
duces map servers (MSs) and map resolvers (MRs) [5]. These two
entities form an interface which facilitates the operation of LISP
with different mapping systems. ETRs register the EID-to-RLOC
mapping for all attached LISP nodes at their associated map server
on the default LISP signaling port 4342. If requested by the ETR
in the map-register message, the map server acknowledges the re-
gistration with a map-notify message.

ITRs query map resolvers for the RLOC of a specific EID. The
map resolver sends a map-request message which is forwarded via
the mapping service to the authoritative map server. The map server
responds with a map-reply message which contains the valid loca-
tor set for the queried EID. Map resolvers and map servers can
either be deployed in separate nodes or inside ITRs and ETRs.

In our model, each ITR has an integrated map resolver and a

Figure 2: Packet flow sequence with LISP-MN.

mapping cache to store frequently used mappings. This reduces
the load on the mapping system and significantly speeds up com-
munication between LISP domains. Every time a mapping is used,
its cache timer is reset. Thus, less frequently used cache entries are
automatically purged from the cache.

2.3 LISP Interworking
Normal IP nodes usually resolve the DNS name of a LISP node

into an EID and use it as destination address. However, EIDs are
not globally routable and thus border routers of non-LISP domains
discard the packets because of missing forwarding entries for EIDs.
To solve this problem, LISP-IW [9] proposes additional middle
boxes called proxy-ITRs (PITRs) and proxy-ETRs (PETR). Proxy-
ITRs are located outside edge domains and advertise highly aggre-
gated EID prefixes into BGP. This way, packets addressed to EIDs
become globally routable and are forwarded to one of the proxy-
ITRs. Proxy-ITRs perform the same traffic processing as ordinary
ITRs, i.e., they query the mapping system for an RLOC of the des-
tination EID and encapsulate packets towards the returned RLOC.

In the reverse direction, LISP packets destined to non-LISP nodes
are not encapsulated by ITRs and the EID remains in the source
address field of outgoing packets. Since the EID is not part of the
upstream provider’s address range, such packets might be dropped
when the provider performs source address filtering to ensure that
outgoing packets carry only addresses from its own address range.
In this case, packets destined to non-LISP nodes are encapsulated
by the ITR and tunneled to a proxy-ETR. The proxy-ETR decapsu-
lates the packet and sends it to the destination node in the non-LISP
Internet. This way, LISP bypasses the source address filtering of
upstream providers.

2.4 LISP Mobile Node
Mobile nodes possess an upgraded stack and act as light-weight

LISP domains. They implement ITR/ETR functionality and are
configured with the address of a map server that controls the EID-
to-RLOC mappings for the mobile node. Mobile nodes register
their currently valid locator at their configured map server and re-
fresh this information by sending periodic map register messages.
Like ETRs, they may request the map server to acknowledge the
map-register message by sending a map-notify message. Mobile
nodes also implement map resolver functionality and send signal-
ing traffic to their configured map server without encapsulation. In
contrast, data traffic is always encapsulated. Thus, the mobile node
requires a proxy-ETR for communication with non-LISP nodes.
The map server in this case also serves as proxy-ETR.

Figure 2 shows an example where a mobile node roams into
a non-LISP domain and initiates a communication with a remote
LISP stationary node (SN) in a LISP domain. The mobile node re-
ceives the globally routable non-LISP care-of-address 203.0.113.2



upon roaming into the new domain. It registers this address as
RLOC along with its own EID 1 at its associated map server. This
address can be obtained from the map server by ITR B as destina-
tion locator upon sending a packet to the mobile node. In [13] we
analyzed the encapsulation and forwarding structure of LISP-MN
and suggested some improvements.

2.5 Mapping Cache Update Mechanisms
If the mapping of a LISP stationary or mobile node changes due

to a certain event, e.g., roaming into a different domain, the cached
mappings in ITRs or proxy-ITRs of communication partners need
to be updated. This is necessary so that ongoing connections can
survive the roaming event. In [3, 4], different mechanisms are pro-
posed. In our model, the following mechanisms are implemented.
We explain them by means of a mobile node which roams into an-
other domain.

