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Abstract—In the past decade, video streaming has taken over
a large part of the current Internet traffic and more and more
TV broadcasters and network providers extend their portfolio
of video streaming services. With the growing expectations of
video consumers with respect to the service quality, monitoring
is an important aspect for network providers to detect possible
performance problems or high network load. In parallel, emerg-
ing technologies like software defined networking or network
virtualization introduce support for specialized networks which
allow enhanced functionality in the network. This development
enables more sophisticated monitoring techniques in the special-
ized networks which use knowledge about the video content to
better predict the service quality at consumers. In this work,
we present a content-aware SSIM-based monitoring technique
and compare it with the current state-of-the art which infers the
service quality from the monitored packet loss. We further show
how network conditions like packet loss or bursts influence the
two different monitoring techniques.

I. INTRODUCTION

Recent studies [1] prove the growing importance of video
streaming via IP networks. This includes IPTV solutions where
videos are typically transmitted in a multicast fashion via
dedicated networks using connectionless transport protocols
like RTP/UDP. In parallel, emerging technologies like soft-
ware defined networking or existing technologies like net-
work virtualization enable application specific networks by
creating virtual networks above a physical substrate. Related
concepts and business roles in a virtualized environment have
been studied in an earlier work [2]. Physical infrastructure
providers (PIPs) own and operate the hardware and offer
virtualized resources. Virtual network providers (VNPs) gather
these virtual resources and construct virtual networks. Finally,
virtual network operators (VNOs) request application specific
networks with special requirements, e.g. setting up a service
level agreement (SLA) and ramp up the network, i.e. install
hosts, define protocols, and control the network. In such a
virtualized architecture, application specific virtual networks
may span several physical networks under different adminis-
trative domain. These physical domains could comprise cloud
or data center networks, best-effort transport networks as well
as customer access networks. The VNO operates the virtual
network which is for example tailored to accommodate a video
streaming service and must ensure a good service quality.
This requires an application aware monitoring which enables
the VNO to detect possible performance problems and to
identify, which physical domain is responsible. Up to now, the
monitoring of video streaming services usually only involves

simple performance metrics like consumed bandwidth, packet
loss, or experienced delay or jitter for the customers. However,
these simple metrics are not sufficient to accurately predict
the quality of experience at the end user under the current
network situation. For that, user-centric monitoring techniques
are required which for example utilize content-specific in-
formation to predict the experienced service quality at the
customers. In this work, we present a user-centric monitoring
technique which uses precomputed knowledge about the video
content to assess the service quality of video consumers. The
proposed monitoring technique takes into account the quality
degradation due to lost frames and stores that information on
monitoring nodes in the network. The computation is based
on the structural similarity (SSIM) [3] metric and uses a
mapping from SSIM to video quality in order to predict the
quality at the video consumer. The remainder of this paper
is structured as follows. In Section II, we present related
work and explain differences to our approach. Section III
explains the foundation for our monitoring approach and gives
functional details. Section IV introduces the used environment
for the evaluation and in Section V, we compare our proposed
monitoring technique with the current state of the art in video
monitoring and highlight, in which scenarios our proposed
solution outperforms the state of the art monitoring and what
is the tradeoff. Finally, we conclude the paper in Section VI
and present future work.

II. RELATED WORK

A. Video Quality Estimation Methods

The perceived video quality can be investigated in subjec-
tive tests, where presented stimuli—such as impaired video
sequences—are rated by subjects under controlled conditions.
The grades of the scale are mapped for instance to numerical
values from 1 (bad quality) to 5 (excellent) or 1 to 100, and the
mean of the scores, the MOS value, is obtained for each test
condition. The obtained rating expresses the subjective Quality
of Experience (sQoE). The results of such surveys reflect the
user’s perception and thus have a high significance. However,
due to different quality judgment of human observers, multiple
subjects are required to participate in a subjective study [4].
According to [5], at least 15 observers should assess stimuli in
order to gain significant results. Tests are conducted manually
in a controlled environment which is time-consuming and
costly. Thus, it should be used as base data for objective
video quality algorithms which automatically predict the visual
quality of a video clip. Objective video quality metrics can be
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classified into three categories by the required amount of ref-
erence information [6]: Full-Reference (FR) metrics are based
on frame-by-frame comparison between a reference video and
the video to be evaluated; No-Reference (NR) metrics have
to make assumptions about the video content and distortions,
e.g. by evaluating the blockiness of a frame, as a common
artifact in block-based compression algorithms such as MPEG;
Reduced-Reference (RR) metrics evaluate the test video based
on a subset of features previously extracted from the reference
video. Based on the complex nature of cognitive aspects and
the human visual system, objective quality metrics do not
capture its entire complexity and focus on aspects, which
have been shown to correlate well with human perception
in subjective tests. Typically publicly available full reference
metrics can be used to compute the quality of a transmitted
video clip, i.e., the Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index Metric (SSIM), and Video Quality
Metric (VQM). These mechanisms range in their complexity
and their correlation with human perception.

