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Abstract—Controller performance and behavior are key
to the operation of an SDN network. Therefore, choosing
the right controller implementation and corresponding set of
applications is essential. In order to facilitate this decision
we previously introduced a tool for controller performance
analysis called ”OFCBenchmark”. In this paper, we present
”OFCProbe” a platform-independent and extended re-design
of our original approach. We describe the new architecture
and explain the implemented features. Finally, we provide some
sample results to illustrate the kind of investigations that can
be performed using the tool.
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I. INTRODUCTION

The key component in the Software Defined Networking
architecture is the controller or ”networking operating sys-
tem”. The controller provides a platform for the operation
of diverse network control and management applications.
However, little is known about the stability and performance
of current controller applications, which is a requirement for
a smooth operation of the network.

In case of OpenFlow, the currently most popular realiza-
tion of SDN, the controller is not specified by the standard.
Its performance depends on the specific implementation. As
a consequence, some controllers are more suitable for certain
tasks than others. Choosing the right controller for a task
requires a thorough analysis of the available candidates in
terms of system behavior and performance.

In this paper, we present the extended platform-
independent and flexible OpenFlow controller performance
analyzer ”OFCProbe” as a follow up to our previous work
with ”OFCBenchmark”. The new tool features a scalable
and modular architecture that allows a deep granular analysis
of a controller’s behavior and characteristics. It allows the
emulation of virtual switches that each provide sophisticated
statistics about different aspects of the controller’s perfor-
mance. The virtual switches are arrangeable into topologies
to emulate different scenarios and traffic patterns. This way
a detailed insight and deep analysis of possible bottlenecks
concerning the controller performance or unexpected behav-
ior is possible. Key features of the re-implementation are a
more flexible, simulation-style packet generation system as
well as Java Selector-based connection handling. In order to
highlight the tool’s features, we perform some experiments
for the Nox and Floodlight controllers in different scenarios.

The remainder of this paper is structured as follows. In
Section II, we discuss related work in terms of OpenFlow
controller performance. The architecture and features of
OFCProbe are then introduced in Section III. We show and
discuss the results of our example experiments in Section IV
before drawing our conclusions in Section V.

II. RELATED WORK

This section summarizes related work on benchmarking
and troubleshooting SDN control software. First we describe
related work in this area. Afterward, we briefly present our
previous benchmarking tool and highlight its drawbacks.

A. Benchmarking and Troubleshooting Tools

The SDN Troubleshooting Simulator (STS), presented
in [1] and [2] by Scott et al., addresses the problem of
troubleshooting SDN control software that arises with the
development of SDN platforms as network managment ser-
vices. Current troubleshooting techniques are quite simple,
they base on log inspection in the hope of finding relevant in-
formation. STS automatically identifies a minimal sequence
of inputs to reproduce a given bug.

In the paper, ”‘On Controller Performance in Software-
Defined Networks [3] Tootoonchian et al. investigate the in-
fluence of the controllers performance on the overall network
performance. They studied the NOX, NOX-MT (maximum
throughput), Beacon, and Maestro controllers each running
with a L2 switching application. L2 switching has been
chosen by the authors as it provides a lower-bound for look-
up. Additionally, only basic switching had been implemented
in all the tested controllers. The results provided in this paper
show that existing controllers perform better than predicted
in the referenced literature. However, they also state that
understanding the overall SDN performance remains an open
research problem.

Cbench [4] was the first available controller benchmark
and emulates a given number of virtual OpenFlow switches
to measure different aspects of a controllers performance,
specifically mean latency and throughput. As Cbench’s
functions are very limited and controllers have been further
developed since the release of this paper, the results shown
in the paper only give basic information on controllers
performance. To be able to make more profound statements
on a controllers behavior a more advanced tool is needed.
Preferable features that still were missing in Cbench are,
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e.g., to be able to distribute the program on multiple cores
or machines and to provide statistics for each virtual switch
individually.

B. Previous Work - OFCBenchmark

In [5], we introduced ”OFCBenchmark - a flexible
OpenFlow-Controller Benchmark”. The benchmark creates
a certain amount of virtual switches which in turn generate
independently configured messages and produce their own
statistics. Scalability, detailed performance statistics, and
modularity were the top design goals. With the OFCBench-
mark distribution enabled, the benchmark can be spread over
multiple hosts with each host running its own client. The
virtual switch, the key component of the tool, holds a sim-
plified flow table, to be able to respond to controller requests,
statistics counters and the connections to the controller.

While the tool yielded interesting results regarding the
treatment of individual switches by the tested controllers
(cf. [5]), non-ideal design and implementation decisions
became apparent

C++ in combination with the Boost library for thread-
handling was chosen for the implementation as the focus
was on packet generation performance. This decision led to
a platform-dependent tool that was not as easily extendable
as originally conceived. Additionally, in light of the results
yielded by the original tool, the focus of interest shifted to-
wards the controller behavior rather than its raw throughput,
which is also covered quite well by CBench. Therefore, we
chose to design a new tool.