2.5.1 Solicit Map Request
The solicit map request (SMR) mechanism uses a special map-

request message which is sent from the mobile node to ETRs of
the most recent communication partners. After a roaming event,
the mobile node sends map-request messages with the solicit bit
set to all locators in its mapping cache. In the mapping cache, the
mobile node stores the RLOCs of ETRs, to which the mobile node
has recently sent a packet to. The ITRs, which receive the solicit
map request message, first determine whether there is an entry for
the EID in their mapping cache. If there is a mapping, they update
it by querying the mapping service. This mechanism requires ad-
ditional signaling messages after the roaming event but the cached
mappings of communication partners are quickly updated. The ac-
tual timespan between a handover event and the completion of the
mapping updates in the cache depends on the connection from the
ITR to the map server of the mobile node. If the connection de-
lay to the map server is rather small, this mechanism allows near
real-time applications.

2.5.2 Piggybacking Mapping Data
The piggybacking mechanism uses the ability to add mapping

data to map-request messages. After a roaming event, the mobile
node invokes the solicit map request mechanism and adds its map-
ping data to the solicit map request message. Like in the former
mechanism, this message is then sent to all ETRs of communica-
tion partners. If the receiving ITRs have an entry for that map-
ping in their mapping cache, they update this mapping with the
piggybacked mapping data from the solicit map request message.
In addition, appropriate security mechanisms have to be taken into
account to avoid malicious insertion of false mapping data in the
caches of ITRs. This cache update mechanism requires additional
signaling messages and by piggybacking the mapping information,
it avoids the lookup for the piggybacked mapping at ITRs of com-
munication partners. Hence, the timespan between handover event
and updated mapping cache entries is reduced compared to the
plain solicit map request mechanism.

2.5.3 Temporary Proxy-ITR Caching
In case of asymmetric paths between the roaming mobile node

and its communication partner, the former two mechanisms are not
applicable. A scenario with asymmetric path is the communication
with non-LISP domains via proxy-ITRs and proxy-ETRs. To solve
this issue, each mobile node keeps track of proxy-ITRs which have
recently sent packets to the mobile node in a separate proxy-ITR
cache. The cache contains the locators of the proxy-ITRs. After a
roaming event, the mobile node sends the solicit map request mes-

sages also to these locators. This way, also the mappings in the
mapping caches of proxy-ITRs get updated.

2.6 NAT Traversal for Mobile Nodes
When a mobile node roams into a network behind a NAT box,

it receives a private care-of-address with only local significance so
that this address cannot serve as RLOC for the mobile node. The
map server is upgraded to a NAT traversal router (NTR) [8] to make
the mobile node behind a NAT reachable from the outside world.
The mobile node registers with its NTR when roaming into the pri-
vate network. Thereby, it punches a hole into the NAT that is main-
tained by the mobile node and the NTR. The NTR registers its own
globally reachable address as RLOC in the mapping system so that
traffic destined for the mobile node is sent to the NTR which then
forwards it through the established tunnel to the mobile node be-
hind the NAT. Due to the tunnel between the NTR and the mobile
node, the NAT traversal mechanism works with every type of NAT,
even with symmetric NATs. More details are given in [8].

3. SIMULATION MODEL
In this section, we describe our simulation model of the LISP

architecture and its integration in OMNeT++. OMNeT++ [18] is a
discrete event simulation environment with a modular, component-
based architecture. We built our model on top of the INET frame-
work [17] which extends OMNeT++ with Internet-related protocol
implementations and several application models. The nodes in our
model are derived from INET nodes and we used the existing IPv4
and UDP implementation as basis for our model. At some places,
necessary and non-intrusive modifications were made to the source
code of the INET framework.

Initially, our implementation was based on design ideas of Open-
LISP. OpenLISP [1] is an open-source implementation of the LISP
protocol running in the kernel of the FreeBSD Operating System.
However, the OpenLISP implementation does not cover all exten-
sions of the LISP architecture which are described in the LISP stan-
dard documents [3–5, 7, 9]. Therefore, we implemented our LISP
model mainly based on the standard documents. Starting with the
INET framework, we incrementally integrated the basic LISP ar-
chitecture, map server interface, interworking, mobility, and even-
tually NAT traversal.

