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Abstract—Crowdsourcing platforms provide an easy and scal-
able access to human workforce that can, e.g., provide subjective
judgements, tagging information, or even generate knowledge.
In conjunction with machine clouds offering scalable access to
computing resources, these human cloud provider offer numerous
possibilities for creating new applications which would not have
been possible a few years ago. However, in order to build sustain-
able services on top of this inter-cloud environment, scalability
considerations have to be made. While cloud computing systems
are already well studied in terms of dimensioning of the hardware
resources, there still exists little work on the appropriate scaling
of crowdsourcing platforms. This is especially challenging, as the
complex interaction between all involved stakeholders, platform
providers, workers and employers have to be considered.

The contribution of this work is threefold. First we develop
a model for common crowdsourcing platforms and implement
the model using a simulative approach, which is validated with
a comparison to an analytic M /M/c — co system. In a
second step we evaluate inter-arrival times as well as campaign
size distributions based on a dataset of a large commercial
crowdsourcing platform to derive realistic model parameters and
illustrate the differences to the analytic approximation. Finally,
we perform a parameter study using the simulation model to de-
rive guidelines for dimensioning crowdsourcing platforms, while
considering relevant parameters for the involved stakeholders,
i.e., the delay before work on a task begins and the work load
of the workers.

I. INTRODUCTION

Cloud computing has been seen as one of the main drivers
fostering the development of numerous new services in the
Internet in recent years. The relative low infrastructure costs
enable even small start-ups building up complex systems
involving a large human workforce with low investments
during the ramp-up phase. Furthermore, the flexibility and
scalability of this approach allows for a continuous and timely
growth of the service to cope with an increasing number of
users.

Following the cloud paradigm, crowdsourcing platforms
can be seen as cloud providers for human workforce. Here,
work is distributed to a large group of anonymous users, who
complete it for small revenues or other incentives. Similar
to cloud computing platform, the workforce can be flexibly
scaled on a timely base and at relatively low cost. This in
turn enables a wide range of new services based on, e.g.,

subjective judgements or requiring cognitive work, which is
not yet possible to automate.

In order to make these human clouds easier accessible, most
of the platform providers offer programming interfaces, which
allow an automatic managing of the work on the platforms
or even developing mixed human-machine cloud applications.
However, in this context of commercial large-scale Internet
applications, the question of service guarantees arises. Here,
one of the most simple measures is the time until work on a
task begins. This question is already actively researched in the
machine-cloud environment, where the device infrastructure
can be scaled quite freely by investing money. In crowdsourc-
ing platforms, this is more complex, because new workforce
cannot simply be acquired by monetary investments, but new
users have to be willing to join the service. Therefore, the
platforms have to be “attractive” to the users.

In this paper we address the topic of dimensioning crowd-
sourcing platforms by applying well known models from
queuing theory [1] as well as simulative approaches, but also
consider the special aspects of crowdsourcing related issues.
We assume that users submitting work to the platform want to
minimize the time it takes to complete the submitted work.
As the time to actually complete the task depends on the
complexity of the task and not the number of workers, we
here focus on the task pre-processing delay. In parallel, the
users completing tasks want to maximize their income per
time, which can be estimated by the workers utilization. The
contributions of this paper are threefold. First we present a
model for evaluating completion times and worker utilization
for commercial crowdsourcing platforms. This models is im-
plemented as simulation and the simulation is validated by a
comparison with an analytic MX]/M/c — oo model. Second
we analyse a dataset of a large commercial crowdsourcing
platform to derive realistic models for the arrival process of
new work on the platform as well as the amount of submitted
work. These results are used in the simulation to analyse the
differences between the real world parameters and the analytic
approximation by the MX!/M/c — co model. In a third
step we use the simulation model and the parameters derived
from the platform to conduct a parameter study analysing
the impact of different work arrival patterns on the required



number of workers, while also considering an appropriate
worker utilization.

The reminder of the paper is structured as follows. First, we
give a brief overview of crowdsourcing in general and related
work in Sec. II. Then, we describe our proposed model of
a commercial crowdsourcing platform in Sec. III. Here, we
also detail on the simulative implementation and the analytic
validation of the implementation. The analysis of the real-
world dataset is presented in Sec. IV and the results of the
parameter study in Sec. V. Sec. VI finally concludes the paper.