III. OFCPROBE

In this section, we introduce our new tool for OpenFlow
controller analysis ”OFCProbe”.

We begin by explaining our revised design goals that
guided our development process.

A. Design Goals

Based on the lessons learned from the implementation
OFCBench, we defined the following design goals:

Platform-Independency: In working environments one
is often limited to certain operating systems and or hard-
ware components. To bypass these requirements, we need
a software that is executable on the most common system
architectures.

Scalability: Scalability describes the software’s ability to
be run in a coordinated way on multiple CPU cores, CPUs,
and hosts. This guarantees that the tool is not limited by
a single core or the available memory. The tool should be
multi-threading enabled and its threading overhead should
be reduced in comparison to OFCBench.

Modularity: Modularity is the key to be able to easily
adapt to new OpenFlow controller versions, new scenarios
and/or new types of measurement values. The separation of
the program logic and the controller communication is also

a central goal to simplify the adaptation of the tool itself to
possible new communication protocol versions.

Performance Analysis: We want to investigate OpenFlow
controllers and their performance by sending generated
messages to the controller and recording the controller’s
responses. Performance has different meanings in this con-
text, it is defined by throughput and latency in a best-
effort situation, but it also means recording the controller’s
behavior in different scenarios.

Detailed Statistics: Detailed statistics include a set of
features that permits the investigation of the OpenFlow
controllers behavior, e.g., whether it is treating multiple
switches differently or changes its behavior over time.

B. Architecture of OFCProbe

Due to the fact that both OpenFlow and SDN are still
evolving and changing, we decided to build this tool mod-
ular with interfaces between the modules. A schematic
is depicted in Figure III-B. The ”OpenFlow Connection
Handler Module” is responsible for the connection to the
controller. The generation of messages is handled by the
”Traffic Generation Module”. Finally, there is a module for
the storage of measurement values as well as a central man-
agement module, which handles the inter-module control
messages. To realize platform independency, we chose JAVA
in combination with the OpenFlowJ library as programming
language. The implementation of the schematic first loads a
configuration file and provides it to all other modules. After
that the OpenFlow connection is established and after a suc-
cessful OpenFlow handshake the traffic generation begins.
Generated messages and their responses are traversing the
configured statistics modules (e.g., round trip time, packets
per second) and are recorded in a data format that enables
further analysis.

Modularity enables users and developers to easily adapt
the experimental setup to their needs. This could mean an
update to an updated OpenFlow protocol version, but also
a reconfiguration or the implementation of a new statistics
module. A detailed description of each module follows.

1) The OpenFlow Connection Handler Module: This
module is key to of our OFCProbe tool. It is in charge of
establishing and holding the connection to the OpenFlow
controller. Java’s NIO Selector [6] is used for connection
handling. With a Selector it is possible to handle multiple
channels in one thread thus reducing the multithreading
overhead. The module also contains the flow table imple-
mentation for the virtual switches. Apart from connection
handling, the main task of this module is the acceptance of
messages from the ”Traffic Generation Module” and their
subsequent encapsulation into OpenFlow messages, which
are then sent to the controller. The replies from the controller
are also handled here and transmitted to the connected
statistics modules for further analysis.
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2) The Traffic Generation Module: The Traffic Genera-
tion Module is an event-driven scheduler/queue processor
running within its own thread. The module has one queue
in which all future events are stored. Each event consists
of an event time, an event type and an associated virtual
switch. When the event time is reached, the event is taken
from the queue and based on its type, different actions are
executed in the virtual switch.

A virtual switch goes through a life-cycle of events
that is depicted in Figure 1. The first event is the OF-
Switch Connect Event, which specifies when the virtual
switch should start its connection establishment with con-
troller. Subsequently, an OFSwitch ConCheck Event for
this virtual switch is automatically queued for the near
future to check for a successful connection. Once this
is done, the first Packet In Event is scheduled for time
t = 0. When a Packet In Event is executed, the filling
level of the corresponding virtual switch’s packet queue
is checked. If it is below a configured threshold, the
queue is filled up to that threshold with new packet pay-
loads. Then the next Packet In Event is scheduled in a
pre-defined amount of milliseconds. This continues until
the Generation End Event is reached, which terminates
the experiment. The values for the inter-arrival time of
Packet In Events and the fill threshold are provided by the
central configuration file or through a per-switch configu-
ration. In the current version of OFCProbe, the payloads
generated are TCPSyn-packets either with static or random-
ized address values. For each TCPSyn-packet three headers
have to be generated: the Ethernet and IP headers, with
each a destination and source address, and the TCP header
with a destination and source port. OFCProbe uses a pre-
generated master TCPSyn packet, that contains a correct
TCPSyn packet with all fields except the address fields set.
The remaining fields then are filled with generated addresses