3.1 Modifications to INET
In this subsection, we describe the necessary changes to the INET

framework and how we integrated our LISP model.

3.1.1 Integration of DHCP Service
To support a more convenient numbering of IP nodes in larger

scenarios and to enable a more realistic handover procedure for
mobile nodes, we integrated the DHCP implementation [10] from
the INETMANET framework [16]. The integration of the DHCP
client and server applications required several changes to the INET
framework. These changes were related to the proper handling
of the DHCP broadcast messages and the correct propagation of
these messages to the DHCP client and server applications inside
the host stack. In detail, the ARP module, the IPv4 module, the
RoutingTable module, the Ieee80211MgmtAP module, and the
Ieee80211MgmtSTA module need to be changed.

The DHCPClient module is integrated in all wired and wireless
client nodes and the DHCPServer module is integrated in a spe-
cial DHCPServer node for wired domains and inside a Wireless-
Router node for wireless domains. For wired nodes, the DHCP
discovery is started at a random time and for wireless nodes, the
DHCP discovery is started once the wireless node is associated with



an access point. The information about this event is exchanged be-
tween the Ieee80211MgmtSTA module and the DHCPClient mod-
ule via the NotificationBoard.

3.1.2 Modified Wireless Model
The original model for wireless communications in the INET

framework did not support multiple wireless interfaces per client
node. However, to test for instance the multi-homing capability of
the LISP mobile node architecture, we modified the existing wire-
less model to support multiple interfaces. In the original model,
the ChannelControl module kept a list of all wireless nodes in
the current scenario and checked for example, whether two wire-
less nodes are in range. Therefore, each wireless node registered at
the ChannelControl module. We modified this behavior so that
every wireless node registers at the ChannelControl module for
each wireless interface. The ChannelControl module then keeps
a list of all wireless entities per interface and not per node like in
the original model. This way, a wireless host can be registered with
multiple wireless interfaces at the ChannelControl module. In
detail, this modification required changes to the AbstractRadio

module, the ChannelControl module, the ChannelAccess mod-
ule, and the BasicMobility module.

A wireless client node with several wireless interfaces also has
several DHCPClient modules, one per interface. This way, each
DHCPClient module is responsible for only one interface. If a
DHCPClientmodule is notified via the NotificationBoard about
an association event of an interface with an access point, it checks
whether it is responsible for that interface. Only in that case, it
starts the DHCP discovery process over that interface.

3.1.3 Modified NetworkLayer Module
The basic LISP functionality is implemented in a new LISPRout-

ing module. This module is integrated in all LISP nodes and the
anchor point is the NetworkLayer module and in particular the
IPv4 module. The LISPRouting module offers several methods
which are called LISP-hooks in the remainder of this document.
lisp_output() and lisp_input() are the most important meth-
ods and are explained in the following.
lisp_output() handles encapsulation of packets destined to

other LISP domains, and schedules mapping requests for unknown
EID-to-RLOC mappings. In contrary, lisp_input() handles in-
coming LISP-packets for a LISP domain, i.e., it decapsulates pack-
ets, and hands over packets to the IPv4 module for normal IPv4
routing. The communication from the IPv4 module to the LISP-

Routing module is done through direct method calls while the
communication to the IPv4 module is done over gates. The IPv4

module is modified such that the existing INET framework compo-
nents and nodes still continue to work without any further modifica-
tions. That is, the LISP-hooks are only activated if the LISPRout-
ing module is also present in the same network node. The LISP-
hooks are integrated in the routePacket() method and the re-

assembleAndDeliver() method. This enables both the IPv4

module and the LISPRouting module to communicate with each
other directly.

3.1.4 Integration of NAT
We also added NAT boxes to test our proposed NAT traversal

mechanism for the LISP mobile node architecture. The motivation
was to test the interaction with other LISP mechanisms, and not
how our mechanism copes with different NAT types.