II. BACKGROUND AND RELATED WORK

This section first gives a short introduction in the general
concept of crowdsourcing with a special focus on micro-task
platforms. Thereafter, we discuss related work of modelling
approaches for these platforms, as well as related work to our
modeling approach in general.

A. Crowdsourcing

The term crowdsourcing is a neologism combining the terms
‘crowd’ and ‘outsourcing’. It was first introduced by Jeff Howe
in 2006 [2] and describes a new form of work organisation
with a smaller granularity than traditional forms [3]. In con-
trast to traditional forms of work organization, work is divided
in individual tasks that can be completed independent of each
others. These tasks are not directly assigned to an employee
but published on a crowdsourcing platform in form of an open
call. Users publishing tasks on crowdsourcing platforms are
referred to as employer, users accepting and accomplishing
tasks as workers. Workers can freely choose which task to
work on, other than in traditional forms of work organization.
In commercial applications, workers are usually paid for
successfully completed tasks and do not receive hourly wages.
Crowdsourcing platforms act as mediators in this environment,
i.e., provide infrastructure for posting tasks and submitting task
results and negotiate in case of disagreements between workers
and employers.

The crowdsourcing approach is used for a large variety of
nonprofit, academic, and commercial applications, including
information gathering during crisis [4], analysis of astronomic
images [5], and by numerous large scale labour providers,
e.g., Amazon Mechanical Turk (MTurk)l, Microworkers2, and
Innocentive®. Depending on the specific use case, the features
of the crowdsourcing platform, the workers, and employers
differ. Therefore, we focus in this work on commercial micro-
tasking platforms for the development and evaluation of our
model.

Commercial micro-tasking platforms like MTurk or Mi-
croworkers are specialized labour provides for very fine gran-
ular tasks that can be easily completed a humans within a
few second to a few minutes, but cannot be solved using au-
tomatic approaches. These tasks include, e.g., image tagging,
text creation, or subjective ratings. As the tasks are highly

1http://www.mturk.com, Accessed Jul 2015
Zhttp://www.microworkers.com, Accessed Jul 2015
3http://www.innocentive.com, Accessed Jul 2015

Fig. 1: Crowdsourcing Platform Model

repetitive, they are often submitted by the employers in from
of campaigns, representing batches of similar tasks.

B. Related Work

Several efforts have already been made to describe cer-
tain aspects of micro-tasking platforms in analytic models.
Faradani et al. [6] modelled the arrival process of workers
using a non-homogeneous Poisson process in order to derive
optimal pricing strategies for the employers. The model is
based on a crawled dataset from MTurk including about
130,000 campaigns with in total over 4,000,000 tasks. Wang
et al. [7] analysed the completion time of crowdsourcing
campaigns using a survival analysis based on a crawled dataset
from MTurk consisting of more than 160,000 campaigns and
approximatly 6,700,000 tasks over a period of 15 months.
They were able to show the impact of time-independent
factors, e.g., the payment or the type of the task, on the
completion time. In order to optimize the costs and the
completion times of single jobs, Bernstein et al. [8] use a
M /M /c queueing model to describe a crowdsourcing retainer
approach. Here, workers are paid for staying online to wait
for potentially upcoming tasks. The model was validated in a
proof-of-concept experiment with 500 users on MTurk.

In contrast to existing work, we use a dataset directly
provided from the commercial crowdsourcing platform Mi-
croworkers for our evaluation instead of a crawled subset of
data. This allows us to gain a holistic view of all campaign
submissions of the platform and the campaign sizes. We
further extend the existing work of Bernstein et al. [8] by
also considering the time until the processing of any task in
the campaign begins, not only the time until the completion
of the first one.

III. MODEL

In our model, schematically depicted in Fig. 1, we consider
a crowdsourcing platform employing ¢ workers. The time
between two campaigns being submitted is given by the
random variable ¢.. Each campaign consists of a number of
tasks, distributed according to the random variable ©. We
assume that each task is then completed by one of the c
workers in order of arrival. The time required for completion
is given by the random variable B.

From this model we study two metrics in order to eval-
vate the performance of the crowdsourcing platform. First,
we consider the utilization p for all workers. This can be
interpreted as a measure for workers about how much they



can earn on the platform and should be maximized in order
to keep current workers and attract new ones. Furthermore,
we seek to obtain the mean task pre-processing delay E[D],
i.e., the time occurring before a worker begins to work on a
task. This measure is relevant for the employer and should
be minimized. We decided to use the E[D] instead of the
average completion time of the campaigns, as the completion
time also depends on the task length, which is under control
of the employer and not the platform operator.

