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Abstract—Software Defined Networking (SDN) introduces
the concept of logically-centralized controllers in charge of
managing the forwarding behavior of network elements. The
new possibilities enabled through the centralization of control
logic come with a certain risk: The controller might become a
performance bottleneck. Therefore, ensuring sufficient controller
performance is one of the crucial tasks prior to a successful SDN
deployment. Furthermore, fine-grained traffic engineering, e.g.,
to achieve higher link utilization, results in a higher frequency
of requests that are sent to the controller, which leads to an
increased controller load. It is therefore important to analyze the
capabilities of SDN controllers prior to deployment. This paper
investigates two software implementations, the OpenDaylight and
Ryu controllers. The control message throughput of different
controllers has been studied several times already; however, it
is not yet known what influence the number and topology of
connected switches have. This paper investigates this influence in
detail for a fat-tree data center topology and a WAN topology
as well as 261 topologies with varying characteristics from the
Internet Topology Zoo.

1. INTRODUCTION

The new networking paradigm Software Defined Net-
working (SDN) introduces a separation of data plane and
control plane. While the data plane resides in the network
elements, i.e., white-box switches, the control plane is logically
centralized and implemented as an SDN controller software
running on one or more servers. In order to allow an exchange
of information between these two planes, a communication
protocol for this Southbound API [1] is required. Today’s
widely used OpenFlow [2] protocol is such a communication
protocol, which enables vendor-independence on both planes.

This not only allows hardware manufacturers to offer
OpenFlow-compatible switches that can be used in conjunction
with existing OpenFlow hardware and controller software,
but also fosters innovation. Numerous SDN controller imple-
mentations have been developed, starting with the reference
implementation provided by the NOX controller [3], each new
controller adding additional features. They focus on particular
use cases as well as scalability improvements.

Scalability and performance are crucial for successful pro-
duction deployments of OpenFlow-based SDN networks. To
evaluate an SDN controller’s performance, several solutions
have been introduced over the past years. The evaluation of
processing rates as provided by Cbench [4] has the downside
that it is not detailed enough to uncover unfairness between
the switches in terms of their response times. In our previ-
ous works, we introduced OFCProbe [5, 6], an open-source

controller benchmarking software that emulates a number of
OpenFlow switches in order to test the controller’s behav-
ior under given circumstances, e.g., a number of connected
switches with a defined rate of new flow arrivals. With per-
switch statistics and by investigating the number of yet unan-
swered messages, unfair processing priorities depending on
from which switch a message was received, have been shown.

The current work extends these investigations and examines
the influence of the managed network topology on the process-
ing times of the controller, as well as the processing times of
different OpenFlow message types. Therefore, the behavior of
two SDN controller software implementations (OpenDaylight
(ODL) [7] and Ryu [8]) are investigated in the following. For
this purpose, OFCProbe is used to emulate different network
topologies and expose them to the controller software, which
is tested.

The remainder of this work is structured as follows:
Section II covers the technical background of OpenFlow, as
well as related work. Section III describes the measurement
setup, followed by Section IV, where results are given. Finally,
Section V summarizes this work and gives an outlook towards
further extensions.

II. BACKGROUND AND RELATED WORK

This section introduces the technologies used in this pa-
per. First, a brief summary of Software Defined Networking
and OpenFlow is provided. Then, related work on controller
benchmarking and performance of the SDN control plane is
highlighted.

A. Software Defined Networking (SDN)

To remedy the limitations of modern-day networks, SDN
introduces the decoupling of the control and data plane of
networking components and establishes well-defined interfaces
between these components [1]. The Southbound API specifies
communication between the data plane, usually implemented
in hardware, and the control plane, implemented as software.
This decoupling allows a much faster evolution of networks,
independent of long release cycles of network devices. In con-
trast to most traditional networking devices, Northbound APIs
allow an integration with other infrastructure components, e.g.,
to allow better automation or improved network utilization.

This work focuses on the Southbound API and the currently
most-widely used OpenFlow protocol [2].



B. OpenFlow

As the control logic is shifted from the switching hardware
into a controller software running on a server, the hardware
representing the data plane lacks any functionality for making
forwarding decisions. All of this information has to be set by
the OpenFlow controller using the OpenFlow protocol.