For our model, we decided to implement a port-restricted NAT as
this is the most commonly implemented form of NAT in residen-
tial gateways [2]. The NAT functionality has been implemented

Figure 3: Architecture of a LISP gateway.

in the PortRestrictedNAT module and is included in the NAT-

Router node. This module offers hooks which are called by the
IPv4 module similarly to the LISPRouting module’s LISP-hooks.
nat_input() processes packets from the outside interface, and
translates their destination address and port to the appropriate des-
tination address and port in the local network. In case no map-
ping can be found in the internal NAT table, the packet is dropped.
nat_output() processes packets destined to an address in the out-
side network. The source address of the packet is translated to the
outside interface address of the NAT. The source port is translated
to a free external port so that returning packets can be mapped cor-
rectly to the local source address. It then installs the mapping in
the internal NAT table. The hooks had to be placed logically before
the LISP-hooks in the IPv4 module. The IPv4 module has been
modified to be NAT-aware. This was done to preserve backward
compatibility with the existing INET framework code base.

3.2 LISP Nodes
In this subsection, we describe the different LISP nodes which

were added to the INET framework. All additional LISP nodes are
derived from existing INET nodes.

3.2.1 LISPRouter
The LISPRouter node is our model of a LISP gateway and the

central part of the LISP architecture. It is based on the INET
Router node. In principle, the LISPRouter node acts as ordi-
nary router but with extended functionality as it implements the
LISP forwarding behavior. To simplify the implementation, the
LISPRouter node may both act as ITR and ETR. This way, it is
more convenient to build either single-homed or multi-homed do-
mains with several LISP gateways. Depending on the desired sce-
nario, the LISPRouter nodes may then be configured as ITR, ETR,
or both.

Figure 3 shows a sketch of the architecture of a LISPRouter

node. Boxes with dashed border represent unchanged INET mod-
ules, boxes with bold border changed INET modules, and boxes
with regular border and gray-colored background new modules.
The important new modules of a LISPRouter node are the MapRe-
solvermodule, the LISPRoutingmodule, and the MappingCache
module. The communication between the LISPRouting module
and the MapResolver module is done through INET’s Notifi-

cationBoard. We have chosen the NotificationBoard for the
inter-module communication because it is also used by several other
modules like for example the wireless modules. Hence, using the
NotificationBoard seemed to be for us the most suitable ap-
proach which is in conformance with the INET design principle.

While the LISPRouting module is mainly responsible to en-



capsulate and decapsulate the LISP data traffic, the MapResolver

module is responsible to send and receive LISP control traffic, e.g.
performing the registration process or the mapping lookup. We
modeled the MapResolver module as a UDP application because
the LISP signaling traffic is sent over UDP.

The MappingCache module in between the MapResolver mod-
ule and the LISPRouting module is used to cache the returned
mappings after a mapping lookup. During a mapping lookup, the
MappingCache module may either store the pending packets or
drop them like in the current implementation of LISP in the beta-
network. After a mapping entry inside the MappingCache mod-
ule has been used, its timer may either be refreshed or not. The
last option may for instance be important for mobile nodes where
the mapping regularly changes. The different configuration options
can be changed via flags at the parent LISPRouter node. This
way, scenarios with different LISPRouter behavior can be quickly
simulated.

3.2.2 LISPMapServer
The LISPMapServer node acts as interface to the mapping sys-

tem and receives the map-register messages and map-request mes-
sages from MapResolver modules. These messages are sent over
UDP with port 4342. Hence, the LISPMapServer node contains
a MapServer module which is modeled as UDP application. The
module receives the LISP signaling messages and performs the re-
quired operations like adding the mapping to the mapping system
or returning a requested mapping.

In real-world implementations, the map server acts as an inter-
face to a distributed mapping storage and not as mapping storage it-
self. In the current state of our implemented model, the map server
acts as both interface and mapping storage. To further improve the
accuracy of our model, we think about integrating either the LISP
Alternative Topology (LISP+ALT) [6] mapping system or our own
mapping system FIRMS [12]. Currently, the second option seems
more likely as we already have a working implementation of our
mapping system in the INET framework.