In this section we first introduce an analytical model in
Sec. II-A, which will be used to validate the simulation model
developed in Sec. III-B. A comparative validation of analytical
and simulative model is then performed in Sec. III-C.

A. Analytical Consideration

First, in order to provide exact results, we consider the
crowdsourcing platform as a MX]/M/c — co model. Here,
both the campaign inter-arrival time t. as well as the time
to complete a task B are exponentially distributed with mean
E[t;] = 1/x and E[B] = 1/u, respectively. This seams feasible
because of both the large number of employers submitting
tasks and the large number of workers completing them.
Furthermore, we model the number of tasks per campaign ©
using a geometric distribution with mean E[O] = 1/p.

State probabilities [1] can be obtained by solving the state
equations, yielding

A+ pmin(i,

xz(i+1) = z(4) KYNO(i — k)

pmin(4 +1 c) P

for ¢ > 0 tasks unserviced in the platform. The state probabil-
ity for 2(i+1) only depends on the state probabilities for x (k)
for k£ < 4, lending itself to an iterative numerical computation.
Note that z(0) cannot be computed in such a manner and has
to be obtained using the normalizing equation 1 = Y~ (7).

Thus, we first calculate x(1) as a multiple of x(0) that is
x(1) = ¢(1)x(0). Then, we compute each z(i) depending
on the previously computed values for z(j),j < 4 and thus
obtain expressions z(i) = ((¢)(0). Once a sufficient number
k of state probabilities have been computed, the normalizing
property is applied, and z(0) is computed as

= <1+i§(z)> .

Finally, we can calculate the actual state probabilities as
x(i) = ¢(i)2(0) for all 0 < i < k.

Based on these state probabilities, we obtain the mean
worker utilization as

p= Z min(i, ¢)z (i) =
=0

AE[O]
cu

Next, we obtain the mean queue length 2 of the system as

K

Q=> (i—c)a(i).

1=c

Now, we consider the mean task pre-processing delay and with
Little’s theorem applied to the systems queue, we get

AE[O]E[D] = Q.

We solve for task the pre-processing delay E[D] and obtain

0
BID) = Sprer

B. Simulation

In order to allow for a larger variety of campaign inter-
arrival time distributions, we implement a discrete event
simulation using the OMNet++ simulation framework*. We
augment the framework with support for bulk arrivals and
support of empiric distributions taken from measurements de-
scribed in Sec. IV. Similar, to the queueing model introduced
in Sec. III-A, we consider campaign inter-arrivals according to
a distribution ¢, and a campaign size of © tasks. Task length is
given by a distribution B and tasks are stored in an unbounded
queue before being sent to service to the available workers c.
During simulation, we record the mean worker utilization p
as well as the mean task pre-processing delay E[D].

C. Validation

In this section, we validate the simulative model by com-
paring the metrics p and E[D] for a representative parameter
set with those obtained from the analytic model. We consider
exponential campaign inter-arrival times with a rate of 4
campaigns per hour, and a campaign size © geometrically
distributed with a mean of 100 tasks per campaign. For the
task duration B we consider a set of possible values, to
accommodate for different task types, between 1 and 5 minutes
per task. In both simulation and analytical model, we consider
between 5 and 50 workers.

Results are shown in Fig. 2. Simulative respective analytical
results are shown by different by line types. However, due
to the good fit of the analytic and simulative model, the
line showing the simulative results completely covers the
analytic results. For the simulation we give 95% confidence
intervals based on 10 replications. In this, and all following
figures, confidence intervals are given as error bars. For each
simulation we consider a simulation duration of 1500 hours
and accommodate for a transient phase of 150 hours. We
observe that for both worker utilization and task pre-processing
delays, the analytical results are well within the confidence
intervals.

IV. MEASUREMENTS

In this section we analyse a large dataset from a commercial
crowdsourcing platform to derive realistic model parameters
and compare the model based on these results with the analytic
approximation.

“http://www.omnetpp.org/, Accessed Jul 2015
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Fig. 2: Comparison of Simulation with Analytic Model

A. Deriving Realistic Model Parameters

Our analysis is based on a large dataset from the commercial
micro-tasking platform Microworkers. The dataset contains in-
formation about more than 160.000 campaigns and more than
18.000.000 tasks submitted to the platform between May 2009
and Jan 2015, including the number of tasks per campaign as
well as the time of the submission of the campaign.

