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Abstract—Virtual Network Embedding will be one of the key
concepts of the Future Internet. For an ISP it is important to
know how many additional Virtual Networks (VNs) of a specific
application (e.g. web, streaming, P2P, and VoIP) are mappable
into the current resource substrate with a certain probability.
In this work we calculate this probability with our embedding
algorithm which enables us to consider side effects based on
remapping of VNs (e.g. due to reduced link delay). Our results
show that minimal extra resources can significantly increase
embedding probability of additional VNs.

Keywords-Virtual Network Embedding, Network Dimension-
ing, Service Availability, Network Optimization

I. INTRODUCTION

A current trend in research and productive operation is net-
work virtualization. Furthermore, rapid configuration and de-
ployment of Virtual Networks (VNs) (e.g. Gush [1], Teagle [2],
RSpec [3]), as well as fast flow based traffic engineering
(e.g. OpenFlow [4], Junos SDK [5]) are currently hot topics.
In conjunction with federation, which is the willingness and
capability of different providers to share network resources,
this leads to a higher degree of freedom in the selection
of available resources and the embedding of VNs into the
substrate. This allows the Internet Service Providers (ISPs)
to support the requirements of applications better than it is
currently possible. The VNs are expected to be application
specific with own naming schemes, topologies, custom routing
algorithms and even specialized resource management. Thus,
different types of applications will utilize different VNs in
order to handle their traffic in an appropriate and near optimal
way.

In order to enable the network to support highly dynamic
application requirements, flexible resources need to be avail-
able. This flexibility can be achieved by leasing virtualized
resources. Based on these resources VNs for different applica-
tions are built. These VNs will operate on a much shorter time
scale than todays Virtual Private Networks (VPNs), but will
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last longer than flow based approaches like RSVP/IntServ [6]
or DiffServ [7], [8]. This heterogeneous pool of resources
handled by different providers requires an adequate description
which we discussed in [9]. Furthermore, finding an optimal
mapping of the VNs into the substrate is a NP-hard problem,
as is finding a valid mapping in the first place. Taking into
account that federation enlarges the resource pool this results
in an optimization problem which is even harder to solve.
We presented this Virtual Network Mapping Problem with
Delay, Routing and Location constraints (VNMP-DRL) in
detail in [10], which we will continue to improve in order
to be applicable in a real-world concept to find a near optimal
solution in a very short time frame.

Network dimensioning is one of the most important plan-
ning decisions of ISPs. In order to make capacity planning
accurate it is important to know the demands utilizing the
network. In our scenario the demands are VNs with different
requirements to be mapped into the substrate graph of the
ISPs. In this work we evaluate how our mapping algorithm
can be used for network dimensioning strategies. We opine
that strategies based on the same algorithm as the mapping
process allow to consider side effects resulting from remapped
VNs (e.g. caused by path delay reduction) which could bias
dimensioning based on shortest path flow mapping. The net-
work dimensioning is based on the probability that a new
VN can be mapped into the current substrate under the given
resource requirements (e.g. bandwidth, delay, routing capacity)
and the current load caused by other VN. During the mapping
process we identified the bottlenecks of the substrate network
which prohibit the further embedding of VNs. Thus, we are
able to point out at where a minimum of extra resources
can increase the probability of an additional VN embedding
possibility. Identifying these bottlenecks in advance enable the
ISPs to lease and preconfigure extra resources on these spots in
order to reduce the embedding time of new VNs. Afterwards,
we show that selective improvements of the network lead to
significantly higher service availability for VNs of a specific
type. This offers the ISPs to either dimension their networks
for a specific VN type in advance or for a general embedding
probability.

The remainder of this paper is structured as follows. We give
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an overview on related work in Section II. The four different
application VN are described in Section III followed by the
calculation of the blocking probability for the VNMP-DRL
in Section IV. The results of our evaluations are presented in
Section V. Finally, we conclude our work in Section VI.

