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Abstract—Network Measurement has emerged as one promis-
ing field of application for Software Defined Networking. The
reason for this is that the logically centralized control plane
of an SDN network inherently has to aggregate network state
information in order to function. This circumstance can be
leveraged for network measurements at the SDN controller
without the need for additional equipment or active — and possibly
disruptive — measurements in the network itself. However, the
accuracy and potential resource overhead of this approach has
not been discussed. In this paper we compare an SDN-based
solution to actual traffic measurements in order to determine
its accuracy and resource demand by performing tests in an
OpenFlow testbed.
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I. INTRODUCTION

In today’s networks the monitoring of Quality of Service
(QoS) parameters like bandwidth, packet loss, and delay is
essential to ensure the smooth operation of multimedia ap-
plications as well as the control of service-level agreements
and fault detection. This is often done using a measurement
setup that actively sends traffic through the network. However,
this approach requires expensive special purpose measurement
equipment. Furthermore, such a measurement often can only
be performed in off-peak hours as an active measurement
probe could disrupt critical production traffic. Thus, only
limited statements are possible for the QoS experienced during
business hours from inside the network. While today the
application itself can actively monitor a subset of its own QoS
parameters, it can not directly influence the network.

The introduction of SDN gives the network the ability to
passively perform network-wide QoS measurements relying
on the actual production traffic. This is possible using other
techniques, but the SDN approach essentially turns network
measurements into a primitive function of the network itself,
eliminating the need for additional devices and allowing for
a more representative view of the network state by increasing
deployment flexibility. This in turn can then be used as direct
input for SDN network control.

In this paper, we investigate how accurately a purely SDN-
based approach can measure network parameters compared to
a full reference packet trace. Furthermore, we highlight the
method’s potential cost and implementation difficulties. We
do this by performing measurements using the SDN-based
approach in an OpenFlow [1] testbed, while simultaneously
mirroring and capturing the measurement and control traffic.
We aim to answer the question if and in which case a network
operator can benefit from a purely SDN-based measurement
setup.

The remainder of this paper is structured as follows.
In Section II we provide background information to SDN
and discuss related work in the field of measurements and
monitoring. We then introduce the measurement architecture in
Section III. The testbed setup and test scenarios are presented
in Section IV. Section V discusses the results with regard to
the different measurement parameters. Finally, we derive our
conclusions in Section VI.

II. BACKGROUND AND RELATED WORK

We give a short introduction to Software Defined Network-
ing in this section as having a basic idea about how SDN works
is key to understanding the measurement approach we discuss.

A. Introduction to Software Defined Networking

The main principle behind SDN is to provide an open
interface to the forwarding hardware in networks as described
in [2]. The goal is to be able to directly influence the forward-
ing process of a network element using a freely programmable
control software, thus no longer relying on proprietary man-
agement and control systems. This has the prospect of leading
to a faster pace of innovation in the network as well as more
competition on the market reducing the costs for network
operators. To achieve this, a pure SDN switch does not have
any conventional control-plane functionality but fully relies on
the external controller entity to make forwarding decisions.
Current SDN realizations often rely on the OpenFlow protocol
standardized by the Open Networking Foundation [3] for
the communication between data- and control-plane. Each
OpenFlow-enabled device contains so called “flow tables”,
which hold a set of forwarding or "flow rules”. Contrary to
conventional switches, a flow rule does not match a single
address but a specific flow represented by a match consisting
of e.g. physical, network, and transport layer header fields.
The flow rule itself consists out of this match for a specific
flow, a corresponding action, and statistical counters. Once a
network packet arrives at an OpenFlow switch, it is buffered
and its header is extracted and matched against the flow rules
in one or more flow tables. If a match is found, the action
or actions defined by the rule is executed, e.g. forwarding or
dropping the packet, and the flow statistics are updated. If
no match can be found in any table, the packet can either
be dropped or the header information is encapsulated into an
OpenFlow “packet-in” message and sent to the controller. The
controller determines the appropriate action for the packet and
sends it back to the requesting network element for execution.
Additionally, the controller can derive a flow rule, which
specifies an action for all packets of the same flow. When



the new flow rule arrives at the network element, it is entered
into a flow table and matched against arriving packets. For
SDN-based measurements specifically, two OpenFlow features
are important. First, the ability of the OpenFlow controller to
query the per-flow packet and byte counters via an OpenFlow
“stats request” message and second, the possibility to define
the controller as the target of an output action at the switch,
which enables the redirection of packets to it. For further
details we refer to the OpenFlow specification [1].

