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Abstract—Since its introduction OpenFlow has been used as an
enabler for network experiments in a variety of fields. Although
OpenFlow was initially only used in the research domain, the
concept is now finding its way into data centers due to the
relatively cheap hardware and high flexibility. In this paper,
we take a look at the scalability and usability of OpenFlow in
data centers. Based on data center traffic models and OpenFlow
measurements, we evaluate whether OpenFlow is able to cope
with the short flow inter-arrival times of the traffic models by
means of simulation.

Index Terms—OpenFlow, data center, performance evaluation

I. INTRODUCTION

Data centers are attracting more and more interest, offering
a large variety of services such as online gaming, data storage,
data processing, and online office products. However, there are
still a lot of challenges to be solved, e.g., overall performance,
energy efficiency, resilience, scalability, and how to transport
the data to the consumer. Most data center providers currently
focus on building their data centers only with commercial off-
the-shelf (COTS) hardware to reduce the cost and to be easily
maintainable. In addition, the data center should be extensible
and should scale up to 100,000 servers.

Often neglected is the data center network architecture,
which has a large influence on both, the energy consumption as
well as the service times [1]. In addition to the COTS servers,
we can also see a shift from costly layer-3 switches with
hundreds of ports to COTS layer-2 switches. These switches
have however to be able to handle the huge amount of traffic
and should still be flexible enough. This is where OpenFlow
comes into play. OpenFlow was first proposed by McKeown
et al. in 2008 to enable researchers to conduct experiments in
production networks [2]. Meanwhile, OpenFlow is being used
beyond research for enabling network virtualization in data
centers, e.g. at CERN. OpenFlow offers a higher flexibility
compared to classical switches as it performs a flow-based
switching instead of packet-based and it separates the control
plane from the data plane. This allows to set up a separate
controlling entity, the OpenFlow controller, responsible for
changing forwarding rules of a number of switches.

OpenFlow is currently standardized by the Open Network-
ing Foundation (ONF) [3], whose members are in addition
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to classical operators also owners of large data centers such
as Google and facebook. As a result, we can expect a grow-
ing number of works conducting experiments in OpenFlow-
enabled data centers. In these data centers, OpenFlow is used
to evaluate new virtualization techniques or new routing proto-
cols. However, few performance evaluations of the OpenFlow
architecture exist, e.g. if OpenFlow scales well and if it can
be used in large data centers.

In Jarschel et al. [4], we set up a basic model for evaluating
the performance of OpenFlow in a simple scenario. The model
is based on results from queuing theory and is verified by
simulations and measurement experiments with an OpenFlow
switch and controller. In this paper, we extend the simulation
from [4] to be able to simulate the edge switches of a data
center. The traffic is thereby generated based on data center
measurements published by Benson et al. [5]. Due to the
complex structure of the simulation and the data center traffic
models, we are unfortunately not able to extend our analytical
model to verify the simulation results.

The remainder of the paper is structured as follows. In
Section II, we introduce the OpenFlow architecture in more
detail and provide an overview on related work. Section III
describe our simulation scenario and shows some measurement
results needed a input parameters for the simulation. The
results from the performance evaluation are presented in
Section IV. Conclusions are drawn in Section V and a brief
outlook on future work is given.

II. BACKGROUND AND RELATED WORK

In this section, we first give a brief introduction to Open-
Flow, before presenting the work related to OpenFlow perfor-
mance. More details on OpenFlow can be found in the white
paper [2] as well as in the OpenFlow specification [6].

OpenFlow was designed in such a way that it enables
researchers to test new ideas under realistic conditions on
an existing network infrastructure. To be able to take action
in the switching, OpenFlow separates the control plane from
the data plane and connects them by an open interface, the
OpenFlow protocol. The control plane is implemented in
software in form of a controller on an external computer.
The communication between the switch and the controller is
realized over a secure channel. The separation of the control
plane enables researchers to flexibly test new algorithms on
high-performance hardware without influencing the production
traffic. In the following, we describe the flow handling as
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described in the OpenFlow 1.0 specification. Although the
OpenFlow specification 1.2 has already been released, we
concentrate on version 1.0 as it is the newest version supported
by most OpenFlow implementations.