B. Video Quality Monitoring in the Network

Different quality monitoring mechanisms of video over IP
networks have been investigated in research. The most simple
mechanism is to define a packet loss threshold for the IPTV
service and assume the video quality as acceptable as long as
the threshold is not exceeded. This technique does not take any
video and content information into account. While a lost packet
will produce a large error in regions with medium motion, it
may produce no sizable error in regions with low motion. The
mechanism introduced by Reibman et al. [7] focuses on no
reference methods which estimate the video quality on network
level and, if possible, on codec level. The estimation on codec
level includes for instance spatio-temporal information and
effects of error propagation. Tao et al. [8] propose a relative
quality metric, rPSNR, which allows the estimation of the
video quality against a quality benchmark provided by the
network. The introduced system offers a lightweight video
quality solution. Naccari et al. [9] introduce a no reference
video quality monitoring solution which takes spatio-temporal
error propagation as well as errors produced by spatial and
temporal concealment into account. The results are mapped
to SSIM and compared to results gained by computing the
SSIM of the reference video and the distorted video. All these
video quality monitoring mechanisms work on no reference or
reduced reference metrics for estimating the video quality. A
brief overview over current research questions within the area
of IPTV monitoring can be found in [10].

III. PROPOSED MONITORING SOLUTION

In this section, we first present the considered scenario for
our proposed monitoring solution and detail the functionality
of our approach.

A. Considered Scenario and Assumptions

The considered scenario for our proposed monitoring solu-
tion is a virtual network that has been created by combining the
virtual resources of several physical infrastructure providers
to host an IPTV streaming service (see Figure 1). A virtual
network operator controls and manages the network and is
responsible for a good service quality of customers. Hence,

Fig. 1. Considered scenario and monitoring architecture.

the virtual network operator deploys monitoring agents at
critical locations in the network so that the monitoring can
detect the location of possible performance problems, i.e.
which physical domain is responsible. The agents either run
directly on intermediate nodes or on dedicated monitoring
nodes that receive mirrored traffic from intermediate nodes
like routers or switches. With traffic or port mirroring, the
data traffic is duplicated during the forwarding process and
sent to preconfigured nodes which perform predefined traffic
analysis or monitoring tasks. Due to emerging technologies
like OpenFlow, this can even be achieved on a per flow and
hence video stream basis. The IPTV service is connected to
a cloud environment which is able to perform a fast SSIM-
based video analysis on a per group of pictures basis. Thus,
we apply a live SSIM-based video analysis to compute the
distortion for loss scenarios where exactly one frame is lost.
In addition, the inter-frame dependencies within a group of
pictures are also extracted. This information is then distributed
via a central monitoring database to the monitoring agents in
the network. The agents monitor the multicast video streams
and map monitored packet losses to the video quality and
send this information to the central monitoring database. To
track the transmitted frames, the monitoring agent can use
deep packet inspection to discover the necessary information
from the video frame header. However, this may constitute
performance problems as a lot of streams may pass through the
monitoring agent. Another possibility is to provide information
via an additional shim header between transport and applica-
tion headers. It includes the frame index and the number of
packets per frame. The header is added at the edge close to or
by the video streaming servers and is removed at the border to
the customer domain. The agents then monitor the seen packet
indexes in the shim header. If there is a gap in the frame index,
the agent considers that frame as lost and calculates the service
degradation at consumer side. This approach assumes that there
is no packet reordering on one path so that we can infer lost
packets from frame index gaps. To show the viability of our
proposed monitoring solution, we have already implemented
our solution in a testbed and a demonstration has been shown
at the EuroView conference 2012 [11].

