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Abstract—Software defined networking (SDN) promises a
way to more flexible networks that can adapt to changing
demands. At the same time these networks should also benefit
from simpler management mechanisms. This is achieved by
moving the network control out of the forwarding devices to
purpose-tailored software-applications on top of a ”networking
operating system”. Currently, the most notable representative
of this approach is OpenFlow. In the OpenFlow architecture the
operating system is represented by the OpenFlow controller.
As the key component of the OpenFlow ecosystem, the be-
havior and performance of the controller are significant for
the entire network. Therefore, it is important to understand
these influence factors, when planning an OpenFlow-based
SDN deployment. In this work, we introduce a tool to help
achieving just that - a flexible OpenFlow controller benchmark.
The benchmark creates a set of message-generating virtual
switches, which can be configured independently from each
other to emulate a certain scenario and also keep their own
statistics. This way a granular controller performance analysis
is possible.
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I. INTRODUCTION

OpenFlow [1] has emerged as an important enabler for
software defined networking. As the key component in
the OpenFlow architecture, OpenFlow controllers are often
marketed as ”networking operating system” in a software de-
fined network. However, this designation is slightly mislead-
ing. While the OpenFlow controller certainly fills the role of
an operating system bridging the gap between physical hard-
ware and applications, many controllers lack the stability and
performance we would expect a modern operating system
to have in the computing domain. OpenFlow controllers can
not be configured, but have to be programmed, which makes
them more akin to operational frameworks than an actual
operating system. Since the OpenFlow standard does not
dictate how a controller should be implemented or even
which elements it should possess beyond the OpenFlow
secure channel, a variety of different implementations has
been developed, each with its own behavior and performance
characteristics. These differences make specific controllers
better suited for certain scenarios than others. To choose
an implementation over another and to analyze the system
behavior for a particular deployment, these differences have
to be understood. In this paper we introduce a flexible
OpenFlow controller benchmark as a tool to obtain that
insight. Unlike conventional benchmarks that focus on over-
all throughput and/or latency, our benchmark allows the

emulation of scenarios and topologies and can evaluate the
controller performance on a per-switch basis. This way a
more detailed analysis of controller performance bottlenecks
as well as obscure behavior is possible. The purpose of this
contribution is on the one hand to show the features of our
tool, which we will publish as open-source software, and
on the other hand to underline the necessity of tools like
this for analyzing and understanding controller and, as a
consequence, OpenFlow network performance.

The remainder of this paper is structured as follows.
In Section II we discuss the work related to OpenFlow
benchmarking. We introduce our benchmark architecture in
Section III. Subsequently, we compare the performance of
our benchmark to that of the standard OpenFlow controller
benchmark ”Cbench” [2] in Section IV. We proceed by
discussing first benchmarking results in Section V. Finally,
we draw our conclusions in Section VI.

II. RELATED WORK

Current deployments of OpenFlow mostly rely on con-
ventional switches as forwarding units. As these are usually
not designed to function as flow switches, they are often
performance bottlenecks and thus the research focus in terms
of performance so far lay on the forwarding plane. In [3],
Bianco et al. measure the OpenFlow switching performance
for different types of rules and packet sizes. A similar
approach is taken by Sünnen in his student thesis [4]. The
author analyzes the performance impact of the flow table in
various scenarios. Curtis et al. [5] propose changes to the
OpenFlow protocol as they discovered inherent performance
bottlenecks with regard to CPU load in current OpenFlow
switch implementations.

In Pries et al. [6], we evaluated the usability of Open-
Flow in data centers. We discovered that setting flow rules
reactively leads to an unacceptable performance when only
eight switches are handled by one controller. In [7] we
introduced an analytical model to predict the OpenFlow
system performance. We aim to improve this model through
insights gained from benchmarking results.