Each OpenFlow switch holds a flow entries which stores
three components, header fields, counters, and actions. Using
OpenFlow 1.0, 12 header fields are extracted from a packet
header and matched with the flow entries. If the packet
does not match on of the flow entries, it is forwarded to
the controller, which determines how the packet should be
handled. If the packet matches a flow entry, the counters are
updated and the appropriate actions are performed. Counters
are used for statistical reasons to store e.g. the number of
received packets per flow, the duration of the flow, etc. The
action field in the flow table describes how the switch handles
incoming packets. The packet handling process is visualized
in Figure 1.

Packet 
arrives

Extract header 
fie lds

M atch in

any tab le?

Encapsulate  
and forw ard to 

contro lle r

Apply actions, 
update sta tistics

no

yes

Fig. 1. Packet handling in an OpenFlow switch.

Most papers published on OpenFlow [7]–[10] focus on
demonstrating the concept of splitting the control plane from
the data plane in various fields. Heller et al. [7] show how
OpenFlow can be used to save energy in data centers, while
others focus on route optimization or network virtualization.
However, non of these papers focuses on performance issues
of OpenFlow.

There are two OpenFlow benchmarking tools available,
called OFlops [11] and Cbench [12]. OFlops can gauge the
datapath performance by measuring switch response times in a
variety of scenarios. Cbench can either measure the controller
throughput or processing delay in individual tests. Both tools
are as of yet considered experimental.

Bianco et al. [13] measure the OpenFlow switching perfor-
mance for different types of rules and packet sizes. A similar
approach is taken by Sünnen in his student thesis [14]. The
author analyzes the performance impact of the flow table in
various scenarios. Both works mainly focus on the datapath.

The work with the closest relation to our paper is presented
by Curtis et al. [15]. According to them, the current OpenFlow
implementations do not meet the requirements of today’s data
centers as several microflows in data centers create excessive
load on controller and switches. The proposed DevoFlow
reduces the communication between switches and controller
as the controller is not invoked for every flow setup.

In contrast to the above mentioned papers, we focus on
evaluating the performance of OpenFlow in a data center
environment using data center traffic models gathered from
real data center measurements by Benson et al. [5].

III. OPENFLOW MEASUREMENTS &
SIMULATION SCENARIO

Before describing our simulation and the considered sce-
nario, we first derive the performance parameters. Therefore,
we set up an OpenFlow testbed and measure the forwarding
performance of various OpenFlow switch implementations.

A. Measurements

To get the input parameters for the simulation, we set
up an OpenFlow testbed as depicted in Figure 2. A server
is used as load generator to test the performance of the
attached OpenFlow switch implementations. The OpenFlow
switch itself is connected to the OpenFlow controller as well
as to two wire taps. The taps enable us to measure the
packets before and after they are processed by the OpenFlow
switch. The measurement server itself is equipped with an
Endace DAG card to keep the measurement error below nine
nanoseconds [16]. For our experiments, we use three different
OpenFlow implementations, a Pronto 3290 24-port gigabit
switch, a NetFPGA OpenFlow switch, and the Open vSwitch
software switch.

To study the switch performance without any controller
interaction, we pre-install a flow rule in the switch and
send packet bursts of two million identical packets through
the switch, which match the rule. The packet size is varied
between 64 Byte and 1514 Byte Ethernet frame length to see
the impact on the switch performance. Figure 3 presents the
measured forwarding delays in microseconds for all three
switches depending on the packet payload. The results are
averaged from 10 independent measurement runs and the error
bars indicate the 95% confidence level. The y-axis is scaled
logarithmically to be able to display the curves for all switches
in one figure.