B. Previous Works on (SDN-based) Measurements

In [4] Zseby evaluates sampling methods for passive QoS-
measurements in conventional networks and highlights the
challenges when implementing such an approach. It is these
challenges that an SDN-based approach appears suitable to
levy.

In recent years there have been several works that investi-
gate ways on how to leverage SDN and specifically OpenFlow
for network measurements and monitoring. Tootoonchian et
al. [5] propose an OpenFlow-based approach for traffic matrix
estimation by intelligently querying flowtable counters. We
evaluate the accuracy of these kind of queries for bandwidth
measurements.

In [6] Jose et al. investigate the possibility to measure large
traffic aggregates in commodity switches, which leads to Yu et
al. [7] introducing the measurement architecture OpenSketch,
which, similarly to the OpenFlow concept, separates the mea-
surement data plane from the control plane. While this is an
interesting approach, we focus on the SDN control plan itself
represented by an OpenFlow controller.

Yu et al. [8] introduce the FlowSense concept, an
OpenFlow-based approach to network measurements with min-
imal measurement costs. We extend this approach by also
taking latency measurements into account, which we discuss
in the following Section III.

III. MEASUREMENT ARCHITECTURE

In addition to bandwidth measurements, our extended SDN
measurement architecture based on FlowSense [8] also takes
one-way delay measurements into account. Figure 1 illustrates
the concept on the example of a connection in an intermediary
SDN network from switch A to switch B. All switches in the
network are connected to the SDN controller via a control
channel. This connection is used for switch control on the one
hand and on the other for the polling of statistics information
from the switches’ flow tables.
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Fig. 1. Measurement Architecture

The flow tables contain packet and byte counters for each
entry. By retrieving their current values the controller can
calculate the current bandwidth consumed by a traffic flow
matching an individual rule. In this case, that is the bandwidth
consumption of our flow on all highlighted links between
switches from A to B. No additional components are required
in the network to measure bandwidth consumption and the
information about it can be directly used to influence the
controller’s policy for the network or to optimize the placement
of the controller(s) within the network [9]. However, this
method requires frequent queries to the individual devices in
order to be accurate for a desired interval.

For the purpose of delay measurements, the methodology
is different. Suppose the goal is to measure the delay on the
connection from A to B in our example network. In traditional
networking, a mirror port would have to be configured on the
ingress and egress device, that would then send all the traffic
to a measurement station, which would than have to filter the
data for the desired flow information and calculate the delay
between the packets received from A and B. With the SDN
approach, the controller can simply insert a temporary flow rule
into switches A and B to send all or a sample of the packets to
the controller parallel to forwarding them through the network.
This way the controller again becomes the measurement device
and can directly react on the network information without
additional equipment.

This approach has several difficulties. We do not know how
accurately the software controller can measure and calculate
bandwidth and delay without the support of special purpose
hardware. Furthermore, the load on the control channel may
be considerable using this approach and it is unknown how, if
at all, this impacts network control. It is the goal of this paper
to answer some of the questions regarding accuracy.

As an alternative to the above described methods, a hybrid
approach between conventional an purely SDN-based measure-
ments is possible. In this approach, the flexibility of SDN
is used to selectively mirror network flows to a dedicated
measurement device instead of the controller. However, this
method requires an additional special purpose device and the
accuracy is determined by the implementation that device
itself. Therefore, the focus of this paper lies on the purely
SDN-based approach.

IV. TESTBED SETUP

We use an OpenFlow-based testbed to evaluate the ac-
curacy and overhead of the purely SDN-based measurement
approach described in Section III. The testbed is shown in
Figure 2. It realizes a simplified version of the scenario in
Figure 1. Iperf [10] is used to send a 1 Mbps UDP flow from
the traffic generator to the traffic sink representing the produc-
tion traffic that should be measured. The flow passes through
two Pica8 Pronto 3290 switches, which represent the ingress
and egress nodes of our intermediary network. Bandwidth
and delay variations experienced in the network are emulated
using NetEm [11] on a Linux PC. We use Floodlight [12]
with a custom measurement module as OpenFlow controller
running on a Dell Poweredge 860 server. The SDN-based
measurements are performed using this controller. For the
delay measurements, the OpenFlow switches send the traffic to



the controller as well as to its destination using two OpenFlow
output actions. Bandwidth is measured by regularly sending
OpenFlow statistics requests to the switches. The reference
measurements are performed in parallel on a separate HP
Proliant DL320 server using either an Endace DAG 7.5G2
capture card or a conventional network card in conjunction
with TCPdump. The traffic is mirrored to this server using
two Netoptics wire taps.
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Fig. 2. Testbed Setup