II. RELATED WORK

A network topology must be able to cope with the offered
traffic and avoid packet loss and delay. As the actual amount
of data that is transported during normal operation can only
be estimated, different mechanisms can be used to ensure
adequate quality of service by avoiding or minimizing link
overload in the network. Up to a certain level, traffic engineer-
ing (TE) can be used to optimize the resource-usage of flows
in the network [11]. This allows to carry more traffic through
a given network topology, but the optimization is a difficult
problem that requires carefully select objective functions [12].
Another mechanism, which can also be used in addition to TE,
is admission control (AC). It was proposed for the Internet in
[13]. Here, the network load is analyzed before new flows are
allowed in the network in order to avoid overload situations.
Both mechanisms are rather complex and require constant
monitoring of the network. A much simpler approach is to use
capacity overprovisioning (CO). Here, the network is overdi-
mensioned, which makes overload in unexpected scenarios
very unlikely. It is often stated that CO has high initial costs in
comparison to other methods, but as the network usually must
also provide backup capacity for unexpected failure scenarios,
the bandwidth requirements for CO are even similar than those
of AC [14]. To determine the best capacities for links and
routers is not easy, even when accurate information about
traffic patterns in a network are provided. A method to find
network elements which might have insufficient capacity is
implemented in the Resilyzer framework [15], [16]. It can
analyze all network failure scenarios with given probability
and determine for example the link overload probability, which
can be used for CO.

In this paper we provide a new method to determine such
bottlenecks that can be alleviated by CO, which is not based
on failure probabilities but on the blocking probability of
VN embedding optimization. There are many approaches to
provide optimal or at least good embeddings of VNs into
a substrate. [17] introduces a framework to compare the
performance of the major proposed VNE algorithms. To the
best of our knowledge, no other previous work examined the
use of a Virtual Network Embedding (VNE) algorithm for
finding bottlenecks in the substrate.

III. NETWORK TRAFFIC MODEL

In this work, we used the same network traffic model as
the VNMP-DRL uses. This section will give a short overview
of this problem and its associated test instances. Interested
readers are referred to [10] for more detailed information. A
VNMP-DRL instance consists of two graphs. The first one
is a directed multigraph which represents the substrate. The
nodes of the substrate graph have associated CPU and routing

3 4

4;9

5;1 8;6

9;8 7;5

(5;10)

(7;6)

(5
;3) (3;10)

(5;7)

(8
;4

)

(7;3)

a’ b’

a

b c

d e
Fig. 1: Example of a VNMP-DRL instance.

capacities. The available CPU capacity determines how much
processing power is available for the VNs, for instance for
implementing custom routing protocols. The routing capacity
determines how much bandwidth can traverse a router and
is usually less than the total connected bandwidth. Arcs
representing links have bandwidth capacities and incur some
delay. The second graph is the VN graph. Its disconnected
components specify all the VNs that have to be mapped onto
the substrate graph. Nodes have associated CPU requirements
and arcs representing desired connections are specified with
their needed bandwidths and limits on the maximum allowed
delays. As a third component there is a mapping which
specifies on which substrate nodes the VN nodes are allowed
to be mapped. The goal is to find a feasible mapping of the
VN nodes to substrate nodes and an implementing path in the
substrate for each VN arc so that all constraints are satisfied.

Figure 1 shows a small VNMP-DRL instance. It contains
the VN graph consisting of one VN with two nodes (a′ and
b′), the substrate graph (a to e) and the allowed mapping from
VN to substrate nodes (dashed lines). The node labels define
the CPU requirement for VN nodes and the available CPU
and routing capacity for substrate nodes. The arc labels denote
bandwidths and delays. Note that in this example, b′ actually
cannot be mapped to c, even though c offers enough CPU and
routing capacity. This is because there is no path from a to c
that satisfies the constraints of the virtual connection between
a′ and b′. Node b cannot be used, because its routing capacity
of 1 cannot support the required bandwidth of 5. The direct
connection from a to c does not offer enough bandwidth and
the path over d exceeds the delay limit. The only possible
solution of this instance is to map a′ to a and b′ to e and
implement the connection between a′ and b′ by using the path
from a to d and then to e.

The VNMP-DRL instances used in this work [18] are based
on the Internet network maps produced by the rocketfuel
[19], scan [20] and lucent [21] projects. Subgraphs of those
topologies were extracted to form the substrate graphs used in
this work. The VN to be mapped into these substrate graph
can have various requirements based on the service or appli-
cation type. As these requirements can be very diverse and
manifold for each VN we used four different exemplary types
representing very common use cases to show the practicability



of our approach:
Stream This type models (video-)streaming with a multi-

cast tree structure, with a fixed root node repre-
senting the content provider as a multicast source,
and fixed leaf nodes as customer endpoints. The
placement of the intermediate multicast nodes is
variable. This VN type has high bandwidth and
processing power demands but no delay constraints.