With OFlops [8] a framework for performance analysis of
OpenFlow switches exists. However, on the controller side
only a relatively simple benchmark exists with Cbench [2].
Cbench was first developed by Robert Sherwood and has
since become the standard evaluation tool for controller
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performance. In [9] Tootoonchian et al. use Cbench to high-
light possible controller performance improvements. Still,
little can be derived from the results in terms of controller
behavior. Cbench is single-threaded, i.e. multiple instances
have to be started to utilize multiple CPUs. It also only
uses one controller connection for all emulated switches.
Aggregated statistics are gathered for all switches but not
for each switch individually. As a result, it is for example
not possible to tell whether all controller responses are for a
single switch and the others receive nothing, or whether the
controller capacity is shared fairly among the switches. Our
benchmark addresses these issues to obtain more granular
results.

III. BENCHMARK ARCHITECTURE

In this section we present our OFCBenchmark tool. First,
we explain the design goals that guided our development
process. Then, we present the architecture of the software
and describe the implementation.

A. Design Goals

The architecture and the implementation of OFCBench-
mark are guided by the following main design goals.

• Scalability: The software should be designed in a way
so that multiple instances can run in a coordinated way
on different CPU cores, CPUs, and hosts. This achieves
that the load generated to test an OpenFlow controller is
not limited by a single core of the CPU or the memory
of the machine that runs the software.

• Ability to provide detailed performance statistics: Our
benchmarking software should provide performance
metrics such as round trip times, sent or received pack-
ets per second, or the number of outstanding packets,
in time series and on a per switch basis. This feature
permits to investigate whether an OpenFlow controller
treats switches differently or changes its behavior over
time.

• Modularity: The controller development process pro-
gresses rapidly and therefore, the benchmark should
be adaptable to new scenarios, which is easier in a
modularized software. In addition, measurements of
further performance metrics and further parameters to
control the load generation should be easy to add to the
benchmarking software.

B. Architecture Design

The architecture of our OpenFlow controller benchmark
consists of three main components - the OFCBenchmark
Control Center (OCC), the OFCBenchmark Client (OC),
and the Virtual Switch (VS). The OFCBenchmark uses a
distributed approach, i.e. the benchmark can be spread over
multiple hosts. Each of these hosts runs an instance of the
OC. The OC itself is already a full benchmarking system.
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Figure 1. Structure of a Virtual Switch.

It executes the performance tests using the configured num-
ber of VS objects. However, it is limited in scale as the
number of VSs is restricted by the amount of memory and
computing capacity of a single host. In the distributed mode
multiple OCs connect to the OCC, which then controls the
experiment.

The key component of the OFCBenchmark is the virtual
switch. Figure 1 shows a schematic illustration of the VS
structure. The virtual switch holds a simplified flow table
to be able to respond to controller requests. It also has a
statistics store where the benchmarking results are kept and
updated. Furthermore, every virtual switch has two socket
connections and three threads encapsulated in the virtual
switch object. The connections serve as communication
channels to the OCC and the OpenFlow Controller and are
managed using the threads. This allows us to treat a VS as a
true individual entity, which gives us the desired modularity,
scalability, and the ability to provide detailed performance
statistics.

C. Implementation

The OC and its VSs are written in C++ using the
Boost library for thread-handling. Experiments can either be
configured directly via the OCC communications channel in
distributed mode or through a configuration file in standalone
mode. Configuration options include number of switches, per
switch packet-inter-transmission times, packet sizes, as well
as the option to specify a pcap file containing OpenFlow
messages for each switch to play-out. Furthermore, the OC
allows the creation of a switch topology specified in a
separate configuration file. This is achieved by allowing the
virtual switches to seemingly forward controller generated
LLDP or OFLDP packets and sending them back to the
controller as Packet-In messages according to the configured
topology.

At creation time the VS reads the same configuration
file as the OC and connects itself to the OCC waiting for
further instructions or requests. In Figure 1 we can see the
control thread connected with the OCC through a socket.
This thread executes the commands of the OCC in the
VS. If the connection to the OCC is not configured in the
configuration file, the switches are operated in stand-alone
mode by the OC. The two remaining threads are using the



same TCP socket and are the workers of the virtual switch.
The choice of TCP as transmission protocol reflects the