B. Precomputation of Distortion

Our proposed monitoring solution uses detailed knowledge
about the video to calculate how much influence a specific



Algorithm 1 Update process of dGOP .
Input1: distortion of lost frame (dFrame)
Input2: current distortion per GOP (dGOP )
if lost frame not dependent on other frames then

dGOP += dFrame

else
if required frame is also lost then

ignore distortion value for this frame
else
dGOP += dFrame

end if
end if

lost packet and hence lost frame has on the service quality for
consumers. We apply a cloud computing based live analysis
of the streamed video and generate distortion information for
loss scenarios where exactly one frame within a group of
pictures is lost. The distortion values are computed according
to the structural similarity (SSIM) [3] index and we define the
distortion as the dissimilarity of two frames. Beneath the SSIM
metric, several other methods, e.g. the video quality metric
(VQM) are possible and we have chosen the SSIM metric as
it offers a fast computation and good correlation. For each
frame within a group of pictures, the video analysis generates
a loss scenario where only this specific frame is dropped and
the resulting distortion on all frames within that group is
investigated. Therefore, we directly compare the undistorted
image fGood with the distorted image fBad via the SSIM
method and hence obtain, how different the undistorted and
distorted image are. The SSIM index yields values between 0
and 1 and the distortion value per frame dFrame is defined
according to Equation 1.

dFrame = 1− SSIM(fGood, fBad) (1)

The distortion value per single frame dFrame hence has
a maximum of one which means two completely different
pictures. However, only I-frames are completely independent
of other frames and constitute fixed pictures. All other frame
types are dependent on other frames and if these frames are
lost, the dependent frames cannot be decoded and must also be
considered lost. Hence, a single frame can have a much higher
distortion value in case a lot of other frames are dependent
on this frame. To normalize the distortion per group dGOP ,
we divide it by the number of frames per group. To get the
dependencies between the frames in a group of pictures, we
also investigate in the above emulated loss scenarios which
other frames are also distorted in the currently considered
group of pictures if a specific frame is lost. In total, the video
analysis offers a high potential for parallel computing, i.e.
processing the different loss scenarios on separate computing
nodes within a computing cloud. Our current experience shows
that depending on the degree of parallelization, this process is
feasible within less than a second.

C. Calculation of Video Distortion

The distortion value is calculated per group of pictures and
once the agent sees the next group of pictures in the stream,
the old distortion value of the former group of pictures is
sent to the monitoring database and the value is reset to 0

Fig. 2. Simulation model with Gilbert Elliot two state network model.

for the next group. For each lost frame per group then, the
monitoring agent updates the distortion value dGOP according
to Algorithm 1. First, the monitoring agent checks whether the
lost frame is dependent on other frames. If the lost frame is not
dependent, the agent looks up the distortion value for the lost
frame dFrame and adds this value to the distortion value of the
currently considered group of pictures (dGOP ) and the update
process is finished. If in contrast the lost frame is dependent on
other frames, the agent needs to check whether these frames
are also lost. If the currently considered frame requires another
frame which is also lost, the distortion of the current frame is
already include and can be ignored. In this case, no update of
the dGOP value is required. If in contrast the required frame
is not lost, the distortion of the currently considered lost frame
is not yet included and hence, the distortion dFrame is added
to the dGOP value.

IV. EVALUATION SETUP

In this section, we describe the setup for the evaluation in
Section V. We have implemented both monitoring solutions
in the event-based simulation platform OMNeT++ [12] to
quickly evaluate different loss scenarios. First, we describe
the simulation model as well as the simulation setup. Then,
we introduce the performance metric used to compare the two
monitoring solutions.

A. Simulation Model and Setup

The implemented simulation model is depicted in Figure 2.
A server module acts as streaming source and reads the video
information from a video source file. This file contains for each
frame the index, the type, the size, the number of packets, and
the time stamp when the first packet of this frame should be
sent. Subsequent packets of a frame are sent once the preceding
packet has been written on the link. Hence, the link bandwidth
at the server module influences the inter-packet time. For the
simulation of different packet loss and burst scenarios in the
network, we use the Gilbert-Elliot two state model [13], [14]
which can be seen in the dashed box in Figure 2. This model is
based on a Markov-Chain with two states that model different
behavior of possible bottlenecks. The first state G is called
normal state while the second state B is called burst state. The
start state is state G and for each packet, a random number
is drawn. In state G, Bernoulli random numbers with mean
p0 are drawn and in state B, Bernoulli random numbers with
mean (1 − p1) are drawn. A random number of 0 means
remaining in the current state and a random number of 1



TABLE I. INFLUENCE OF STATE TRANSITION PROBABILITIES ON
BURSTINESS.

Packet loss p0 p1 Burstiness
1.0 % 0.01 0.01 none
1.0 % 0.006 0.4 low
1.0 % 0.003 0.7 medium
1.0 % 0.001 0.9 high

TABLE II. QUALITY MAPPINGS.

Packet loss Quality
< plthreshold good (1)
≥ plthreshold bad (0)

(a) Mapping: packet loss → quality.