taken from the corresponding MAC-, IP- or TCP-generator.
3) The Statistics Module: Each outgoing OF Packet-In

message and incoming OF Packet-Out message is forwarded
by the connection handler module to every connected statis-
tics module. This process is shown in Figure 2. With these
messages and the corresponding arrival times, it possible to
measure, e.g., the throughput, the latency, or the inter-arrival
time of subsequent messages to the controller. Currently,
following statistics modules are available: PPS (Packets Per
Second), RTT (Round Trip Time), IAT (Inter-Arrival Times),
and a CPU and RAM utilization monitor for the controller.
The CPU and RAM monitors are implemented using SMTP.

C. Additional Features of OFCProbe

In this section we describe the additional emulation fea-
tures that OFCProbe possesses.

1) Packet Capture Playback: Apart from the generated
TCPSyn packets there is also another option to create the
payloads for the OF Packet-In messages. To emulate a
real network environment, it is also possible to specify a
PCAP file containing a packet trace for each virtual switch
individually. PCAP is a capture file format for network traffic
that is used, e.g., by Wireshark [7]. These files are parsed
by OFCProbe and each time a new payload is required, the
next packet from the PCAP file is taken and encapsulated
into an OpenFlow message. Figure 3 illustrates this feature.
Ideally, the PCAP file should only include the first packets
of arriving flows.

OFSwitch_CONNECT OFSwitch_ConCheck OF_PACKET_IN Generation_END 

Figure 1. OFCProbe Event Chain
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Figure 2. OFCProbe Statistics Module

2) Topology Emulation: Another feature of OFCProbe
is the emulation of a network topology. Controllers like
Floodlight or NOX are able to detect the underlying topology
between the connected OpenFlow switches.

The protocol that enables devices to detect these links is
called Link-Layer Discovery Protocol (LLDP). The discov-
ery process works as depicted in Figure 4. The OpenFlow
controller sends an OF Packet-Out message containing an
LLDP payload (1) with the information that it was ’inserted’
into the topology at a certain switch and the action to
flood it to all ports of the OpenFlow switch. The OpenFlow
switch recognizes the flood action in the message and floods
the LLDP payload out of all its ports (2). A connected
OpenFlow switch detects a new flow and sends this packet
encapsulated into an OF Packet-In message to the controller
(3). The controller then determines that the payload is
an LLDP packet and at which switch this specific packet
was inserted. This way the controller learns that there is
a connection between the original switch and the one it
received the packet from.

To enable OFCProbe for topology emulation the virtual
switches have to detect the LLDP payloads in the OF Packet-

PCAP File 

…010101011010…

(filtered) 
Packet Payloads 

#1 

BufferID =15126 
Payload = 
…010101011010… 

OF_PACKET_IN 

Controller 

ofSwitch 

Figure 3. OFCProbe Packet Capture Playback

DPID: 42 
Port 1 

DPID: 21 
Port 2 

Figure 4. Topology Discovery via LLDP

Out messages from the controller and then flood them to
connected virtual switches where they are encapsulated into
OF Packet-In messages and sent back to the controller. The
emulated topology can be defined in an separate topology
initialization file.

3) ARPing Feature: As an enhancement to the topology
emulation, we implemented what we call the ”ARPing
feature”. This feature enables the user to emulate devices
connected to the free virtual switch ports of a topology. For
every free port in the emulated topology a device with a
MAC- and an IP-address is generated. After the successful
topology emulation as described in the last section, each end
device ”sends” an ARP-request to every other end device in
this topology. This is realized by sending an OF Packet-In
message containing the ARP-request to the controller. The
controller’s reaction is an OF Packet-Out message with the
action to flood this packet out of all virtual switch ports
except the ingress port. The ARP-request is then queued in
the next virtual switches that are connected to the original
virtual switch in the emulated topology. There, the payload
is again encapsulated in an OF Packet-In message and sent
to the controller. This procedure continues until the ARP-
request has reached the virtual switch the corresponding
end device is connected to. The virtual switch recognizes
the target device as one of its connected devices and then
generates an ARP-reply in form of an OF Packet-In message
to the controller. Now, the controller has learned to which
virtual switch the target device is connected to.

IV. EXAMPLE MEAUSUREMENT EVALUATION OF
DIFFERENT SDN CONTROLLERS USING OFCPROBE

In this section, we present the results of some sample
experiments conducted with the OFCProbe tool.