Web This type models the typical web usage and has
star structure with a web-server in its center that
serves the connected customers. This VN type has
low bandwidth and processing power demands but
stringent delay constraints.

P2P This type represents peer-to-peer (P2P) networks
and is based on a highly connected graph. It has
high bandwidth and medium processing power de-
mands but no delay constraints.

VoIP This type models voice over IP (VoIP) networks and
is again based on a highly connected graph. It has
medium bandwidth and processing power demands.
Delay limits are chosen rather limiting to meet the
requirements of voice communication.

IV. METHODOLOGY

The basic idea of the conducted experiments is to show
that Virtual Network Provider (VNP) can extract valuable
information from VN that they could not accept in order
to improve the substrate. By improvement we mean that the
probability that an additional VN can be embedded into the
substrate (the embedding probability pem) is increased, and
that more VNs can be embedded into the substrate before pem
reaches zero.

To show this, we perform two experiments. We start with the
VNMP-DRL instances available at [18]. For those instances,
we determine pem separately for each VN type because we
want to show the influence of different VN types on pem.
The embedding probability of an instance is determined by
adding a VN of a specific type and checking whether this
new problem is solvable or not. This is repeated nS times and
pem is calculated as the fraction of solvable cases in relation
to the number of tested ones. In this work, we use nS = 50
as tradeoff between required runtime and confidence in the
calculated pem. We continue this process with the first found
solvable problem (i.e. the added VN could be successfully
embedded in the substrate) in a depth-first fashion until pem
reaches zero or we have added ten additional VNs. Then the
procedure tracks back to an instance with the least amount
of added VNs that has not had its pem determined. The
motivation for this traversal order is that we want to see how
pem develops while adding additional VNs but also cover a
reasonable fraction of the search space of instances reachable
from the initial problem. We chose the upper limit of ten
additional VNs because as more VNs are added, the resource
bottlenecks in the substrate depend more and more on the
exact configuration of the added VNs and not on the initial
situation in the substrate and therefore become less relevant
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Fig. 2: Example of an extension procedure execution.

when we want to determine where we want to add additional
resources to the substrate. Additionally, we used a limit of 101
pem evaluations, which allows the cutoff point of ten added
VNs to be reached ten times. For the whole procedure (which
we will call extension procedure from now on) we set a time
limit of one day and we executed it for each of the four VN
types used for the VNMP-DRL.

Figure 2 shows an example execution of the extension
procedure. It starts with problem instance (a), an instance from
the instance set. It then determines pem for this instance by
repeatedly extending (a) with one random VN (generated as in
[10]) and checking whether the new instances (b) are solvable
or not. In the illustrated case, every newly generated instance
was solvable, we continue with the first found instance and
repeat this process until we reach c. For c, we determine a
pem of 2%, because only one of 50 instances is solvable. We
continue with the only found solvable instance (d). Node (d)
has a pem of 0%, so there are no instances with which to
continue; we track back to an instance with the least amount
of added VNs that has not had its pem determined, in this case
the second solvable instance created from (a). The extension
procedure then continues with (f) and so on until one of the
mentioned limits is reached or no more instances remain.

During the extension procedure, a lot of unsolvable in-
stances (i.e. VN configurations that cannot be embedded into
the substrate) are created. For the second experiment, we add
resources to the substrates of the starting instances based on
the reasons why those instances from the first run of the
extension procedure were unsolvable and then execute the
extension procedure again.

The following subsections describe in detail how we deter-
mined the solvability or unsolvability of a problem instance
during the calculation of pem, how the reasons for unsolvabil-
ity were extracted and how they were translated into substrate
changes.

A. Proving Unsolvability and Extracting Reasons

During the execution of the extension procedure, we want
to collect reasons (i.e. location and amount of missing re-
sources) why some VN configurations could not be mapped
into the substrate so that we can derive changes to the
substrate from those reasons. To get the unsolvability reasons,
we solve a modified version of the Integer Linear Program
(ILP) presented in [10]. It calculates the cheapest changes



to the substrate (i.e. added resources), so that a specific VN
configuration can be embedded. We used different resource
costs for each type of resource, because for instance changing
the CPU capacity of a substrate node will generally be cheaper
than decreasing the delay of a substrate connection. We will
now present the used ILP in detail.