Both hardware implementations show an almost linear in-
crease of the mean forwarding delay from about 4µs to 16.5µs
with the NetFPGA performing slightly better. The performance
of the software implementation, the Open vSwitch is two
orders of magnitude slower because the software switch suffers
from frequent memory accesses, especially at small packet

Fig. 2. Testbed set up to measure model parameters.
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Fig. 3. Measured switch delay.

sizes. For our simulation, we use the switch delay of the Pronto
switch because its hardware is closest to the switches, which
are used at the edge layer of a data center. Thus, we use a
negative exponential distributed switching delay with a mean
of 9.82µs for the simulation runs.

To measure the performance of an OpenFlow controller, we
use Nox 0.9 as controller and installed the Cbench [12] tool
on the measurement server and attach the measurement server
directly to the controller. Cbench measures the rate in which
flow requests are handled by the controller. Our measurements
show an average rate of 4175 responses per second with a
standard deviation of 101.43. From this value, we calculated
the mean values of the controllers sojourn times and use these
for the simulation, cf. Table I.

B. Simulation Setup

To simulate the performance of OpenFlow in a data center
environment, we use the OMNeT++ simulation environment
and set up the most common data center topology, which
is depicted in Figure 4. It consists of three different layers,
the access layer, the aggregation layer, and the core layer.
The routers of the core layer are attached to the transport
network on one side and to the aggregation layer on the
other side. The aggregation layer facilitates the increase in
the number of server nodes (more than 10,000 servers) while
keeping inexpensive layer-2 switches in the access network for
providing a loop-free topology. In this paper, we focus on the
layer-2 switches at the edge layer.

We assume a total of eight edge OpenFlow switches similar
to the figure. The switches are connected to a single OpenFlow
controller via a separate link. As soon as a packet of a new flow
is received at one of the switches, the packet is transmitted
to the controller and the controller installs the flow rule on
every switch the flow traverses. The flow rule is deleted at the
switch as soon as the idle timeout expires. Thus, we follow a
”reactive” approach, meaning that no flow or wildcard rules
are pre-installed.

TABLE I
SIMULATION PARAMETERS.

Entity Parameter Value

queue size 1024 slots
Controller mean processing time 240µs

distribution of processing time negative exponential

number of switches 8
mean processing time 9.82µs
distribution of processing time Erlang-25

Switch distribution of PRV 21, PRV 22,
flow inter-arrival time EDU1 from [5]

inter-arrival time distr.relative flow inter-arrival time
scaled between 0 and 2

10 million successfully
Simulation

duration
transmitted flows

repetitions 6 for each parameter

For a realistic traffic model at the OpenFlow edge switches,
we use measurements published by Benson et al. [5]. They
measured flow inter-arrival times on data center edge switches,
both within private and university data centers. We use a
selection of these measurements to simulate the performance
of OpenFlow. Sticking to the abbreviations introduced by
Benson et al., the distributions that we investigate are EDU1,
PRV21, and PRV22. Figure 5 shows a reproduction of the
distributions in question, represented by their cumulative dis-
tribution functions of flow inter-arrival times. The best and the
worst case scenarios are EDU1 and PRV21 respectively. The
university data center (EDU1) seems to be rather low loaded
compared to the private data center (PRV2). In addition to the
highest loaded edge switch in PRV2, we also use the values
gathered from another edge switch in the same data center,
namely PRV22, which represents an average loaded switch
measured by Benson et al. [5].

All parameter used for the simulation runs are listed in
Table I. We also evaluated the performance using different
distributions for the switch as well as the controller processing
time, but as the general behavior is similar, we omitted these
results.

Fig. 4. Three-tier data center topology.
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IV. PERFORMANCE EVALUATION

First, we want to evaluate the sojourn times and its Coef-
ficient of Variation (CV) using the three different flow inter-
arrival times from Figure 5. We thereby linearly scale the dis-
tributions, to put more or less load on the OpenFlow controller.
Figure 6 shows the sojourn time and the variation in sojourn
time is plotted in Figure 7. 100% on the x-axis represents
the original, unmodified distribution and does not necessarily
imply a 100% controller load. It has to be mentioned that the
y-axis in Figure 6 is plotted using a logarithmic scale. As we
measured only a small difference between the six different
simulation runs, we did not plot the confidence intervals.