Distortion Quality
[0, 0.01[ good (1)

[0.01, 0.05[ good (1)
[0.05, 0.12[ good (1)
[0.12, 0.5[ bad (0)
[0.5, 1.0] bad (0)

(b) Mapping: distortion → quality.

means changing the state. If the model is currently in state
G for a packet, nothing happens. However, if the model is
in state B, the packet is dropped. The total packet loss as a
function of p0 and p1 can be calculated as p = p0

p0−p1+1 . Table
I shows for a packet loss rate of 1 % the parameters p0 and
p1 for different burst scenarios. If both parameters are equal,
there are no bursts and there is a steady packet loss. For an
increasing value of p1, the burstiness also increases as long as
the total packet loss remains the same. After the packets have
traversed the network module, they arrive at a player module
which simulates video playback and models the video sink.
The player module also implements our proposed monitoring
solution and calculates the distortion per group of pictures.
We have investigated our proposed monitoring solution and
the difference to the packet loss-based solution for different
packet loss and burst scenarios. As video for the evaluation, we
have used the SINTEL video [15] from the Durian open movie
project in the 1080p version and with a group of picture size
of 30. Each packet loss and burst scenario has been conducted
250 times in order to compute mean and confidence intervals.

B. Misclassification Rate per Group of Pictures

For the comparison of the proposed monitoring solution
with the packet loss-based approach, we apply a mapping for
both solutions to a common quality metric which rates the
video quality of a group of pictures either good or bad. The
packet loss-based monitoring approach maps the packet loss to
the quality according to a threshold plthreshold which is shown
in Table IIa. As long as the packet loss per group of pictures
is below the threshold plthreshold, the quality is good. If the
packet loss is higher than the threshold plthreshold, the quality
is bad. For our proposed solution, the distortion is first mapped
to the MOS value according to [3] and then to the video
quality according to [10]. There the authors have shown via
subjective tests for web services that 90 % of the users already
accept a fair video quality (MOS 3). The resulting mapping
from distortion to video quality can be seen in Table IIb.
In the following, we assume the distortion-based monitoring
as reference and define the misclassification rate per group
of pictures as the difference between the monitored quality
level of the distortion-based monitoring and the packet loss-
based monitoring. Underestimation of distortion means that the
packet loss-based monitoring rates a group of pictures good
while the distortion-based monitoring rates the group of pic-
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Fig. 3. Influence of Burstiness on Distortion-based monitoring solution.

tures bad. Overestimation of distortion means that the packet
loss-based monitoring rates a group of pictures bad while the
distortion-based monitoring rates the group of pictures good.
The total misclassification is then the sum of the under- and
overestimation rate.

V. EVALUATION

In the following, we present the evaluation of both mon-
itoring solutions for different loss and burst scenarios. First,
we present the sensitivity of our proposed monitoring solution
regarding burstiness and packet loss. Second, we utilize the
defined misclassification rate to show in which scenarios the
simple packet loss-based monitoring is not suitable.

A. Influence of Different Packet Loss Scenarios

In Figure 3, we investigate the influence of different burst
scenarios on the average distortion per group of pictures. The
considered video for the evaluation has 700 groups of pictures
in total. The different colored lines in the plot show the average
distortion per group of pictures for different burst scenarios. In
all scenarios, the total packet loss was set to 1 % and the dark
brown line constitutes the no burst scenario. The bright orange
line depicts the high burst scenario. The corresponding entries
in the legend show the respective parameters of the Gilbert-
Elliot model which have been used to generate the different
scenarios. Considering the influence of the burst scenarios,
it is apparent that the higher the burstiness in the network,
the lower the average distortion per group of pictures. In the
no and low burst scenarios, almost every group of pictures
becomes distorted because there is a steady packet loss. If
the bursts increase, the packet loss is not steady anymore and
concentrates on fewer groups of pictures. For these few groups
of pictures, the distortion is larger but not significantly larger
due to the dependencies between the frames. If within a group
of pictures all frames are dependent on the I-frame, it does
not matter if only the I-frame is lost or if all frames of this
group of pictures are lost, the distortion would be the same.
Overall that is the reason why the average distortion per group
of pictures is lower for higher burst scenarios. This result is in
line with the results from other papers, e.g. [16]. To investigate
the influence of the mean packet loss rate, we have plotted
the average distortion per group of pictures against the mean
packet loss rate in Figure 4. We see that there is a maximum
average mean distortion per group of pictures of about 0.17
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Fig. 4. Mean average distortion for different packet loss rates.

which is depending on the burst scenario reached after a certain
mean packet loss. The higher the burstiness in the network, the
later the maximum is reached. For the no burst scenario, the
maximum is immediately reached once the mean packet loss
is greater than 0. In the no burst scenario, there is a steady
packet loss and increasing the mean packet loss rapidly leads
to a larger fraction of affected groups of pictures than in the
burst scenarios. There due to the packet loss burst, it takes
a high mean packet loss until a similar fraction of groups of
pictures is affected as in the no burst scenario.