First we study the inter-arrival times of the campaigns.
During the observation period, the platform faced some down-
time due to software updates or changes of the technical
infrastructure. Here, no campaigns could be submitted re-
sulting in relatively large campaign inter-arrival times. In
our model we only consider the regular operation of the
platform, therefore we removed all inter-arrival times larger
then 97.5 % quantile of all observed values. We observe a
mean campaign inter-arrival time of 14.46 min with a standard
deviation 20.78 min. Fig. 3a shows the CDF of considered
inter-arrival times, as well as the fitted distribution. For the
fitting we considered several possible distributions but found
the Gamma-distribution defined by shape « and rate 3 to be
the most suitable. Using fitdistrplus for the R language
we derive the distribution parameters by moment fitting and
obtain ov = 0.484071 and 5 = 2.009.

Next, we consider the campaign sizes. The smallest possible
campaign sizes on Microworkers is 30 tasks, however our
dataset contained a few test campaigns with a small size.
These test campaigns, as well as outliers larger than the 97.5 %
quantile of the campaign size have been removed from the
considered dataset. In total 3.7 % of the original dataset were
filtered by these conditions, the remaining data resulted in a
mean campaign size of 97.01 tasks and a standard deviation
of 103.41 tasks. The CDF of the campaign sizes is depicted in
Fig. 3b, together with the corresponding fitted distribution.

We observe that a very high share (35 %) of campaigns has

only the minimum size of 30 tasks. Further, campaign sizes
which are a multiple of ten or a multiple of 100 are quite
frequent, due to rounding by employers.

In order to obtain a suitable analytic distribution for the
empiric values, we divided the observed values and use the
following piecewise defined distribution.

PO,
P(© = ) ~ { Vi
©=9) {GEOM(H) 10 + (Bnin + 1)

if 0 = 00
else

The minimum campaign size 6.,;, is observed with a fixed
probability pg_. , while all campaign sizes larger than 6Oy
follow a shifted and scaled geometric distribution. Due to the
relatively high frequencies of campaign sizes being multiples
of 10 and 100, it is only possible to achieve a good fitting
either for the lower or the higher region of the geometric part.
As an overestimation of the campaign size will give us an
upper bound of the platform work load, we decided to put
a stronger emphasis on correct fitting of the larger campaign
sizes. Again we used fitdistrplus to estimate p = 0.086
using quantile matching for the 90% quantile. 6,,;, = 30 and
Do,.., = 0.350 were taken from the empirical values.

Another relevant model parameter is the processing time of
the tasks, i.e., the time a single worker needs to complete one
task. Unfortunately, this information cannot be obtained from
our dataset. Therefore, we assume that the processing times
follow a negative-exponential distribution with rate p. Even if
the exact processing times are not available, each employer
has to add an estimation about the time it takes to complete
a task in the campaign description. In our dataset, 87.8 % of
all tasks have an estimated completion time between 1 and 6
minutes. Therefore, we consider p € {/6,1/5,...,1/2,1} for
the following evaluations.

Finally, the last model parameter to estimate is the number
of users on the crowdsourcing platform. At the time of this
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analysis, Microworkers had over 650.000 registered user ac-
counts. The proposed model does not consider vacation times,
i.e., the workers would have to be available 24/7. In reality,
many crowdsourcing workers also only work occasionally on
the platforms or only for a few tasks. Taking this into account,
the number of workers to be considered in our model has to
be much small than the number of workers on the real world
platform and consequently we decided to estimate meaningful
values based on the model parameters instead of using the
given number of workers from the dataset.

B. Comparison of Simulative and Analytic Model

An important question for the later analysis is whether the
analytic model from Sec. III-A can be used as an approx-
imation or if a simulative evaluation is necessary. To this
end we compared the later considered metrics p and E[D]
for 1) a simulation using the empiric distributions for the
task inter-arrival times and campaign sizes, 2) a simulation
using the fitted distributions derived in Sec. IV-A, and 3) the
analytic model from Sec. III-A. For the analytical model we
used the campaign size distribution derived in Sec. IV-A and
A = 4.141/h. The results are shown in Fig. 4.