The directed multigraph G = (V,A) with node set V and
arc set A represents the substrate network. The available CPU
power of a substrate node is denoted with ci ∈ N+, ∀i ∈ V ,
its routing capacity with ri ∈ N+, ∀i ∈ V . The delay of a
substrate arc is denoted by de ∈ N+, ∀e ∈ A, its available
bandwidth with be ∈ N+, ∀e ∈ A. The components of
the VN graph G′ = (V ′, A′) are the VNs that have to be
embedded into the substrate. The constant ck ∈ N+, ∀k ∈ V ′

determines the required CPU power of a virtual node. The
required bandwidth by a virtual connection is defined by
bf ∈ N+, ∀f ∈ A′ and the maximum allowed delay by
df ∈ N+,∀f ∈ A′. The set M ⊆ V ′ × V defines the allowed
mappings between virtual and substrate nodes. The functions
s : A∪A′ → V ∪V ′ and t : A∪A′ → V ∪V ′ associate each arc
of G and G′ with their source and target nodes, respectively.
The coefficients CCPU CRC CBW CDL define the cost of adding
one unit of CPU or routing capacity to a substrate node, a unit
of bandwidth to a substrate arc or removing a unit of delay
from a substrate arc. In this work CCPU = CRC = 1, CBW = 5
and CDL = 20.

The ILP utilizes the decision variables xki ∈ {0, 1}, ∀k ∈
V ′, ∀i ∈ V to indicate where the virtual nodes are located
in the substrate graph and yfe ∈ {0, 1}, ∀f ∈ A′, ∀e ∈ A
to indicate if a virtual connection is implemented by using a
substrate connection. The decision variable zfi ∈ {0, 1}, ∀f ∈
A′, ∀i ∈ V indicates that a substrate node is used to route
a virtual connection. The variables aCPU

i , ∀i ∈ V represent
the added CPU capacity to a substrate node, aRC

i , ∀i ∈ V
the added routing capacity. aBW

e , ∀e ∈ A represents the added
bandwidth to a substrate arc and aDL

e , ∀e ∈ A the removed
delay. Note that aDL

e is always non negative. The auxiliary
variable dfe , ∀e ∈ A, ∀i ∈ V represents the delay a substrate
arc has when used to implement a virtual arc and is required
due to technical reasons.

The complete ILP is defined by inequalities (1)–(18).

min
∑

i∈V

(CCPUaCPU
i +CRCaRC

i ) +
∑

e∈A

(CBWaBW
e + CDLaDL

e ) (1)

∑

(k,i)∈M

xki = 1 ∀k ∈ V ′ (2)

∑

e∈A|t(e)=i

yf
e + xs(f)i −

∑

e∈A|s(e)=i

yf
e − xt(f)i = 0

∀i ∈ V, ∀f ∈ A′ (3)
∑

e∈A|t(e)=i

yf
e + xs(f)i ≤ zfi ∀i ∈ V, ∀f ∈ A′ (4)

∑

(k,i)∈M

ckxki ≤ ci + aCPU
i ∀i ∈ V (5)

∑

f∈A′
bfz

f
i ≤ ri + aRC

i ∀i ∈ V (6)

∑

f∈A′
bfy

f
e ≤ be + aBW

e ∀e ∈ A (7)

dey
f
e − aDL

e ≤ dfe ∀e ∈ A, ∀f ∈ A′ (8)

aDL
e ≤ de − 1 ∀e ∈ A, ∀f ∈ A′ (9)∑

e∈A

dfe ≤ df ∀f ∈ A′ (10)

xki ∈ {0, 1} ∀(k, i) ∈M (11)

yf
e ∈ {0, 1} ∀e ∈ A, ∀f ∈ A′ (12)

zfi ∈ {0, 1} ∀i ∈ V, ∀f ∈ A′ (13)

aCPU
i ∈ R+

0 ∀i ∈ V (14)

aRC
i ∈ R+

0 ∀i ∈ V (15)

aBW
e ∈ R+

0 ∀e ∈ A (16)

aDL
e ∈ R+

0 ∀e ∈ A (17)

dfe ∈ R+
0 ∀e ∈ A, ∀f ∈ A′ (18)