As can be seen, the three distributions show significantly
different results with regard to the OpenFlow controller perfor-
mance. In the case of EDU1, the sojourn time is approximately
the same over the entire range of loads, i.e. ranging from
zero to twice the original flow rate. Similarly, the CV of the
sojourn time, see Figure 7, is nearly constant at 1.0. The
reason for this is the relatively large flow inter-arrival time
given by the original measurements with a median value of
approximately 3 ms. In the case of the EDU1 distribution, the
single OpenFlow controller is sufficient to support the eight
edge switches in the network.

This is further supported by Figures 8 and 9 which illustrate
the controller queue length as well as the observed packet loss.
A maximum controller queue length of about 30 and a mean
controller queue length well below 0.5 for all loads, as well as
no packet loss at all, underline that OpenFlow can be used in
data centers following a similar traffic distribution as EDU1.

On the other hand, the two private networks PRV21 and
PRV22 put significantly more load on the OpenFlow controller.
The original measurements done by Benson et al. give a
median flow inter-arrival time of 0.25 ms for the PRV21

network and 0.44 ms for the PRV22 network, as indicated by
the distribution shown in Figure 5. This significantly smaller
flow inter-arrival time leads to proportionally more packets
arriving at the OpenFlow controller, compared to the EDU1
network. The result of this is severe packet loss starting at 50%
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Fig. 6. Sojourn time for the three-tier data center.

relative load for the PRV21 network, and 100% for the PRV22

network, as shown in Figure 9. This loss happens as soon as
the controller queue fills up to the maximum size because more
packets arrive at the controller than the controller can process
per time unit. However, before this limit is reached, the mean
queue sizes already start to increase, leading to severe delays
and variations in the sojourn time through the controller, as
some packets have to wait for a long time before they are
processed.

The exact behavior, particularly of the CV of the sojourn
time, highly depends on the specific distribution of flow inter-
arrival times. In general, the CV first increases when the
controller queue starts to fill up, and then suddenly decreases
to nearly zero when severe packet loss is experienced. This
reduction to a quasi-deterministic resulting traffic flow is
due to the fact that every packet of a new flow that is not
dropped has to wait until approximately 1024 other flow rules
are installed before it is finally processed. The sojourn time
distribution through the controller basically becomes the sum
of 1024 Markov distribution, in other words, an Erlang-1024
distribution with a resulting small CV of approximately 0.03.
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Fig. 7. Coefficient of variation of the sojourn time.
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Fig. 8. Controller queue length. Triangles show the maximum queue length
and the curves represent the average controller queue length.
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Fig. 9. Observed packet loss.

In summary, the simulated OpenFlow controller with an
expected processing time of 240µs is more than sufficient
for the EDU1 network on the one hand, but it is unable to
cope with the requirements of the two private networks on the
other hand. For these, a more powerful OpenFlow controller
with an improved processing time would be necessary or the
load could be split accross different controllers. It follows that
a careful investigation is necessary before OpenFlow can be
deployed in data center-like networks, so that the OpenFlow
controller does not become the bottleneck of the entire system.

V. CONCLUSION

In this paper, we evaluated the usability of OpenFlow in
a data center environment. In doing so, we verified that
great care is required when planning OpenFlow systems, with
regard to the resulting load on the OpenFlow controller in the
system. We have seen that two out of the three data center
measurements taken by Benson et al. [5] would require more
than a single OpenFlow controller or severe data loss and high
sojourn times for all non-lost packets would result for the
Controller/Switch ratio of 1:8. Only the educational data center
network would be suitable to immediate transformation into
an OpenFlow setup with only a single OpenFlow controller.

When still relying on a single OpenFlow controller, the flow
matching rules have to be pre-installed and the controller
should just be used for optimizing the data center performance,
e.g. by optimizing the routing [17]. Possible directions for
future research might be to evaluate different controller archi-
tectures so that even large data centers can be operated with
OpenFlow.
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