B. Influence of Packet Loss Threshold on Misclassification

In the second part of the evaluation, we use the defined
misclassification rate to compare our proposed monitoring
solution with the packet loss-based monitoring solution for
different packet loss and burst scenarios as well as for different
packet loss thresholds. In Figure 5, we show the influence
of the mean packet loss rate in the network on the average
misclassification rate of groups of pictures. In Figure 5a, the
misclassification rate for the no and high burst scenario as
well as for different packet loss thresholds for the packet
loss-based monitoring are shown. The solid lines denote the
no burst scenario and the dashed lines denote the high burst
scenario. By considering the no burst scenario, it can be seen
that the misclassification rate of groups of pictures increases
for an increasing mean packet loss rate. The high burst scenario
behaves similar but the misclassification rate is lower in that
case. The reason for the increase due to a higher packet loss
rate is that the number of affected groups of pictures increases
which leads to a higher chance of misclassification. This effect
is reduced for the high burst scenarios as the number of
affected groups of pictures decreases due to the occurring
bursts. In Figure 5b, we separate the misclassification rate
in over- and underestimation of distortion. The solid lines
depict the total misclassification for the corresponding packet
loss thresholds plthreshold = 0.5, 1.0, 2.0 %. The dotted lines
depict the overestimation rate and the dashed dotted lines
depict the underestimation rate for the three different packet
loss thresholds. For an increasing mean packet loss, the over-
estimation rate increases and constitutes a large fraction of the
total average misclassification. The low packet loss thresholds
in those cases lead to a high overestimation of distortion and
indicate that the packet loss threshold is an important param-
eter which may negatively influence the accuracy. Concerning

the underestimation rate, the higher mean packet loss has not
much influence on the underestimation rate and first increases
but then decreases again. For a higher mean packet loss, the
peaks of the bursts gain intensity and more often exceed the
packet loss threshold which leads to fewer classifications of
good groups of pictures by the packet loss-based monitoring
and a constant underestimation rate. As already mentioned,
the packet loss threshold is an important parameter which may
negatively influence the accuracy of the packet loss metric and
in the following, we investigate the over- and underestimation
rate for different packet loss rates and different packet loss
thresholds. The x axes in Figures 6a and 6b show the packet
loss threshold of the packet loss metric between 0 and 100 %.
The different colored lines correspond to different mean packet
loss rates while brighter lines correspond to higher mean
packet loss rates. Considering the underestimation in Figure
6a, a packet loss threshold of 0 % leads to no underestimations
as all groups of pictures are classified as bad. This however
leads to the highest overestimation of distortion in Figure
6b. Increasing the packet loss threshold also increases the
underestimation of distortion as more groups of pictures are
falsely classified as good and decreases the overestimation as
more groups of pictures are correctly classified as good. For
a packet loss threshold of about 10 %, the underestimation
rate has nearly reached its maximum and the overestimation
rate is nearly 0 and negligible. Once a packet loss threshold of
50 % is reached, the overestimation of distortion is 0 and the
underestimation has reached its maximum. For that threshold,
all groups of pictures are classified as good and there are
no groups of pictures classified as bad. These results show
that there is no optimal threshold for the packet loss metric.
The minimum misclassification is reached for a threshold
larger than about 10 % but in that case, the underestimation
of distortion constitutes a large fraction. From the service
provider point of view, this means that possible problems
are seen too late and the customers may already experience
service degradations. Only by using our proposed monitoring
metric, influences of packet loss on the service quality can be
calculated with the required accuracy.

VI. CONCLUSION

In this work, we proposed a monitoring solution for IP
video streaming services which utilizes knowledge about the
video content to predict the service quality under different loss
and burst scenarios in the network. Our solution precomputes
the distortion induced by losing frames using the full refer-
ence metric SSIM and the encoding dependencies between
the frames. This information is continuously transmitted to
monitoring agents distributed in the network. These agents
calculate the video quality based on the forwarded video
frames. To show the viability of our solution, we compared it
with a typical approach based on packet loss thresholds. The
results indicate that our solution outperforms the simple packet
loss metric and is more suitable for video quality monitoring.
Future work will focus on the comparison of the proposed
solution with other monitoring approaches with respect to the
trade-off between monitoring costs, scalability, and accuracy.
This also includes subjective user surveys which can be used
as one metric for the comparison, and also to improve the
accuracy of the proposed video monitoring solution.
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