The objective is given by (1), the total cost of added
resources is to be minimized. Equalities (2) ensure that each
virtual node is mapped to exactly one substrate node, subject
to the mapping constraints. The flow conservation constraints
(3) make sure that for each virtual connection there is a
connected path in the substrate. Linking constraints (4) ensure
that variables zfi are equal to one when the corresponding node
is used to route the traffic of a particular virtual connection.
Inequalities (5)–(7) ensure that the solution is valid with regard
to CPU, routing capacity and bandwidth constraints while
also considering added resources. Incorporating changes to
the substrate delay is not as straight forward. Inequalities
(8) together with the domain of dfe ensure that dfe is either
zero if substrate arc e is not used by virtual arc f (i.e. yfe
is zero) or has the correct delay value (i.e. defined delay
minus delay reduction) if the substrate arc is used. Inequalities
(9) make certain that even after reduction, the delay of a
substrate connection is at least 1. Inequalities (10) ensure that
any solution is valid with regards to the delay constraints.
Equations (11)–(18) define the domains of the used variables.
Note that the model only includes integrality constraints for
xki, yfe and zfi (11)–(13), the already covered constraints
together with the objective function cause aCPU

i , aRC
i , aBW

e

and aDL
e to be integral as well. Every non-zero a variable

in an optimal solution counts as one failure reason because
a resource had to be added in order to embed all VNs.

B. Reacting to Failure Reasons
Executing the extension procedure for one instance typically

creates ≈ 3000 unsolvable VN configurations. With the help
of the ILP formulation from the previous subsection, ≈ 8000
reasons for unsolvability can be extracted. These have to
be condensed into concrete changes for the substrate. The
following lists the five parameters we used for calculating the
changes to the substrate:

f Function that calculates a descriptive value from a set
of missing resources, e.g. mean or max

s Scaling factor for the result of f to calculate the added
amount of resources



r How often resources have to be missing at a specific
location in the substrate in relation to the maximum
number of reported missing resources in order for this
location to receive additional resources

n Maximum number of resource changes in the substrate
(per resource type)

Our aim is to add more resources to the most critical
parts of the substrate network. Critical parts are those that
are frequently reported as having too few resources of a
specific type available. Let this report count be called m,
and the highest count mmax. Note that the amount of missing
resources that is reported is not yet relevant. So, for routing
capacity, bandwidth, CPU power and delay separately, we
regard substrate nodes (in case of routing capacity and CPU
power) and arcs (for bandwidth and delay) in descending order
of m. All locations with m ≥ r ·mmax, but at most n, will
receive additional resources. These cutoff rules ensure that we
do not add resources to too many locations in the substrate
(which would not be economical) and also not to locations
which only rarely miss resources. The amount of additional
resources is determined by applying f to the reported amounts
of missing resources at the selected locations and multiplying
the result by s. In this work, we used f = mean, s = 3,
r = 0.3, n = 5.

V. RESULTS

Each computational experiment reported in this section has
been performed on one core of an Intel Xeon E5540 multi-
core system with 2.53 GHz and 3 GB RAM per core. The
instances to which we applied the extension procedure are
available at [18]. We exclusively used the instances with 80%
of the maximum number of VNs so that there would still be
some resources left for further VNs. Due to the computational
demand of the extension procedure, we only used the first two
instances (out of ten) for each topology source of the substrate
graph and each size (i.e. 80 instances in total) for the extension
procedure. CPLEX 12.4 [22] was used to solve the presented
ILP model in single threaded mode and with a time-limit of
300 seconds. For instances with a substrate size of 100 nodes
we used a time-limit of 500 seconds. Additionally, a memory
limit of 5 GB was set. If the optimal solution to the ILP
was not found within the time-limit, we used the best found
feasible solution if the gap to the optimal solution was smaller
than 95%. Preliminary runs showed that for larger substrates
the feasible solution reported by CPLEX sometimes was the
result of heuristics CPLEX runs before it actually starts to
solve the ILP. For this problem, the solutions generated in
this way add a lot of resources to almost all nodes and links
in the substrate and are therefore not helpful for finding the
real bottlenecks in the substrate. The gap limit ensures that we
do not use those solutions.