Technical Considerations and Limitations:

As the traffic for the SDN as well as the reference mea-
surement is mirrored at different locations, a discrepancy in
the measured delay is expected. This discrepancy is caused
by the processing delay of the two OpenFlow switches. Fur-
thermore, the measurement probe can not exceed bandwidths
of much more than 1 Mbps as the OpenFlow implementation
on both OpenFlow switches handles the implementation of
an OpenFlow send-to-controller action in software, i.e. on the
slow path, which is limited by the relatively slow switch CPU.
Future OpenFlow switch implementations will likely not be
constrained by this issue. We discuss the impact of this in the
following section.

Another influence factor on the accuracy of the
measurements is the latency on the links of the control
channels between the OpenFlow switches and the controller
(cf. Figure 2). Before a packet arriving at the controller
from one of the two switches can be timestamped, it has
already experienced additional delay from processing at the
switch and the transmission via the control channel. This
is also true in the conventional measurement approach we
have chosen as reference and can only be avoided, if the
packets are timestamped at the switches and the internal
clocks of the switches are precisely synchronized. In our case,
therefore an additional requirement has to be met. The term
|(Atprocessl + Atpropagatel) - (AtpTOCESSQ + Atpropagateg)L
where Atypocess, reflects the processing time in the switch
and Atpropagate, 1S the propagation delay on the control
channel, has to be smaller than the desired measurement
accuracy. We meet this requirement in our testbed by using
identical OpenFlow switches and control channel cabling.
In a real world deployment, it is also likely that identical
hardware would be used and the impact of latency could be
kept small by using a distributed controller and placing an
instance close to the measurement point.

For the bandwidth measurements, the frequency of updates
is limited to one second intervals as the OpenFlow switches
only update the statistics counters in their flow tables once
every second.

In an SDN deployment, it is likely that the controller would
be run on a virtual machine inside the cloud. Therefore, we
have performed our tests with the controller running either on
the aforementioned server or in a virtual machine hosted on
an identical server using the free version of the VMware ESXi
5.1 hypervisor. Particularly delay measurements require precise
timekeeping in order to be accurate. As the SDN controller is
run in software relying on the system’s hardware clock, this
can not always be guaranteed. We expect this to be even more
of an issue in a virtual environment with not only different
processes but virtual machines competing for processing time.

The scalability of the SDN measurement approach is
limited by two factors. These are the processing capacity
of the controller and the control channel bandwidth. As the
controller would likely be run in a cloud environment for
large setups, the processing capacity can be scaled up dy-
namically to the required level. However, when a distributed
controller approach is used to achieve this, where different
switches are connected to different controller instances, those
instances require a clock synchronization. The control channel
bandwidth required for the measurements can be reduced using
sampling techniques. However, the number of flows that can
be monitored simultaneously will still have an upper limit.
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V. MEASUREMENT RESULTS

In this section, we discuss the results of our measurements.
All measurement runs were repeated at least five times in order
to ensure consistency.

A. Measuring Bandwidth

As a base test for our setup we chose a bandwidth
measurement using the already mentioned statistics requests.
This test is very similar to those performed with FlowSense.
Therefore, we use it to verify our methodology and setup.
Figure 3 shows the measured bandwidth consumed by the
measurement flow over the duration of a 60-second test run for
both the virtual and non-virtual controller. For comparison, all
packets were captured using the DAG card in the measurement
server. As can be seen in the figure, in both cases the
measured throughput reaches the configured 1 Mbps of the
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measurement probe and subsides after the traffic generator
has stopped sending packets. The SDN measurements behave
nearly identical to the capture trace of the test run. While this
is true for the mean of all runs performed, we can observe
some inaccuracies in the particular run shown in Figure 3b. At
around the 55 second mark, the bandwidth measurement at the
virtual controller varies for several kbps around the reference
value. There are two possible explanations for this behavior.
It could be caused by time drift of the virtual machine clock,
which is only synchronized with the server’s hardware clock
at specific intervals. Therefore, the controller could no longer
reliably schedule its statistics requests and the query interval
varies slightly leading to inaccurate bandwidth calculations.
The second explanation is that either the query or response
packets for the statistics in question were delayed by either the
virtual switch in the hypervisor or by the management plane of
the OpenFlow switch. However, since we do not have accurate
timestamps for the control channel messages, it is not possible
for us to determine which is the case. Still, the variation
appears minor and thus the approach appears to be usable at
least for bandwidth measurements at this frequency. A more
granular resolution would require the switches to support more
frequent counter updates and would involve significantly more
queries to the switches’ minimal control plane. This would
require a much more powerful switch CPU to handle these
more frequent requests and sufficient bandwidth on the control
channel.