The information, which packets should be sent out on
which port is stored in the switch’s flow table. For fast
processing, this is implemented in the hardware, as well as
matching of incoming packets against the entries in the flow
table. Each of these entries, the flow rules, specifies a set of
header fields, i.e., Ethernet, IP, or TCP headers, based on which
it is decided, which action should be executed for each packet.

After a switch starts with an empty flow table, information
about where to forward incoming packets is required. There-
fore, the switch sends a copy of the packet in a packet-in mes-
sage towards the connected controller and awaits instructions
through a packet-out message. As forwarding of every packet
to the controller will drastically lower network performance,
the usual behavior is that the controller also reacts with a
flow-mod message including match criteria and an action to
the switch, which is then installed in the flow table. All
consequent incoming packets matching such criteria can now
be processed solely by the switch—until the rule times out and
the next packet again triggers a packet-in message towards the
controller. With this behavior, the so-called reactive behavior
allows the OpenFlow controller to react upon changes in the
network, e.g., changes in the link utilization, to instruct the
switches to use a different forwarding path.

Given the varying granularity of match criteria available
in flow rules, a huge number of requests towards the SDN
controller might be triggered, e.g., if rules match particular IP
addresses as well as TCP ports. This requires a high throughput
rate as well as short processing times by the SDN controller.
Therefore, the performance of the SDN controller is of great
interest and thus will be also covered in this work.

C. Related Work

A model of forwarding speed and blocking probability of
an OpenFlow switch was established in [9]. The estimation
of packet sojourn times and the packet loss probability in
an OpenFlow-enabled environment are the benefits of this
model. Accordingly, these estimations enable the performance
approximation of an OpenFlow architecture with certain given
parameters. The results show that the OpenFlow controller
processing speed has the largest effect on packet sojourn times.

Similar effects have been described [10]. The impact of
transmission delays between switches and their connected
controller for different flow setup strategies is investigated.
The authors compare three OpenFlow controllers having net-
work virtualization support, namely Trema, Floodlight, and
the NOX controller with their own LibNetVirt extension. The
authors studied how an emulated delay of 5 or 10ms on
the control path affects ICMP round-trip times, TCP-based
download times, as well as packet loss of UDP transfers. In
contrast to [10], the studies presented here explicitly ignore the
transmission delays by placing the measurement point inside
the SDN controller, as it will be explained in Section III-A.

Previously, OpenFlow controller benchmarking tools such
as Cbench [11] and OFCBench [12] were introduced, how-
ever offering only rudimentary options and measurement
data or limited scalability. The authors previously introduced
OFCProbe [5], a platform independent OpenFlow controller
analysis tool, available as open-source software [6]. OFCProbe
implements the switch-side of the OpenFlow protocol and
emulates many of these while connecting to a controller. By
avoiding to use full virtual switch implementations like Open
vSwitch and directly creating control plane traffic instead of
first generating data plane traffic, the overhead is reduced
compared to other approaches. OFCProbe allows to measure
performance on a per switch level based on multiple attributes,
e.g., packet throughput, response times, or CPU utilization of
the controller host, while the number and topology of emulated
switches is specified in the program code. One contribution of
this work is an extension of OFCProbe’s functionality which
allows for loading of topologies from GraphML files, e.g.,
from the Internet Topology Zoo [13].

III. MEASUREMENT SETUP

This section describes the processing chain of OpenFlow
messages within the controllers, while at the same time pro-
viding an insight on which measurement points are used to
gain performance metrics from inside the controller software
where they are defined. Furthermore, the test setup used to
conduct the measurements is described as well.

A. Controller Architecture and Sensor Placement

To understand the influence of the controller’s architecture
on its performance, a thorough investigation is performed. The
abstract flow graph with modules involved in the OpenFlow
(OF) message processing progress is shown in Figure 1: First,
the OF packets are received by the controller’s network card
(1), before the byte stream is decoded into an OF message,
processed, and then classified according to its message type
(2). According to this classification, attributes are extracted
from the message and delegated to the responsible application
module (3). In the case of packet-in messages, the module
computes a packet-out or a flow-mod message (4). This
response message is filled with computed values, encoded into
a byte stream, and sent back to the switch (5).

As can be observed in the table of Figure 1, the controller
implementations vary in their particular implementation: ODL
divides the process into smaller steps distributed over multiple
modules. In Ryu, a lot of functionality is put into the central
controller module, which is able to receive messages and start
their processing. After the decision has been made by the
launched controller application, the central controller module
takes over again, and generates the outgoing message, encodes
it into a byte stream and transmits it.