A. VNMP-DRL Instance Properties

In this section we show the properties of the 80 VNMP-
DRL instances used as base for the performed experiments.
Table I shows the number of nodes and arcs and Table II the

TABLE I: Number of used VNMP-DRL instances per size (#)
and the average number of substrate arcs (A), VN nodes (V ′)
and VN arcs (A′) of those instances.

Size # |A| |V’| |A’|
20 14 53.7 118.2 146.0

30 14 95.4 215.0 264.0

40 14 126.1 275.4 382.0

50 14 172.1 308.0 523.9

70 14 259.4 478.7 835.6

100 10 399.0 648.0 1276.9

TABLE II: Average number of Stream, Web, P2P and VoIP
VNs contained in the used VNMP-DRL instances.

Size Stream Web P2P VoIP

20 6.6 8.5 4.4 4.1

30 13.1 14.6 7.6 7.8

40 16.4 18.5 6.9 7.1

50 14.4 16.5 7.5 6.4

70 18.1 17.9 6.1 7.6

100 14.0 15.8 6.8 9.1

number of VNs contained in the instances. Note that while the
number of nodes and arcs contained in the instances rises with
the instance size, the number of VNs does not (after size 20).
This is because the VNs grow in size as the substrate grows.
P2P and VoIP VNs are fewer than the other VN types because
they require more resources individually. We tested only on 10
instances of size 100 because the instance set contains fewer
instances of this size.

B. Extension Procedure

After we executed the extension procedure for all 80 in-
stances and for each of the four VN types, the extracted failure
reasons were distributed as shown in Table III.

It can be seen that in general missing routing capacities
are prevalent, no matter which type the additionally added
VNs are. For stream VNs, the fraction of missing routing
capacities is reduced while CPU capacities are missing more
often with increasing substrate size. Normally, one would
expect the development to be the other way around, because
routing capacities are needed at multiple nodes in the sub-
strate network to implement a virtual connection, while CPU
capacities are only needed at the start and the end of a virtual
connection. When the substrate grows, so do the average
lengths of the implementations of virtual connections and
the total required routing capacity increases while the CPU
capacity stays the same. This would cause the probability of
missing routing capacity to increase. The reason why missing
CPU resources become more prominent is that the nodes of
stream VNs require a lot of CPU capacity (because they
have to split and distribute video streams). The VN sizes
grow proportional to the substrate sizes, therefore the stream
VNs for larger substrates can contain more nodes which
perform video stream splitting which in turn requires more
CPU resources. In relation to the missing CPU and routing



TABLE III: Fraction of failure reasons of a specific type (missing CPU- (C) or routing- (R) capacity, missing bandwidth (B)
or too much delay (D)) during the first run of the extension procedure for each VN type in relation to the total number of
found failure reasons in percent. (May not add up to exactly 100% due to rounding.)

Stream Web P2P VoIP
Size C R B D C R B D C R B D C R B D

20 39.9 56.0 4.1 0.0 12.5 66.2 0.0 21.3 11.9 80.3 7.8 0.0 11.5 88.0 0.2 0.2

30 35.5 43.7 20.7 0.0 10.6 40.8 12.3 36.3 5.1 53.3 41.6 0.0 4.3 48.1 40.3 7.3

40 42.9 46.1 11.0 0.0 8.9 37.5 9.1 44.4 13.3 58.8 27.9 0.0 16.2 42.2 12.9 28.7

50 39.5 38.6 21.9 0.0 6.2 38.0 12.7 43.1 1.8 78.7 19.0 0.5 4.6 45.5 31.6 18.4

70 53.7 33.4 12.8 0.0 9.2 28.0 13.3 49.4 6.0 61.7 31.7 0.6 5.6 58.7 34.0 1.7

100 48.9 36.5 14.6 0.0 4.0 42.6 3.3 50.1 5.2 88.8 6.1 0.0 19.1 74.1 5.1 1.6

capacities, the substrate link bandwidths only play a subsidiary
role and no link was found to have too much delay, which is
not surprising since the virtual connections in stream VNs are
not delay constrained.

This is not true for web VNs which are heavily delay
constrained. For substrates of size 100, more than half of all
found failure reasons are too high delay on some substrate arc.
This fraction rises with increasing substrate size because the
average length of virtual arc implementations and therefore
the total accumulated delay grows.