B. Measuring Latency

In this section, we discuss the delay measurements. Fig-
ure 4 shows the cumulative distribution functions (CDFs) of
the delay measurements performed without the introduction
of any artificial delay between the two measurement points.
Figure 4a shows the results for the non-virtual controller and
the DAG card with 95 percent confidence intervals for five
individual runs. We observe a measured delay of 4-5 ms for
about 86 percent of packets with the controller, whereas we see
almost double that delay on the capture trace for 78 percent
of the packets.

As can be seen, the confidence intervals are small, indicat-
ing a good estimation of the delay probabilities. The exception
is the ratio of packets with 4-5 ms delay as measured by
the non-virtual controller. Here, the confidence interval is in
a range of about 10 percent difference for the runs. However,
this shows that our results are statistically stable. Therefore, we
only use one exemplary test run for each test in the remainder
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of the figures in order to enhance readability.

As described in Section IV, our OpenFlow switches handle
packets with a send-to-controller action in software, which
explains this considerable delay imposed on the packets. The
discrepancy between controller and capture trace is caused by
the difference in measurement points in our testbed. While
the delay, measured using the controller only consists of the
sending process in the first switch and the receiving process
in the second, the capture trace sees the delay imposed by the
sending and receiving processes of both switches, which dou-
bles the imposed delay. For confirmation of this circumstance,
we perform measurements with the hybrid approach described
in Section III, using the OpenFlow switches to mirror traffic to
the DAG card. Measuring at the same locations in the network,
we can determine the impact of the send-to-controller action by
running the tests with the action enabled and without. Figure 5
shows the cumulative distribution functions of the results. As
expected, a clear discrepancy between the two curves is visible.
Whereas almost all packets from the measurement without the
send-to-controller action experience a delay of less than 1 ms,
the packets with the send-to-controller action enabled show a
delay of 6-7 ms and above. The additional latency of the value
measured here to that in 4 can be explained by the fact, that
the switch now has to perform three actions in software instead
of two, i.e., forward packet, forward to controller, and forward
packet to the DAG card.
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Fig. 5. Latency Cumulative Distribution Functions (With and without Send-
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Figure 4b shows the results of a single test run for the
non-virtual controller. In addition to the capture trace of the
DAG card, a trace using just TCPdump is also shown. The
behavior is very similar to the one observed in Figure 4a. We
can see that with this amount of switching delay, the high
time resolution of the DAG capture card does not present a
significant advantage over a conventional TCPdump trace.



As expected, the results for DAG card and TCPdump do
not differ greatly from these in the test using the virtual
controller as shown in Figure 4c. However, we observe that
the increase in the CDF graph for the delay measured with
the virtual controller is not as steep as with the non-virtual
controller. There is a visible gradient. About 84 percent of
the packets are measured with a switching delay of 1-5 ms,
which is a significantly greater value range than the 4-5 ms
measured for the non-virtual controller. Furthermore, if we
look at the lower end of the CDF plot, we see that the CDF
does not start at 0 ms as can be seen in more detail in
Figure 6. A small but visible percentage of packets appears
to have experienced a negative delay. Naturally, this cannot
have happened in reality. Therefore, a measurement error has
to be responsible. This result seems to confirm our theory from
Section V-A that inaccurate time keeping in the virtual machine
causes irregularities in the results. If processing issues at either
the virtual hypervisor switch or the OpenFlow switches were
responsible, the delay would have to remain positive at all
times even if it varied greatly.
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In order to understand these results better, we compare two
10 seconds long time series of samples measured with both
controllers and the DAG card. Figure 7a shows the results
for the non-virtual controller. Three distinct lines of often
occurring delays are clearly visible. One at about 8 ms for the
DAG Card and two at 4 and respective 5 ms for the non-virtual
controller. Additionally, there is a similar number of outliers
for both measurement methods. For the virtual controller the
samples shown in Figure 7b show a different behavior. While
the samples of the DAG card remain similar at around 8 ms
with outliers, the samples for the virtual controller show more
frequent occurring delays at 1,2,3, and 6 ms. However, while
the virtual controller appears to regularly measure a broader
range of delays, the coefficient of variation for both controllers
is next to identical at around 1.5, whereas the DAG card
has a coefficient of variation of 1. The same is true for the
Mean and the Median at 6.3 ms and 4-5 ms respectively. This
tells us that even though the virtual controller appears to be
more volatile and does have occasional time keeping issues,
statistically those shortcomings carry no weight.