A. Best-Effort Tests

As stated before, OFCProbe is capable of an analysis per
virtual switch. This allows a granular inspection of each
switch at each time during the analysis. Figure 5(a) displays
the outstanding packets, i.e., OF Packet-In messages that



(a) Floodlight (b) NOX

Figure 5. Outstanding Packets for Different Controllers

have not been answered yet, of the Floodlight controller
for a run with 100 emulated switches. The x-axis shows
the number of the virtual switch, the y-axis the seconds
passed since measurement start and the z-axis the number of
outstanding packets in units of 10k packets. The controller’s
behavior appears to be quite fair as no switch has at any time
a significantly higher amount of outstanding packets than the
others with a maximum of outstanding packet values lower
than 10k packets.

The outstanding packets for the NOX controller are shown
in Figure 5(b). The arrangement of the axes is the same
as for Figure 5(a). Here certain inequalities between the
switches and for each switch over the time can be observed.
There are ”waves” of outstanding packets in both x- and
y-axis direction. This might be caused by the controller’s
implementation. The controller iterates over a list of con-
nected switches, processing only one switch at a time. And
while switch n is processed, the other connected switches
have to wait for replies from the controller. Furthermore,
the numbers of outstanding packets is notably higher than
the numbers for Floodlight, having peaks with up to 30k
outstanding packets.

B. Topology Emulation and ARPing

In this section, we investigate the controllers’ behavior
in a ”fat-tree” topology [8] setup as it can be found in
current data centers. The particular fat-tree topology in the
experiment has 20 virtual switches with 4 ports each. As
shown in Figure 6, at the lowest level the virtual switches are
connected to the emulated host devices with their two free
ports. Each of these emulated devices generates TCP SYN
packets for flows to all other host at every packet-generation
event. Therefore, 15x2 packets are generated per virtual
switch per event. The inter-send time for switches 07, 11,
15 and 19 is set to 15 ms, switches 08, 12, 16 and 20 have
a inter-send time of 40 ms.

Figure 7 illustrates the outstanding packets for the ingress
switches of the Floodlight controller. The x-axis shows
the passed time since measurement start, the y-axis the
outstanding packets in multiples of 10k packets, respectively.
The switches with the inter-send time of 15 ms (type #1)
between their packet generation events have a drastically
higher number of outstanding packets than the switches with
the inter-send time of 40 ms (type #2), which have almost
no outstanding packets except for one.

A general characteristic is observable for virtual switches
with notable outstanding packet counts. Within 10 seconds
their count rises above the other switches, continuously
climbing and reaching a mean value of 4k at 30 seconds from
the start. At around the 36 seconds, one switch settles at 6k
outstanding packets, while the remaining switches constantly
increase up to 15k packets.

As can be seen the confidence intervals are quite large
for switches with a high number of outstanding packets.
Therefore, it is interesting to look at the differences among
them. Figure 8 shows a 3D representation of the outstanding
packets of all switches of a single run. Here, again, the dras-
tically higher outstanding packet numbers for the switches
#07, #11 and #19 can be observed as they reach 20k, 10k
and 8k outstanding packets. Switch #15 is an exemption.

#01 #02 #03 #04

#05 #06

#07 #08

#17 #18

#19 #20

#09 #10

#11 #12

#13 #14

#15 #16

Figure 6. Fat-Tree Topology
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The difference between the two sets of inter-send times is
significant and observable. The other non-ingress switches
all have next to no outstanding packets.

To summarize, Floodlight’s switch handling appears to
be fair in terms of performance as only switches with a
high packet load have to wait for controller processing. All
requests from the other switches are handled immediately.

V. CONCLUSION

With OFCProbe, we introduced a platform-independent
tool to perform measurements on the behavior, characteris-
tics and bottle-necks of current OpenFlow controllers. The
architecture of OFCProbe is platform-independent, scalable,
and modular to allow a granular analysis of the con-
trollers behaviors and characteristics. OFCProbe emulates
virtual OpenFlow-enabled switches that each provide gran-
ular statistics about different aspects of the controllers’ be-
havior. The virtual switches are arrangeable into topologies
to emulate realistic scenarios and recorded PCAP files can
be used to test the controllers reaction to real requests. With
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Figure 8. Outstanding Packets for Floodlight

each run, a detailed insight into the OpenFlow controller and
its implementation is provided.

To demonstrate the features of OFCProbe, we conducted
different experiments for NOX and Floodlight. The gained
insights demonstrate the heterogeneous behavior of the
investigated controllers. The results show an unequal load
balancing for the Nox controller, where a couple of switches
are congested while others are idle. The Floodlight controller
seems to distribute its processing capabilities more fairly
among the switches. Even in uneven setups, like the Fat-Tree
topology, it remains fair towards each connected switch.

There are still various questions open for future research.
Thanks to its modularity, OFCProbe offers many possibili-
ties for future analysis. This can be the investigation of new
scenarios and OpenFlow protocol versions, a verification
module to validate the correct operation of a controller, or
new statistic modules. The tool and source code are available
for download [9].
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