When embedding additional P2P VNs into the substrate,
missing bandwidths on substrate links become a significant
issue for the first time, even though missing routing capaci-
ties still dominate. Again, this is because the (already high)
bandwidth requirements of P2P VNs require a lot of routing
capacity in the substrate nodes and depending on the particular
substrate configuration one resource is more limiting than
the other. Also note that a bias against bandwidth changes
exists, since adding one unit of bandwidth costs five times
more than a unit of routing capacity. That means that if an
additional VN can be added either by adding four units of
routing capacity or adding one unit of bandwidth, four units
of routing capacity are reported missing because this is the
cheaper solution. However, this effect can also be witnessed
the other way around with this VN type. Even though P2P
VNs are not delay constrained, for sizes 50 and 70 delays were
reported missing. This can happen because the initial instances
contain all four VN types, i.e. also some with delay constraints.
By reducing the delay somewhere, the virtual connections with
delay requirements can be implemented by using a previously
impossible substrate path which frees up resources for new
VNs where they are needed. This can be the cheaper solution,
even though decreasing link delay by one unit costs twenty
times more than adding a unit of routing capacity for instance.

For VoIP VNs, missing bandwidths are again prominent
(after missing routing capacities). Also link delays play some
role, but since VoIP VNs are not as delay constrained as web
VNs it is not surprising to see that delays are less often a
failure reason when compared to web VNs. Unfortunately we
can offer no conclusive reason as to why the fraction of delay
reasons fluctuates so much for VoIP VNs. Larger instances
reduce the probability that the presented ILP can be solved to

optimality, so one possible explanation could be that feasible
solutions which only change other resources are predominantly
found. Due to space constraints we cannot go into more detail
with regards to the performance of the ILP, but in a nutshell, it
works well up to substrate sizes of 50, i.e. more than 99% of
executions yield useful results (a valid solution within the gap
limit). For sizes 70 and 100, there is a split between stream
and web VNs on the one hand and P2P and VoIP VNs on
the other. For stream and web VNs, we still get useful results
more than 90% of the time. For P2P and VoIP VNs, this is
reduced to 85% for instances of size 70 and even 45% for size
100.

Based on the reported missing ressources for each instance,
we added resources to each VNMP-DRL instance as outlined
in Subsection IV-B. Table IV shows the change to the available
resources in the substrate because of the added resources.

It can be seen that only a very small amount of resources
was added to the substrate, as was our goal. Generally, the total
available amount of resources was increased by less than one
percent. The most notable exception to this are the delays when
adding Web or VoIP VNs. There are three factors that work
together to cause this. First of all, web and VoIP VNs are delay
constrained, so even though delays are not very often reported
to be too high, the reported magnitude is high. Secondly,
the astute reader will have noted that s is also applied when
calculating delay changes for uniformity reasons, even though
it is not strictly necessary. If the delay of a substrate connection
is reduced all future VNs will benefit, at least in our simplified
model where substrate link delays are independent of link
load. The same is not true for the other resource types, since
they are used up by additional VNs, which is the reason why
we add more resources than are reported missing. The third
contributing factor to the large delay changes is the fact that
the sum of all delays in the substrate is less than the sum of
the other resource types, so changing the delay by some fixed
amount will be a larger relative change than for the other
resources.

The following subsection will answer the question whether
the resources added to the substrate could influence pem in a
meaningful way.



TABLE IV: Relative change of the available resources in the substrate due to the found failure reasons in percent.

Stream Web P2P VoIP
Size C R B D C R B D C R B D C R B D

20 1.4 0.7 0.2 0.0 0.1 0.3 0.0 -8.4 0.1 2.1 0.0 0.0 0.2 2.2 0.0 -1.2

30 0.6 0.4 0.2 0.0 0.0 0.1 0.0 -5.9 0.1 1.0 0.1 0.0 0.1 0.9 0.1 -3.8

40 0.4 0.3 0.1 0.0 0.0 0.1 0.0 -7.5 0.1 1.2 0.1 0.0 0.2 1.2 0.1 -3.5

50 0.2 0.1 0.2 -0.2 0.0 0.1 0.1 -6.5 0.0 0.8 0.3 -0.9 0.1 0.9 0.3 -5.7

70 0.2 0.1 0.0 -0.2 0.0 0.0 0.0 -2.3 0.0 0.5 0.1 -0.3 0.1 0.5 0.1 -0.4

100 0.1 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 -0.1
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(c) P2P+VoIP
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(d) P2P+VoIP-R

Fig. 3: pem development for both runs of the extension procedure and all VN types. Suffix R denotes the second run with
additional resources for the substrates.