3.2.3 LISP Proxy Gateways
LISP proxy gateways are necessary to connect LISP-domains

and non-LISP domains. In our model, non-LISP domains are built
with untouched INET nodes and LISP-domains have a LISPRouter
node as border router. To enable interworking, proxy gateways
need to be placed in between LISP and non-LISP domains.

In our model, each LISPRouter node can also be configured to
act as either proxy-ITR, proxy-ETR, or both. In case a LISPRouter
node acts as LISP proxy gateway, it has to be placed outside of edge
domains. All routers are then configured with a route to the proxy-
ITR which is used for packets destined to EIDs.

3.2.4 LISPMobileNode
To include the LISP mobile node architecture in our simulation

model, we extended the LISPRouting module. Extra conditional
code was needed in the IPv4 module to handle both packet send-
ing and delivery correctly. The MapResolver module has to be
made aware of care-of-address changes. These changes are sig-
naled through the NotificationBoard. The network node rep-
resenting a mobile node is based on INET’s WirelessHost. The
architecture of a mobile node can be seen in Figure 4.

In the following, we describe the function of the important mod-
ules by means of a handover example. After a roaming event,
the DHCPClient module first starts the DHCP discovery process
once the wireless interface is associated with a WirelessRouter

node. This node acts as access point and as DHCP server. Once the

Figure 4: LISP mobile node in OMNeT++/INET.

DHCP process is finished and the wireless interface got a new care-
of-address, the registration process is started by the MapResolver
module. Again, this event is signaled between the Interface-

Table and the MapResolver via the NotificationBoard. Dur-
ing the registration process, the MapResolver sends a map-register
message to the configured MapServer node. The MapServer ac-
knowledges the map-register message with a map-notify message.
Once the MapResolver receives this message, it starts the config-
ured update process of remote caches of communication partners,
see Section 2.5. This completes the handover process. The also
visible localMappingCache module in the above mobile node is
part of a set of improvements to the LISP mobile node architecture.
See [13] for more details.

3.2.5 NATTraversalRouter
The network node representing an NTR is called NATTraver-

salRouter. A UDP server application receives map-register mes-
sages from mobile nodes and registers a special mapping if it re-
cognizes that the mobile node is behind a NAT. The special map-
ping is sent to a pre-configured MapServer node while the original
mapping is stored in the NATTraversalRouter. Beside the UDP
server application, an NTR-hook is installed in the IPv4 module.
If a mobile node behind a NAT registered its mapping at the NAT-

TraversalRouter, and other nodes communicate with the mobile
node, all traffic is relayed through the NATTraversalRouter. The
NTR functionality on the network layer has been implemented in
the NTRRouting module. The hook ntr_input() uses the NAT-

TraversalRouter cache to resolve the mapping and to forward
the received packet to the correct NAT gateway with the correct
address port combination. The NTR-hooks are only used if the ap-
propriate module is present in the network node.

3.2.6 LISPConfigurator
This node is derived from the FlatNetworkConfigurator and

used to configure the LISP parameters of the different LISP nodes.
In addition, also some parameters of non-LISP nodes like DHCP
servers are configured. As an example, the LISPConfigurator as-
signs the EID prefixes to LISPRouters and DHCPservers in LISP
domains. In the current version, we have disabled the feature to
also fill the routing tables as the FlatNetworkConfigurator was
not intended for hierarchical networks. Hence, we fill the routing
tables by routing table files. However, to enable a quicker and more
convenient configuration of larger scenarios, we also think about a
robust way to automatically fill the routing tables for hierarchical
LISP and non-LISP networks.



Figure 5: LISP mobile node moving from left-hand side to right-hand side and back. During its movement, the following handover
events occur: (1) : LISP→ NAT, (2) : NAT → nLISP, (3) : nLISP→ LISP, (4) : LISP→ nLISP,(5) : nLISP→ NAT, (6) : NAT → LISP.

4. EVALUATION
In this section, we investigate the handover performance of the

LISP mobile node architecture in different scenarios.