Based on these results, it appears feasible to obtain mean
delay values using the purely SDN-based approach. However,
for a production deployment, the switches again would have to
improve their performance for applying the send-to-controller
action to a packet. As our results have shown, this could be
circumvented by giving the controller a secondary network
interface and using a conventional output action. However, this
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can only serve as a temporary fix, if at all.

Up to this point, we have not introduced any artificial
delay into our measurements. Therefore, we set our network
emulator between the two switches to impose a delay of 500
ms on the measurement probe to verify the accuracy of the
measurements at a higher latency level. The CDFs of the
measured delays are displayed in Figure 8. The results mirror
those shown in Figure 4 for both the non-virtual and virtual
controllers, albeit with an offset of the configured 500 ms
delay. Therefore, we can conclude that the introduction of
artificial delay has had no impact on the accuracy of the results
as well as on the discrepancy between controller- and server-
based measurements.
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Now that we have established that the SDN-based measure-
ment approach can indeed deliver delay measurement results
statistically comparable to those of special purpose equipment
in a stable environment, we take a look at what happens, when
the delay in the network changes. Therefore, we program a
series of delay changes into our network emulator and observe
whether the changes in delay are noticed on time by the
controller and whether accuracy is impacted. Figure 9 shows
a 60 seconds time series of a test run with five changes to
different values of delay. We observe that both controllers are
able to closely mirror the delay present in the captured packet
trace.

C. Sampling

As it is likely not very prudent to redirect all measurement
traffic to the controller across the SDN control channel,
which is also needed for network operation, the option of
only redirecting a sample of packets to the controller seems
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viable. Therefore, we take a look at how closely the full
reference delay value can be estimated using only a sample.
Figure 10 shows the relative error for the mean delay in
relation to the sampling ratio. The relative error has been
obtained by repeatedly selecting samples randomly from the
full reference measurement. It can be seen that in order to limit
the relative error to five percent, the DAG card only requires
about five percent of the packets, whereas virtual and non-
virtual controller alike require about 10 percent of the sample
due to the higher volatility of the measurement results. This
means, that for a 95 percent accurate result using the SDN-
based approach a sample twice the size of the e.g. the hybrid
approach is required, which is a considerable overhead. This
again emphasizes the importance of control channel bandwidth
for the SDN-based approach.
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VI. CONCLUSION

In this paper we have compared the accuracy of purely
SDN-based network measurements to that of a full reference
packet capture trace using special purpose hardware. The
results show that, while the accuracy for an individual delay
sample falls behind that of the reference measurement, the
mean delay and especially mean bandwidth are on par with
the capture card. Therefore, if the mean value of a QoS
parameter is sufficient input for the operation of a particular
network, SDN-based measurements appear to be a viable and

cost-efficient alternative. The inherent flexibility of SDN to
mirror and redirect traffic on a per-flow basis greatly simplifies
the measurement setup and in combination with virtualization
can enable rapid deployments and tear downs on-demand.
However, this is only possible if the SDN-enabled hardware
is further developed to support this kind of function, sufficient
control channel bandwidth is available, and the latency im-
posed by switch processing and control channel transmission

is sufﬁcientlz even for both measurement points. Our results
show that otherwise the measurements would become inaccu-

rate and, more significantly, could disrupt the operation of the
network. Our experience with the used OpenFlow 1.0 switches
suggests that the improvement of SDN hardware is still a
challenge. However, our results also indicate that the described
SDN hybrid approach may serve as a working stepping stone
towards pure SDN measurements.
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