OpenFlow specification. The communication-thread is re-
sponsible for handling the communication with the currently
benchmarked controller using the OpenFlow protocol in
version 1.0. It performs the OpenFlow handshake process
and answers other controller requests. The packet-generator
thread creates and sends Packet-In messages to the controller
for benchmarking. The time between two sent packets can
be configured. By default the time is set to zero, which
results in as many packets being sent as the TCP stream
allows. The Packet-In messages contain the packet header
of the first packet of a new IP flow the controller has
not yet encountered. Every Packet-In message is identifi-
able through its buffer-id. The controller responds to those
packets with Packet-Out and/or FlowMod messages using
the same buffer-id to identify the corresponding packet.
Receiving the response, the communication thread parses
the id, calculates the round trip time for this request and
updates the statistics. As both threads are using the same
socket, a semaphore was included to coordinate the output
and avoid data corruption. This is a mutual exclusion that
prevents the usage of socket output from different threads at
the same time. Before sending a datagram the ”user” of the
socket output has to lock the semaphore and release it after
transmission. To be able to use multiple CPUs and thus to
keep accurate statistics for the round trip time, the virtual
switches use blocking I/O, i.e. a thread is only ”woken”
by the operating system once a packet arrives. This way
we avoid having to check frequently whether a packet has
arrived using a single thread.

The OCC is a graphical user interface written in Delphi, so
experimenters can see the current configuration at a glance
and modify the test settings according to their requirements.

IV. COMPARISON WITH CBENCH

To verify the results of our benchmark we run a com-
parative test with Cbench. The test was run on a testbed
consisting of two PCs directly connected through a 100
Mbps Link. Both systems share the same hardware and
software configuration with a Pentium IV 3.4GHz CPU,
1 GB RAM, and Ubuntu 10.04 as operating system. One
PC runs the controller – in this case Nox Classic [10] as
learning switch – and the other PC runs the benchmarking
tools. The benchmark is set not to introduce artificial delay
between packet departures. We compare our benchmark to
two versions of Cbench – the current repository version and
the original version used for reference.

Figure 2 shows the achieved throughput in packets per
second with respect to the number of connected virtual
switches. The error-bars attached to the graphs give the 95
percent confidence intervals, which were obtained through
five repetitions of each test.
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Figure 2. Comparison of our Benchmark with Cbench using the Nox-
Classic Controller.

All curves increase from about 10,000 pps with just one
virtual switch until they reach a stable level of saturation
with about 15 connected switches. The legacy Cbench ver-
sion reaches its saturation at about 14,300 pps. The current
Cbench as well as our OFCBenchmark achieve a higher
throughput and reach their saturation at about 16,900 pps.
From about 50 connected switches we see a slight decrease
to about 16,000 pps in throughput and larger confidence
intervals for our benchmark. This is likely due to the larger
overhead caused by managing and keeping statistics for
each virtual switch independently. However, the difference
to Cbench is still quite small and partially still within the
confidence intervals. Therefore, we can assume that our
benchmark produces comparable results to the Cbench tool.

V. BENCHMARKING RESULTS

In this section we discuss some initial results we have
obtained with our benchmark. These results are produced
with a software in development. This is neither an exhaustive
and/or representative comparison between the benchmarked
controllers, nor can or should a general statement about
the quality of the controllers be derived from this simple
scenario. This is intended to showcase the features of
our benchmark and a discussion of the results and their
consequences. The testbed used here is identical to the one
described in the previous section. The controllers measured
are Nox Classic [10] (”Zaku” release), Floodlight [11] (ver-
sion 0.82), and Maestro [12] (version 0.2). These controllers
were chosen arbitrarily with the only requirement being
that they are freely available. All controllers were set to
use their respective learning switch applications. As Nox
Classic has no multi-threading, the other controllers were
also limited to a single thread to obtain comparable results.
Nagle’s algorithm was deactivated on all test systems to
avoid the influence of artificial TCP buffering. All tests were
repeated 5 times to obtain the confidence intervals shown in
the figures.
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Figure 3. Mean Response Time for an OpenFlow Packet-In Message.

A. Mean Round Trip Time

The first feature test is for the round trip time (RTT),
i.e. the interval from the moment a Packet-In message is
dispatched from the virtual switch to the controller until the
corresponding Packet-Out or FlowMod message is received
by the switch. This test can also be performed with Cbench.
Our benchmark extends this feature by allowing to obtain
these statistics for each switch individually and as a time
series as well.