4.1 Simulation Setup
The architecture of the simulation setup can be seen in Figure 5.

The objective is to evaluate the handover performance of a LISP
mobile node (lispMobileNode) which roams between a LISP do-
main, a non-LISP domain, a non-LISP domain behind a NAT gate-
way, and another LISP domain. We use a RectangleMobility

module to move the mobile node from the left-hand side to the
right-hand side and back. This way, all possible six handover com-
binations of source and destination domain type are covered (see
Figure 5).

During its movement, the mobile node with the UDP applica-
tion module UDPVideoStreamCli requests a video stream from
either the stationary node (lispDomain3_SN) inside the LISP do-
main or from the stationary node (nonLispDomain2_SN) inside the
non-LISP domain. Both nodes may act as video stream server and
have a UDPVideoStreamSvr UDP application module. The UDP-

VideoStreamSvr module sends the video stream with a constant
bit rate to the requesting UDPVideoStreamCli module inside the
lispMobileNode network node.

The wireless network is modeled as IEEE 802.11g WLAN and
we use the standard wireless channel model of the ChannelCon-

trol module. The link delays for all intra-domain link delays are
set to 1 ms whereas the inter-domain link delays are set to 10 ms.
In addition, the link delays to the mapServer, to the proxyITR,
and to the NTR are set to 50 ms delay. The higher link delays for
these nodes were chosen to better see the differences between the
analyzed handover scenarios.

4.2 Handover Scenarios
In this subsection, we first show the difference between a single-

homed and a multi-homed mobile node. We further investigate the

reasons for the handover delays in another evaluation and show how
different cache update mechanisms reduce the handover delay.

4.2.1 Effect of Multi-Homing
As first evaluation, we investigate how the video stream from

LISP and non-LISP domains is influenced during the handover.
We further show how a mobile node with several interfaces could
use multi-homing to reduce the handover delay. As remote cache
update mechanism, we use the solicit map request mechanism de-
scribed in Section 2.5.1 for the communication with the LISP do-
main. For the communication with the non-LISP domain, the ex-
tended solicit map request mechanism as described in Section 2.5.3
is used.

Figure 6(a) shows the effect of the handover for a single-homed
mobile node. The black solid line denotes the video stream from the
lispDomain3_SN node and the brown solid line denotes the video
stream from the nonLispDomain2_SN node. The video stream
from the lispDomain3_SN node was requested earlier than the
stream from the nonLispDomain2_SN node. Hence, the black line
appears on top of the brown line. In addition, the black and brown
dashed lines show the corresponding handover delays for the six
described events in a different scaling. We see that for both scenar-
ios, the video stream is interrupted during the six handover events
but in all cases, the video stream continues after the mobile node
has registered its new mapping and has updated the remote caches
in either the lispDomain3_LISProuter or the proxyITR. The
duration of each handover is between 0.8 and 1.3 seconds and there
is 100 percent packet loss for all scenarios within this time.

Figure 6(b) now shows the results for a mobile node which uses
multiple interfaces to decrease the handover delay. We see that
the handover delay is significantly reduced compared to the single-
homed case. As soon as the mobile node detects a new access point
on its other currently not connected interface, its starts the asso-
ciation process with that new access point. Once this is done, it
requests an address via DHCP and registers this address as its cur-
rent locator at its map server. During the LISP signaling process,
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(a) Single-homed mobile node.
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(b) Multi-homed mobile node.

Figure 6: Comparison between mobile node with one and two wireless interfaces.

the mobile node is connected to both access points. Hence, packets
via the old access point still reach the mobile node. Once the new
mapping is available at either the lispDomain3_LISProuter or
the proxyITR, the packets arrive at the mobile node via the new
access point.

4.2.2 Influences on the Handover Delay
During the handover in the single-homed case, several elements

influence the total handover delay. At first, it takes some time until
the mobile node recognizes that it has moved out of the wireless
range of its associated access point. In our model, each access point
announces its presence with beacon frames which are transmitted
every 100 ms. If a mobile node does not receive a beacon frame
for 350 ms, it infers that it has moved out of the range of its access
point. At this point, it starts the scanning for other wireless access
points again. For our model, we use the passive scanning method
with a maxChannelTime of 300 ms. During this timespan, the
mobile node listens for other beacon frames on a certain channel.
This is done for all possible channels. In our model, we allow only
one channel. Hence after one maxChannelTime, if the mobile node
has discovered another access point, it starts the association process
with that access point. Once it is associated, it starts the DHCP
discovery and requests a DHCP lease. After it has successfully
obtained a lease, it starts the LISP signaling process. This process
comprises the registration of the new mapping and the update of
remote caches of communication partners.