To conduct the following measurements, including only
the processing times of the packets corresponding to packet-
out and flow-mod messages, sensors are inserted immediately
before (3) and after (4) .

IThe modified source code for ODL and RYU modules can
be found on  https:/github.com/lsinfo3/manfi2015-perf-ODL  and
https://github.com/Isinfo3/manfi2015-perf-ryu
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Fig. 1. Control packet flow and involved modules within the SDN controllers.

B. Testbed Setup and Used Software Versions

The used testbed consists of two directly connected
serversZ, one running the OpenFlow controllers, the other run-
ning OFCProbe in version 1.0.4, both using a Linux operating
system>. The used controller versions are the Hydrogen release
of ODL as well as Ryu 3.14. Both controllers are started with
a Layer 2 forwarding switch application.

C. Experiment Process

The course of all experiments is as follows: The controller
software is started on one server and OFCProbe on the other.
OFCProbe will now emulate a configured switch topology and
start generating control plane traffic. At all times during the
experiment, only one switch causes packet-in requests, while
all other virtual 4-port switches are idle. A virtual host is
emulated at every port not connected to another switch. The
generated traffic consists of packet-in messages originating
from each directly connected virtual host trying to commu-
nicate with all other virtual hosts in the topology, including
those connected to the same switch. After the switch finishes
transmitting its requests, the next switch can begin generating
traffic. To mitigate influences of multiple switches trying to
communicate with the controller, a waiting time of 2 seconds
is introduced when changing switches.

IV. EVALUATION

In this section, the results of the conducted experiments
are presented, starting with a detailed investigation of three
different switch topologies: In order to get a performance
baseline, 20 switches without any interconnection and only
with one connected host each are evaluated. Then, a fat-tree
topology with 20 switches as well as the Viatel topology with
87 switches taken from the Internet Topology Zoo [13] are
investigated in detail. Finally, a study of 261 more topologies
is presented in aggregated form.

2Sun Fire X4150, 2x Intel Xeon L5420 QC 2.5 GHz (2 x 4 Cores), 16 GB
RAM, 4-Port Gigabit Ethernet NIC

30FCProbe host: Debian Squeeze x64; OF controller: Ubuntu 14.04 LTS
x64

The following figures show one particular time series graph
with processing times of the controllers. To obtain statistically
significant results, each test is repeated five times and the
following figures also present 95% confidence intervals.

A. Unconnected Switches (Baseline)

This first scenario investigates a network of 20 switches
without links between them and only one connected host per
switch. When the OF packet-in for an emulated data plane
packet of the host to a yet unknown host is sent, the controller
will return a flood instruction due to a lack of knowledge about
the destination. Flow-mod messages will not appear in this
context and thus, only processing times for pairs of packet-
in / packet-out messages are considered in this scenario.

Figure 2 shows the processing times for the ODL and
the Ryu controllers. Two main observations are: First, the
measurements for both controllers show a high degree of peri-
odicity. This behavior can be caused by multiple phenomena:
On the one hand, the experiment procedure itself is periodic,
featuring bursts of 16 packets followed by pauses between
successive bursts. The number of observed peaks is 18 resp.
19 for ODL and Ryu. This is in line with 300 measured
values, i.e., % ~ 16 indicates one peak each 16 measured
values. On the other hand, sleep mechanisms may be triggered
after an idle interval in both controllers in order to save
CPU resources. Such a behavior would imply that the first
packet in a burst needs to interrupt the sleep operation or even
reinitialize the process, which in turn leads to a longer total
processing time. Packets belonging to the same burst, however,
arrive fast enough and encounter an active controller. Thus,
their processing time is lower. After the pause between bursts,
controllers will return to their sleep mode and the first packet
of the next burst requires a higher processing time. The second
observation is that Ryu is outperformed by ODL with respect
to the processing times of packet-out messages in this case.
While ODL achieves mean values of around 0.11 ms, Ryu
takes significantly longer, resulting in a mean processing time
of around 0.16 ms. However, this it is not the main objective of
this paper, to compare controllers with each other, but instead
to study the influence of the managed topology.
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Fig. 2. Packet-out processing times for 20 unconnected switches.

Additionally, there is a difference in peak-to-peak ampli-
tudes for the two controllers, with ODL’s amplitude being
almost twice as big as Ryu’s. This indicates a difference in
the implementation of the sleep mechanism. Furthermore, it
might be possible that garbage collection of the particular
programming language influences this behavior.