Figure 3 illustrates the mean round trip time in mil-
liseconds for different numbers of simultaneously connected
switches to the controller. Note that the y-axis is scaled
logarithmically. We observe that the Floodlight and Nox
Classic controller behave in a similar way. The response time
of these controllers increases rapidly from about 200 ms for
one switch until the value stabilizes at about 6 seconds for
30 switches. Both controllers are obviously under heavy load
at this point due to the relatively weak hardware. However,
the RTT for Floodlight continues to increase up to about 8
seconds for 80 switches. Maestro behaves differently. For
this scenario Maestro starts at a RTT of only about 6 ms
– two orders of magnitude faster than the other controllers.
With an increasing number of switches the RTT increases
steadily, but far slower compared to the others, until for
100 switches a RTT of just under 1 second is reached.
The largest increase in RTT can be observed between 40
and 50 connected switches. We suspect this behavior is the
result of a different processing strategy for Maestro that is
advantageous in this scenario as we will see indicated by
the results shown in Figure 5.

However, the average RTT of all switches and over the
whole experiment duration is neither sufficient to judge
whether this value changed over time nor whether some
switches experienced larger or smaller RTTs, i.e., whether
some switches received a preferred treatment. To answer
such questions, our tool provides time series of the RTTs on
a per switch basis. As an example evaluation of this data,
we calculate the average RTT over time for every switch
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Figure 4. Coefficient of Variation of the Response Time for an OpenFlow
Packet-In Message.

and analyze the variability of this value among the different
switches by showing the coefficient of variation (cV ) of these
values, cf. Figure 4.

As suggested by the small confidence intervals in Fig-
ure 3, the cV for the RTT is small for all controllers. For
Nox Classic and Floodlight we see an increase from about
0.2 with one switch to a stable value of about 0.5 at 30
switches for Nox Classic and 50 switches for Floodlight.
Initially Maestro displays a higher cV at about one with
outliers up to 3 and large confidence intervals. This can
be explained with the much smaller mean RTT, as small
derivations from small mean values have a far larger impact
on the cV than small derivations from larger ones. Mirroring
the observations from Figure 4, the cV decreases between 40
and 50 connected switches to a value of about 0.3 – below
that of the other two controllers.

B. Send- and Response Rates

Apart from determining the throughput and latency of an
OpenFlow controller, it might also be interesting or even
important to look at the rate it accepts packets. This can
provide insights into rate control mechanisms and/or polling
strategies of the controllers. Therefore, we have included this
feature in our benchmark.

In Figure 5 the result for the number of packets per
second (pps) sent from the switches to the controller through
the OpenFlow secure channel is given. As our benchmark
uses TCP to send the Packet-In messages to the controller
instead of writing the packets raw on the wire, the send
rate is determined by the TCP connection. We observe
that the packet send rate for the Floodlight controller does
not increase significantly with the number of switches. It
starts at a rate of about 10,000 pps for one switch and
increases to about 38,000 pps. For Nox Classic the increase
is slightly steeper, but stalls at about 70,000 ps for 70
switches. However, for Maestro we see a far higher increase
in packet send rate with the number of switches. It increases
linearly from about 5000 pps to about 140,000 pps for 35
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Figure 5. Virtual Switch Packet-In Send-Rate.

switches and then continues to increase to 150,000 pps for
50 switches. This suggests the implementation of a rate-
control mechanism for Nox Classic and Floodlight, whereas
Maestro accepts packets in a best effort manner.

The complement to the send rate is given in Figure 6 – the
packet reception rate. It describes the number of responses
the switches receive from the controller per second. The
figure shows that the reception rate for all controllers is
similar to the send rate of the switches shown in the previous
figure. However, we do not see an increase in reception
rate with an increasing number of switches for Floodlight
and Nox as we observed for the rate of sent packets in
Figure 5. The reception rate is basically stable at about
10,000 pps. The curve for Maestro displays a steep rate
increase identical to the corresponding send rate. The initial
rate of about 5000 pps for one switch steadily grows up
to about 135,000 pps for 35 switches. As before we see
the following flatter rate growth up to about 145,000 pps
for 50 switches, where it remains stable. This means for
Meastro there is a discrepancy of about 5000 pps between
send and reception rate at this point. We call this discrepancy
the ”outstanding packets”, i.e. the number of unanswered
Packet-In messages by the controller. We take a look at these
in the following results using the per switch analysis option
of our benchmark.