The worker utilization p is depicted in Fig. 4a, E[D] in
Fig. 4b. We observe that all models result in the same values

. . . . . __ E[t.]E[O]
of p, which is not surprising when considering p = o
with the mean inter-arrival time Flt.]. Here, all parameters
are the same for the three compared models and therefore, no
significant differences can be seen.

This is different for E[D]. Here, large discrepancies can
be observed between the model based on the empiric dis-
tributions and the analytical model. These results show that
the MXI/M/c — 0o model can also not be used as a worst
case estimation, as it underestimates E[D]. In contrast to this,
the simulation model based on the Gamma distribution is an

accurate fit compared to the model based on the empirical val-
ues. Therefore, we continue our evaluation with the simulation
model based on the Gamma distributed inter-arrival times and
the piecewise defined distribution for the campaign sizes.

V. NUMERICAL EVALUATION

In this section we use the simulative model introduced
in Sec. III-B and the measurements obtained from the Mi-
croworkers platform in order to analyse the impact of different
parameters on the considered metrics. First, we study the
impact of campaign inter-arrival times Sec. V-A. Then, in
Sec. V-B we study trade-offs between metrics of interest for
the different stakeholders. The results presented in this section
can be used as guidelines for platform operators, in order to
ensure that both stakeholders are sufficiently satisfied.

A. Impact of Campaign Interarrival Distributions

Campaign inter-arrival times influence both the work load
of the individual workers as well as time required before a
worker starts working on a task. From the perspective of
an operator, understanding the influence of different inter-
arrival processes is important. As shown in Sec. IV, the
Gamma distribution can be used to approximate the campaign
inter-arrival times as seen on the crowdsourcing platform
Microworkers. In this section, we study the impact of such
different processes by utilizing the parameter space afforded
by the Gamma distribution and considering the impact on the
metrics worker utilization and task pre-processing delay.

The characteristics of the Gamma distribution change de-
pending on the parameters shape « and the rate 5. While

both shape and rate influence the mean Eft.] = § and
variance Var[t;] = gz of the campaign inter-arrival times,
only the shape influences the skewness Skew[t.] = - of the

distribution.
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A shape of 1 describes an exponential distribution. Increas-
ing of the shape for the same rate changes the form of the
distribution from an exponential type to a distribution which
is similar to a normal distribution. By increasing the rate for
the same shape the tightness of the distribution is modified. A
rate less than 1 results in a distribution with a long tail. The
increase of the rate decreases the broad of the distribution.

Transferred to the campaign inter-arrival process different
shape and rate settings can be used to model different task
types and varying the business of the platform. The range of
the inter-arrival times is given by the rate and the shape defines
the weighting of the different times. A lower shape means
more campaigns arrive in a short time interval in combination
with longer time periods without any campaign arrival.

Next, we use our simulation model introduced in Sec. III

with the campaign size distribution and task completion times
obtained in Sec. IV for different campaign inter-arrival times
to study the impact on the worker utilization. Only stable
systems, i.e., crowdsourcing platforms with an utilization
p < 1 are considered in the following.

Independent of the campaign inter-arrival time distribution
and the number of workers, we see in Fig. 5 that the intro-
duction of more complex tasks in the platform by means of a
higher mean task length E[B] increases the worker utilization.
The same number of workers now require more time to
process the same number of tasks. Furthermore, for the same
campaign inter-arrival times and mean task lengths, increasing
the number of workers decreases the worker utilization, as a
higher number of workers has to compete for the same number
of tasks. For different shapes o of the campaign inter-arrival
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times and the same rate (3, with all other parameters fixed, we
observe a decrease of the shape results in an increase in worker
utilization. A decrease of the shape « directly decreases the
mean campaign inter-arrival time E[t.] = % and increases the
rate ﬁ of incoming campaigns which increases the systems
utilization. The same argument can be applied to the rate
parameter of the campaign inter-arrival time distribution. An
increase of the rate /3 again influences the mean FE|t.] and the
rate of the campaign inter-arrival time resulting in an increased
worker utilization.