B. Fat-Tree Topology

The fat-tree topology can be thought of as a reference data
center topology. This section deals with the results obtained
by emulating a fat-tree topology with 20 switches, where the 8
edge switches have two emulated hosts each. Again, 16 packets
emulating a data plane packet from one host to another are sent
per burst per host. Once the controller has learned the location
of a destination host, it will now also send flow-mod messages
that, however, will be ignored by OFCProbe.

Figure 3 shows the packet-out and flow-mod processing
times for both controllers. While the processing times for
packet-out messages reach an almost constant value of around
0.2ms in the case of Ryu, corresponding values of the ODL
controller are less predictable. In addition to processing times
being in the range between 0.1 and 0.4 ms, there are outliers
that are even beyond 1 ms. While processing times of the ODL
controller are often lower than those of the Ryu controller, the
outliers may not be acceptable in certain scenarios. Thus, no
definite statement about controller preference with regard to
the processing times of packet-out messages can be made in
the case of the presented fat-tree topology.

Results for flow-mod processing times in the fat-tree
topology are displayed in Figure 3b. As opposed to 300
distinct values for the packet-out message processing times,
only 100 values are recorded for the flow-mod messages. This
difference is explained by the context in which each message
type is generated. While packet-out messages often correspond
to the processing of a single packet which triggers a flood
command, flow-mod messages are produced only when the
destination host is known to the controller which, in turn,
allows computing the forwarding paths.

Initially, processing times of ODL rise from 0.5ms to
around 3.5 ms. However, the they stabilize after 20 processed
flow-mod messages. While the mean values slightly oscillate
around the 1.5 ms mark, overlapping confidence intervals of the
5 runs indicate no statistically significant variation. Ryu shows
similar behavior, where flow-mods processing constantly rises
to a value of 0.4 ms during the first 8 measurements and barely
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Fig. 3. Processing times for the fat-tree topology emulation.

changes in the remaining time. In contrast to the packet-out
processing times, the Ryu controller clearly outperforms the
ODL controller with respect to flow-mod processing times in
the fat-tree topology. In addition to the fact that the mean
processing times for Ryu are almost four times lower, the
variation of the values is also significantly reduced. The latter
can be derived from the smaller width of confidence intervals
as well as from a lack of outliers. For both controllers, the
flow-mod processing times are higher than those for packet-
out messages. The processing speed of the latter is lower by
a factor of around 2 and 8 in the case of Ryu and ODL,
respectively.

C. Viatel Topology

The Viatel topology is a WAN topology and consists
of 87 switches. Figure 4 shows the behavior of the two
controllers using the Viatel topology. The processing times
for packet-out messages indicate short start-up phases for both
controller implementations, after which relatively stable values
are attained. In case of ODL, values begin at 0.2ms, rise
to almost 0.6ms, and even out at around 0.12ms after 20
messages. One slight deviation can be observed during the last
third of the experiment. A more detailed analysis is required
in order to explain this phenomenon. Ryu, however, shows
processing times which rise from around 0.05 ms and reach an
almost constant value of 0.2ms after 5 packet-out messages.
While the processing time of the Ryu controller behaves almost
exactly the same as in with the fat-tree topology, a significant
decrease in delay and variance can be observed for the ODL
controller. When considering only values obtained after the
initial start up phase, ODL strictly outperforms Ryu by a
margin of almost 0.8 ms with respect to processing times of
packet-out messages.
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Fig. 4. Processing times for the Viatel topology emulation.

When considering processing times for flow-mod mes-
sages, on the other hand, Ryu achieves significantly lower
values compared to ODL. Figure 4b illustrates this relation-
ship. Furthermore, the shape of the curve and the absolute
values reached by the Ryu controller are barely distinguishable
from those observed in the context of the fat-tree topology.
In the case of ODL, however, the processing times increase
from around 1.5ms in the fat-tree topology to about 2 ms for
the Viatel topology. Additionally, a higher frequency of peaks
and larger confidence intervals are present. This leads to the
assumption of a correlation between the topology, particularly
of the number of nodes, and the resulting processing times.

Figures 5a and 5b provide an aggregated view on all
measurements presented so far by showing the cumulative
distribution function (CDF) of processing times for packet-
out and flow-mod messages. Each line corresponds to a
combination of message type, topology, and controller. On the
x-axis, observed processing times are displayed, while the y-
axis shows the fraction of experiments in which a particular
configuration led to processing times below the corresponding
value.