C. Outstanding Packets

Figure 7 shows the evolution of the number of outstanding
packets per virtual switch for a test run with 20 connected
switches over time for a test run of 15 seconds. The values
are presented for time intervals of 0.25 seconds and the time
axis in the plots shows the interval number instead of the
time value.

Figure 7(a) gives the number of outstanding packets for
the Maestro controller. As we can see from the comparison
of Figures 5 and 6, the number of outstanding packets is
very small for 20 switches. All packets have been processed
shortly after the 15-second sending period is over. However,
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Figure 6. Virtual Switch Packet-Out Reception-Rate.

we see some ”spikes” in the graph, i.e. samples with a large
number of outstanding packets from about 2000 to 6000
packets.

The number of outstanding packets for the Floodlight con-
troller is given in Figure 7(b). Floodlight shows a different
behavior compared to Maestro. All switches have quite a
large number of outstanding packets. Switches 1-4 show
a particularly high number of 15,000-20,000 outstanding
packets and maintain this level over the course of the exper-
iment. The remaining switches hold a level of about 10,000
outstanding packets. This is interesting for two reasons. For
one the level of outstanding packets remains constant, i.e.
there is no overload in the system. This suggests the presence
of a packet buffer in the Floodlight controller. Second, while
most switches are treated equally, the first four switches
seem to have a larger number of buffered packets. Before the
experiment, the virtual switches are connected sequentially
to the controller. Therefore, it appears that the order in
which the switches are connected has an influence on the
buffer size. After the end of the sending period, the buffer
is gradually processed as can be seen from the decrease in
outstanding packets after 60 samples. It takes an additional
5 seconds after the end of the 15-second experiment until
all packets have been answered.

With Nox Classic the influence of the connection order
on the number of outstanding packets per switch is even
more significant, cf. Figure 7(c). Apparently, Nox Classic
does not treat switches equally. The first connected switch
experiences a build-up of up to 100,000 outstanding packet.
For each subsequent switch the average number of outstand-
ing packets is slightly reduced. The 20th and last connected
switch only experiences 10,000-15,000 outstanding packets
on average. As a result, all packets of the later connected
switches have finished processing only 1-2 seconds after
the sending period ends, whereas for the first connected
switch the processing takes an additional 10 seconds to
complete. In a real network a behavior like this would
lead to unfairness. Devices attached to one of the first
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Figure 7. Outstanding Packets per Switch.

switches would experience far larger flow setup times. Using
only aggregates and mean values, we would not be able
to determine the cause of the issue. While the obtained
results may not be 100 percent accurate as the software is
still in development, the fact that the results are repeatable
and differ between controllers on the same test systems
highlights that there are indeed notable differences between
controller behaviors. This circumstance and its consequences
should be investigated and this is what our approach is aimed
at.

VI. CONCLUSION

Given the importance of the OpenFlow controller for the
software defined network it directs, it is key to understand
the performance and behavior of this important software
component for experimenters as well as for operators of pro-
ductive networks. In this paper we introduce our approach to
a flexible and granular benchmarking system for OpenFlow
controllers to create this insight and understanding. We
show that the results for conventional throughput tests are
comparable to the results of the current reference benchmark
Cbench and that it is possible to run the benchmark on
conventional hardware. Our benchmark results, especially
those for outstanding packets, underline the importance of
a more granular view on the system to detect performance
bottlenecks and similar issues that can not be grasped from
an aggregated perspective. Therefore, we will continue to
develop our benchmarking system to generate representative
results and an eventual for a public release. We aim to further
investigate our finds by studying controller code and gain
more insight into the existing OpenFlow controllers using
the benchmark for a broader study in the future.
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