C. Change to pem

The complete development of pem during both runs of the
extension procedure can be seen in Figure 3. It shows how
often a specific pem occurred depending on the number of
added VNs. Stream and Web have been combined into one
graph, as have P2P and VoIP, because they show very similar
behaviour. Clearly visible is the shift of the clusters to the
right, i.e. more VNs can be added before the substrate is full.
Figure 3b shows that for stream and web VNs, the added
resources cause a substantial fraction of instances to stay at
pem = 1 during the first five added VNs. This is in contrast to

the situation before additional resources were added, as seen
in Figure 3a. After five added VNs, most instances show a
pem smaller than 0.2. A similar, although not as pronounced,
development can be seen for P2P and VoIP VNs. It can
be seen that during the first run of the extension procedure
(Figure 3c) it happens very often that the initial VNMP-DRL
instance cannot be extended with an additional VN. Nearly
every initial instance has pem ≤ 0.12. After adding additional
resources, pem of the initial instance covers the whole range
of possibilities. Adding further VNs reduces pem far more
rapidly than for stream and web VNs. On the whole the



TABLE V: Average pem in percent for the first run of the
extension procedure and for the second run with additional
substrate resources.

Stream Web P2P VoIP
Size 1st 2nd 1st 2nd 1st 2nd 1st 2nd

20 13.6 38.8 18.4 59.7 7.4 20.2 7.9 20.4

30 13.1 39.6 14.7 60.8 3.3 18.2 3.7 15.5

40 13.5 42.7 11.7 60.6 4.3 15.4 3.1 14.3

50 15.7 40.7 9.0 51.7 11.6 13.6 7.2 14.7

70 12.7 33.5 11.3 31.5 2.6 11.7 2.9 15.4

100 8.0 31.7 12.2 30.9 0.0 0.9 0.0 0.6

added resources are more effective for influencing pem for
stream and web VNs than they are for P2P and VoIP VNs.
There are two possible explanations for this behaviour. First
of all, since the first run of the extension procedure for P2P
and VoIP VNs often could not extend the initial instance,
the collected failure reasons only contain reasons why adding
one VN might fail. Therefore, after adding resources, only
adding the first VN works well and pem rapidly approaches
zero afterwards. Another possible explanation is that the used
settings for determining where and how much resources are
added might not cause enough resources to be added so that
multiple VNs can be embedded in the substrate. The chosen
settings work well for stream and web VNs, but might be
too conservative for P2P and VoIP VNs, which require more
resources per VN.

In Table V, we show the average embedding probability
for all instances generated by both runs of the extension
procedure. It can be seen that the greatest gains have been
achieved for web VNs (which also had the largest resource
change). A close second are stream VNs, where less than
1% change in resources increased pem by 20% and more on
average. The improvements for P2P and VoIP VNs were not
as great, especially for instances of size 100 where the ILP
fails to extract useful failure reasons due to time and memory
constraints.

VI. CONCLUSION

In this work we showed that a simple ILP can be success-
fully employed to find bottlenecks in a substrate. Our results
exposed that less than one percent of additional resources in
the substrate network can increase the probability that addi-
tional VNs can be embedded by 20% or more. We also showed
that different use cases (i.e. different VNs) lead to different
resources being added to the substrate, so Virtual Network
Operators (VNOs) are able to optimize their networks to cater
best to the VN types they encounter the most. Furthermore,
we think that it is useful to identify bottlenecks using the same
methodology as for the embedding process later on in order
to avoid side effects due to remapping of VNs (e.g. caused by
reduced path delays).

Thus, a VNO could monitor its current network situation
and decide whether the lease of additional resources on a
specific location is necessary to provide a certain service
availability. Knowing these bottlenecks in advance offer the

VNO the possibility to preconfigure these resources in order
to reduce the embedding time in the presence of a new VN
request.
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