The first observation is that the lines form two groups, i.e.,
one group with 95% quantiles below 0.5ms and two curves
with response times of at least 0.7ms. In general, packet-
out messages are processed faster than flow-mod messages
and Ryu is faster than ODL, especially with respect to flow-
mod messages. Once again, a large gap between the curves
corresponding to flow-mod processing times of Ryu and ODL
is observed. Furthermore, Ryu’s response times appear to be
more stable as their interquantile range is lower than for ODL.
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Fig. 5. Processing time distribution per topology, controller and message.

D. Aggregated Results for 261 Topologies

Previous sections indicated a possible relationship between
the network topology and the controllers’ performance in terms
of processing times. To further investigate this phenomenon,
the study continued with an evaluation of all topologies
available in the Internet Topology Zoo [13]. The aggregated
results show the performance of the controllers with increasing
topology complexity. For this analysis, topology complexity is
quantified by the sum of number of edges and vertices. This
choice is based on the previous investigations, where graph
size appeared to have an impact on controller performance.

Figure 6 shows the results for all 261 Internet Topology
Zoo topologies. On the x-axis, the sum of vertices and edges
(resp. emulated switches plus links) is shown, while the mean
processing time in milliseconds is depicted on the y-axis. To
provide a better view of the results, the Kentucky Datalink
topology comprising 754 switches and 899 links had to be
omitted from the figure. However, even for this large topology,
processing times matched with the ones shown.

Ryu shows the most reliable performance, indicated by
almost constant processing times for each message type, inde-
pendent of the topology. For packet-out messages, a mean of
0.15 ms is observed. For flow-mods, the mean is slightly higher
with 0.22 ms. For ODL, the message type has an influence on
the processing time: Whereas the packet-out message values all
are found at around 0.2 ms, the flow-mod messages are highly
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scattered around 1.2 ms. In contrast to previous assumptions,
the topology complexity has no influence on the performance
of any of the two controllers, regardless of the message type.

The CDFs shown in Figure 7 show the same behavior as
observed before. Ryu’s response times are relatively constant
between 0.2 and 0.25 ms, no matter which type of message.
For ODL’s packet-out messages, the interval of response times
is spread between 0.1 ms to almost 0.7 ms. The corresponding
flow-mod processing times are even higher and in the range of
1 ms to 1.3 ms. The CDF of the flow-mod messages shows the
behavior of the ODL controller. Here, the response times are
spread over an interval, ranging from values larger than 1 ms
and consistently increasing to values beyond 1.3 ms. However,
as shown in Figure 6, no correlation between response time
and topology complexity can be found. Furthermore, no indi-
cation for a correlation of processing times with various other
graph complexity measures like edge density, diameter, and
betweenness could be found during the experiments. Detailed
results had to be omitted due to brevity reasons.
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V. CONCLUSION

This paper investigates processing times of OpenDaylight
and Ryu SDN controllers. The evaluation focused on the pro-
cessing times of packet-in/packet-out and flow-mod messages
that are generated when a switch receives a packet of an
unknown flow or when a flow rule should be installed in the
switch, respectively. As it was yet unclear, how the switch
topology affects the controller performance, three different
topologies were studied in detail (20 unconnected switches, a
fat-tree topology consisting of 20 switches, and a WAN topol-
ogy consisting of 87 switches). The initial observation, namely
that the number of switches influences the processing times,

is disproved through an evaluation of 261 topologies from the
Topology Zoo. These topologies vary with respect to their link
density as well as with the amount of switches present in the
network, the largest one comprising 754 switches. In total,
the Ryu controller was found to outperform OpenDaylight in
most of the scenarios, especially regarding the time until a
flow-mod message is sent to the switch. Other than that, no
correlation of processing times with any of the investigated
graph metrics including the number of switches and links, link
density, and diameter could be observed. This might be caused
by the simplistic learning switch implementation used for the
investigations. More sophisticated mechanisms, e.g., proactive
installation of rules on the whole path that the packet will
take, might lead to a different behavior here. Additionally the
results of the controllers running with a more sophisticated
Layer 3 switching module are of interest, too. These tasks,
however, remain for future work. To summarize, as of yet there
is no indication that the number of connected switches has any
performance implication.
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