In Fig. 6 we consider the impact of different campain inter-
arrival time characteristics on the task pre-processing delay
E[D]. For a fixed number of workers and campaign inter-
arrival distribution a larger mean task duration also increases
the mean task pre-processing delay. As more tasks have to
enter the queue, tasks which would not have been queued
for lower task length now suffer queueing delay. For a fixed
task length and campaign inter-arrival distribution, we see that
increasing the number of workers results in a decreased task
pre-processing delay. The waiting probability decreases due
to the higher capacity of the platform, resulting in a lower
waiting time per task. Next, we consider the shape of the
campaign inter-arrival time for fixed other parameters. The
curves show that increasing the shape decreases the mean task
pre-processing delay. This is caused by an increasing mean
Elt] of the inter-arrival times which results in a decrease of
the campaign arrival rate. Thus, the platform contains fewer
for the same number of workers and fewer tasks have to wait
for completion. The effect is more obvious for high rates.

Finally, we consider the effect of an increased rate while
keeping all other parameters fixed. An increased campaign
inter-arrival rate increases the task pre-processing time, as the
number of campaigns arriving at the platform is increased.
The increase of the rate /3 decreases the broad of the campaign
inter-arrival times distribution. The greater 3 the lower is E|t,]
and the higher the campaign inter-arrival rate. More tasks

arriving at the platform and have to be completed with the
same number of workers.

Based on this observations, we conclude that while both
shape and rate influence the metrics worker utilization and
mean task pre-processing delay, the rate parameter of the
Gamma distribution has an higher influence on the considered
metrics. In order to account for the higher influence of the rate
on the considered metrics, we fix the shape parameter of the
Gamma distribution to the value 0.484071 obtained in Sec. IV
for the next section and focus on different rate parameters.

B. Trade-off Considerations for Platform Operators

A crowdsourcing platform operators business success de-
pends on the satisfaction of the main stakeholders, i.e. the
employers and workers. As discussed in Sec. III, workers are
interested in a high worker utilization p because this correlates
with their payment. Employers are interested in having their
tasks completed as fast as possible, i.e. in a as small as
possible task pre-processing delay E[D]. The interests of the
stakeholders are opposing because lower task pre-processing
delays can be achieved by hiring more workers, which in
turn results in a lower worker utilization. Thus, the platform
operator is forced to consider a trade-off between worker and
employer satisfaction, which we consider in this section. The
impact of different campaign inter-arrival rates on worker and
employer satisfaction for the specific platform can be evaluated
by following the colored lines in Fig. 7.

Given a fixed number of workers, decreases in the campaign
inter-arrival rate results in lower worker utilization and task
pre-processing delay. The effects on the worker utilization and
the task waiting time decreases for a larger amount of workers.
This means a platform with a larger number of workers is more
robust against fluctuations in the rate of incoming campaigns
than a system with a small number of workers.

Independent of the considered task duration, we observe that
increasing the number of workers, for example by advertising
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the platform, decreases both the task pre-processing delay
as well as the worker utilization. However, this decrease is
not linear. This means that a small increase of the number
of workers reduces the worker utilization, which is generally
not desired. However, this small degregation of the worker
utilization results in an over proportional reduction of the
task pre-processing delay. Thus, it is advisable to sighly
overdimension the number of workers to optimize the trade-off
between worker utilization and task pre-processing delay.

VI. CONCLUSION

In this paper we introduced an analytic and a simulative
model for crowdsourcing platforms and derived the key per-
formance metrics worker utilization and task pre-processing
delay. We analysed a dataset from the commercial crowd-
sourcing platform Microworkers, obtaining campaign inter-
arrival times, campaign sizes and provide fitted distributions.
Finally, we performed an analysis of different campaign inter-
arrival distributions and worker numbers, in order to present
guidelines for platform operators, on how to find a sensible
trade-off between the needs of workers and employers.

We have shown that crowdsourcing platforms can be dimen-
sioned so that both workers and employers can be sufficiently
satisfied. Our analysis indicates that crowdsourcing platforms
are robust regarding different shapes of arrival distribution, but
platform operators might need to take appropriate measures if
the rate of campaign inter-arrivals changes. One example of
such changes might be a major employer switching campaign
submission from batch submission at midnight to a streaming
submission over the whole day. Our results show that these
changes have no impact on the performance metric of the
platform and require no action from the platform operator.

The results further indicate that a relatively small number
of workers is sufficient to run a crowdsourcing platform.
However, this assumes that a worker is willing to work 24/7
and is able to complete all tasks on the platform, which does

not hold in the real world. Thus, the given worker counts
have to be scaled to realistic work-hours, which is beyond the
scope of this paper. Nevertheless, it opens the opportunity to
explicitly hire a dedicated workforce to overcome short time
worker shortages, e.g., due to large scale internet outages.
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