In Figures 7(a) and 7(c), we show the mean and 95% confidence
interval for the individual delays during a handover event for the
single-homed scenario and for all six possible handover events.
Again these events occur, when the mobile node in Figure 5 moves
from the left-hand side to the right-hand side and back. To calcu-
late the mean and the 95% confidence interval, we have conducted
each experiment eight times

The beacon lost detection delay, and the scanning and associ-
ation delay are as expected, and take about 300 ms. The larger
confidence interval for the beacon lost detection delay is due to the
exact moment within one beacon frame window (100 ms), when
the mobile node leaves the wireless coverage. The other delays are
not directly influenced by random numbers and hence, the confi-
dence interval for those is rather small. Comparing the delays of
the different events, the LISP signaling delay is the only difference.
Roaming into the NAT domain has the longest LISP signaling de-
lay because the packets need to be relayed via the NTR to traverse
the NAT (events 1 and 5). This relaying process adds an additional
delay of 100 ms. This is not necessary during handover events be-
tween LISP and non-LISP domains (events 3 and 4). Hence, these

LISP signaling delays are 100 ms lower. Finally, roaming from a
NAT domain has the lowest LISP signaling delay (about 100 ms) as
the NTR serves as anchor point (events 2 and 6). In this case, it is
sufficient to update the mapping at the NTR. Once this is done, the
NTR relays the packets to the new domain. The relaying process
via the NTR is done until the new mapping is also available at the
lispDomain3_LISProuter node. At this point, the packets are
sent directly as the NTR is not necessary anymore.

For the video stream from the nonLispDomain2_SN node, we
see a similar behavior except that the detour via the proxy-ITR
prolongs the LISP and the total delay for all scenarios except the
scenarios where the mobile node roams from the NAT domain to
another domain (events 2 and 6). In this case, there is no detour via
the proxy-ITR and hence, the delay is the same for both scenarios.

4.2.3 Different Remote Cache Update Mechanism
We show the individual handover delays when the piggybacking

mapping data mechanism as described in Section 2.5.2 is used. In
Figure 7(b) we show the individual delays for the video stream from
lispDomain3_SN node and in Figure 7(d), we show the delays for
the video stream from the nonLispDomain2_SN node.

In the first scenario, the piggybacking mechanism avoids one
mapping lookup (100 ms) at the lispDomain3_LISProuter node
for all handover events except for those where the mobile node
roams from the NAT domain to another domain (events 2 and 6).
This is because in this case, the lookup does not affect the handover
at all as the traffic is relayed via the NTR.

In the second scenario, the piggybacking mechanism also avoids
one mapping lookup at the proxyITR which results in 200 ms
lower handover delay. Again, this is only true for handover events,
where the NAT domain is the source domain of the handover event
(events 2 and 6). In this case again, no detour via the proxy-ITR is
required and hence no mapping lookup is involved.

5. CONCLUSION
In this work, we presented the integration of the LISP architec-

ture into the INET framework. The simulation model includes
the basic architecture with interworking mechanisms, the LISP-
MN architecture, and our NAT traversal method for LISP-MN. As
an application, we evaluated the interoperability of our proposed
NAT traversal method and the LISP-MN architecture during differ-
ent handover events. We showed that our mechanism worked well
in maintaining the transport connection survivability even for NAT
domains. Future work could comprise the integration of a map-
ping system, e.g., LISP+ALT, in order to perform simulations of
the entire LISP architecture on a large scale.
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(a) Video stream from the lispDomain3_SN node.
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(b) Video stream from the lispDomain3_SN node.
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Figure 7: Individual handover delays for solicit map request (a, c) and piggybacking (b, d) update mechanism.
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